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Abstract: The learning-based model predictive control (LB-MPC) is an effective and critical method
to solve the path tracking problem in mobile platforms under uncertain disturbances. It is well
known that the machine learning (ML) methods use the historical and real-time measurement data to
build data-driven prediction models. The model predictive control (MPC) provides an integrated
solution for control systems with interactive variables, complex dynamics, and various constraints.
The LB-MPC combines the advantages of ML and MPC. In this work, the LB-MPC technique is
summarized, and the application of path tracking control in mobile platforms is discussed by
considering three aspects, namely, learning and optimizing the prediction model, the controller design,
and the controller output under uncertain disturbances. Furthermore, some research challenges faced
by LB-MPC for path tracking control in mobile platforms are discussed.

Keywords: model predictive control; learning-based control; path tracking control;
data-driven prediction models; uncertain disturbances; mobile platforms

1. Introduction

The path tracking control is a core technique in autonomous driving. It is used to
control driving in mobile platforms, such as vehicles and robots, along a given reference
path, as well as to minimize the lateral and heading errors [1–3]. With the development of
control theory [4,5], various advanced control algorithms [6–9] are adopted for path tracking
control, including feedback linearization control [10], sliding mode control [11], optimal
control [12], and intelligent control [13,14]. The design process of feedback linearization
control is simple and has good response characteristics in control. Similarly, the sliding
mode control has the advantages of fast response and strong robustness. The model
predictive control (MPC) method in the optimal control has the ability to explicitly deal with
the system constraints and extend the algorithms to multi-input multi-output systems [15].
When a reference state is introduced, the changing trend of the reference path can be added
to MPC. The robust [16] and stochastic [17] model predictive controls are the main methods
of dealing with uncertain systems [18]. The intelligent control achieves a better control
based on self-learning, self-adaptation, and self-organization. Its performance depends on
the control framework of the adopted control method [19].

Under uncertain environmental disturbances, the aforementioned methods are not
fully effective in meeting the operational requirements of path tracking control. Especially
in the high-speed driving environment, the complex curvature variation conditions pose a
major challenge to the path tracking performance of the mobile platforms. The nonlinear
motion of the mobile platforms and the complex variability of road conditions require

Appl. Sci. 2022, 12, 1995. https://doi.org/10.3390/app12041995 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041995
https://doi.org/10.3390/app12041995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8543-6561
https://doi.org/10.3390/app12041995
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041995?type=check_update&version=1


Appl. Sci. 2022, 12, 1995 2 of 25

that the control system can intelligently achieve the established goals and ensure the
real-time control of the system. The combination of machine learning (ML) and MPC
has better performance in path tracking control. In [20,21], the learning-based model
predictive control (LB-MPC) is applied to the path tracking control in mobile platforms.
During the flight, a dual extended Kalman filter was used as a method for learning by the
quadrotor to learn about its uncertainties, while an MPC was used to solve the optimization
control problem. The LB-MPC technique rigorously combines statistics and learning with
control engineering while providing levels of guarantees about safety, robustness, and
convergence. It handles system constraints, optimizes performance with respect to a cost
function, uses statistical identification tools to learn model uncertainties, and provably
converges. Afterwards, the LB-MPC method was researched [22–24], and different schemes
were designed [25,26]. There are various ML techniques that have been explored and
applied to MPC, such as regression learning [27], reinforcement learning [28], and deep
learning [29,30]. In [31], LB-MPC is reviewed from the perspective of security control, and
the current applications of LB-MPC in the control field have been discussed. The LB-MPC
method has been demonstrated to result in competitive high-performance control systems
and has the potential to reduce modeling and engineering effort in controller design. The
development process of LB-MPC is shown in Figure 1.
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The paper is organized as follows. Section 2 summarizes the LB-MPC technique that
combines the advantages of ML and MPC. Section 3 introduces the application of path
tracking control in mobile platforms by considering three aspects. Section 4 discusses some
research challenges faced by LB-MPC. Finally, Section 5 concludes this paper regarding the
learning-based model predictive control technique and its application in the field of mobile
platforms for path tracking control.

2. Overview of Learning-Based Model Predictive Control
2.1. Model Predictive Control

Currently, the MPC is a well-known and standard technique used for implementing
constrained and multivariable control in process industries [33,34]. It provides an integrated
solution for path tracking control in mobile platforms [35–37]. Unlike other optimal control
methods, MPC employs a unique receding horizon technique that enables rescheduling
of the optimal control strategies at each control interval to eliminate the accumulation of
control errors. In mobile platforms, the MPC first establishes a prediction model. Then, all
the possible states of the mobile platforms are predicted by combining the current state of
the mobile platforms and the feasible control input. Finally, the state closest to the reference
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state is obtained by optimizing the cost function, and the corresponding control input is
attained. The MPC aims to achieve optimality in a long period of time on the basis of
short-term optimization. This process involves three major steps, namely, prediction using
model, rolling optimization, and feedback correction. The combination of prediction and
optimization is the main difference between MPC and other control methods.

However, the MPC needs to consider the perception and response to the time-varying
characteristics of a system that are caused by the uncertain disturbances. The dynamic
characteristics of a system increase the uncertainty, thus affecting the performance of
MPC [38,39]. In practice, model descriptions can be subject to considerable uncertainty,
originating, e.g., from insufficient data, restrictive model classes, or the presence of external
disturbances. Therefore, it is necessary to actively learn the uncertainties in a system and
incorporate regular adaption for preserving the performance of MPC in uncertain systems.

The MPC for path tracking control in mobile platforms can be divided into linear
model predictive control (LMPC), linear error model predictive control (LEMPC), nonlinear
model predictive control (NMPC), and nonlinear error model predictive control (NEMPC).
Figure 2 presents the comparisons of the articulated vehicle path tracking controller on
the basis of LMPC, LEMPC, NMPC, and NEMPC when tracking the path with complex
curvature variation [40]. The simulation results show that the performance of the NMPC
controller is better as compared to LMPC, LEMPC, and NEMPC controllers. The articulated
vehicle path tracking controller based on NMPC performs well in terms of stability and
accuracy. However, NMPC controller needs to be further optimized in real time. Therefore,
the NMPC controllers are usually used for path tracking of robots [41]. Additionally, the
whole algorithm efficiency can be improved by the prediction model, cost function, and
minimization algorithm.
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The MPC has the ability to deal with general nonlinear dynamics, hard state, input
constraints, and general cost functions. Currently, solving online optimization problems
has become a future research trend of MPC due to its high computational complexity.
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Especially in the cases of complex physical models, numerous optimization variables, or
high sampling frequency, the online optimization becomes more difficult. Moreover, it is
noteworthy that the MPC is usually set up in advance by the controller and is difficult
adjust in accordance with the situation. The availability of increasing computational
power and sensing and communication capabilities, as well as advances in the field of
machine learning, has given rise to a renewed interest in automating controller design
and adaptations based on data collected during operation, e.g., for improved performance,
facilitated deployment, and a reduced need for manual controller tuning.

2.2. Machine Learning

Recent successes in the field of ML, as well as the availability of increased sensing and
computational capabilities in modern control systems, have led to a growing interest in
learning and data-driven control techniques. The ML techniques have been widely used
to solve complex engineering problems, such as object classification, object detection, and
numerical prediction [42,43]. The ML techniques build statistical models on the basis of the
training data. The resulting models are then used to predict and analyze new data on the
basis of the data-driven controller [44].

Among ML techniques, neural networks have shown great success in regression
problems. Additionally, neural network-based modeling outperforms other data-driven
modeling methods due to its ability to implicitly detect complex nonlinearities and the
availability of multiple training algorithms. In addition, ensemble learning, a machine
learning paradigm that trains multiple models for the same problem, has been gaining
increasing attention in recent years. By taking advantage of multiple learning algorithms
or various training datasets, ensemble learning provides better predictive performance
than a single machine learning model. ML techniques offer sophisticated tools for highly
automated inference of prediction models from data.

The data-driven methods are effective for solving uncertain problems. During the
prediction process, an uncertain model is built on the basis of the uncertain data caused
by unexpected disturbances and estimation error. Then, the data-driven methods auto-
matically use the rich information embedded in the uncertain data to make intelligent and
data-driven decisions [45]. The data-driven methods are also used in the optimal design
of the controller. They play an important role in learning and optimizing for the control
precision and real-time response.

Iterative learning control (ILC) improves the current iterative control input signal by
using the data obtained during the previous iteration [46]. As the number of iterations
increases, the tracking error decreases. Therefore, ILC is widely used in ML prediction.
ILC is a model-based control method that requires high model accuracy. Therefore, the
learning-based prediction models are built on the basis of the data-driven methods and
ILC [47]. The controller design only depends on the input and output data of the system
and in not affected by the accuracy of the model. This combination improves the prediction
performance of the controller.

In learning-based prediction methods, the uncertain disturbances in the mobile plat-
forms are usually modeled as a Gaussian process (GP). The GP uses an inherent description
function to estimate uncertainty [48]. The GP is a function of system state, input, and other
related variables, and GP is updated on the basis of the data collected in the previous
experiments. It is notable that the GP is also used to represent the dynamics of traditional
systems [49]. On this basis, the GP models can be used to model complex motion modes
of moving objects and compute the probability distribution of different motion modes.
Afterwards, the path can be divided into different GP components to realize accurate and
efficient position prediction [50]. This method does not require large number of parameters
in arithmetic operations, and the position information in various motion modes can be
obtained by the probability and statistical distribution characteristics of the data itself. The
learning-based prediction methods adapt to various complex road conditions and improve
the path tracking control performance in the mobile platforms.
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As the learning-based prediction methods are more adaptable to uncertain distur-
bances, in the previous work, a deep learning-based approach is proposed to accurately
predict the throttle and state on the basis of driving data of experienced operators [51].
The driving data comes from the field test of experimental wheel loader with sensors and
GPS. Considering the time series characteristics of the process, the long short-term memory
(LSTM) networks are used to extract features. The driving data are manually divided
into six stages. Six LSTM networks are used for the feature extraction of six stages. The
prediction of throttle and state share the same weights of LSTM in order to reduce the com-
putational complexity. Two backward-propagation neural networks following by LSTM
are used to perform regression. Two backward-propagation neural networks (BPNNs) are
used to obtain the prediction results, as the throttle is controlled by the driver and the state
of wheel loaders is randomly influenced by the environment. The prediction results at
different stages are output by the neural networks with different parameters to improve
the prediction accuracy. Wheel loaders work on different material piles during the working
operation. Thus, in the previous work, two different material piles were used to study the
adaptability of the prediction model. Figure 3 presents the flowchart of learning-based
prediction method.
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2.3. Learning-Based on Model Predictive Control

The MPC method provides an integrated solution for the control system with in-
teractive variables, complex dynamics, and constraints, but it relies on the accuracy of
the physical model [52]. In order for the control performance to be improved, usually
more complex models are built and non-linear optimization techniques are used. The ML
methods make predictions by the data-driven methods [53,54]. The ML methods build
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statistical models on the basis of training data without model identification and use histori-
cal data to derive control strategy [55–57]. The ILC is applied to improve the predictive
performance of the controller [58]. Theoretically, with the accumulation of valid data, the
prediction ability of ML continuously improves. However, the prediction performance
of ML significantly depends on the amount of training data. The perfect combination of
the MPC and ML forms the LB-MPC. Applying the learning algorithm to the MPC will
improve the performance of the system and guarantee safety, robustness, and convergence
in the presence of states and control inputs constraints.

Most research has focused on an automatic data-based adaptation of the prediction
model or uncertainty description. The feedback techniques have the ability to overcome
and reduce the impact of uncertainty [59]. The LB-MPC embeds the ML method in the
MPC framework to eradicate the influence of uncertain disturbances, thus improving the
performance of path tracking in mobile platforms [26,60]. The LB-MPC decouples the
robustness and performance requirements by employing an additional learned model and
introducing it into the MPC framework along with the nominal model. The nominal model
helps to ensure the closed-loop system’s safety and stability, and the learned model aims to
improve the tracking behaviors. The LB-MPC effectively evaluates both the current and
historical effects of uncertainties, leading to superior estimating performance compared
with conventional methods.

The combination of MPC and ML in nonlinear control systems has been a focus
of industrial control research and development [61]. First, the LB-MPC method is used
to train the model on the basis of the input data and ML, such as the GP regression
method [62–65]. Second, the MPC control strategy is generated, and the calibration of
MPC control parameters is performed by directly learning from the data on the basis
of ML. In order for the real-time response of the controller to be realized, the sample
database is trained offline by using the deep neural network [66–69]. Afterwards, non-
direct measurement and the state variables for MPC are designed on the basis of ML, such
as reinforcement learning [70]. Finally, the controller output is optimized on the basis of
the security control framework.

In this work, we review the application of LB-MPC for path tracking control in mobile
platforms, including learning and optimizing the prediction model, the controller, and the
controller output in the presence of uncertain disturbances.

3. LB-MPC in Path Tracking of Mobile Platforms
3.1. Learning and Optimizing Prediction Model

The prediction model forms the basis of path tracking control. The accuracy of model
determines the control performance. The simplified physical model can only be used to
simulate the real mobile platform and uncertain environment to a certain extent. The
prediction results are not very accurate [71]. In order for the control performance to
be improved, the usual approach is to build complex physical models or use nonlinear
optimization solvers. However, in the control system of mobile platforms operating in
uncertain environmental disturbances, a complex physical model does not perform well
in some situations. In addition, the physical model does not truly reflect the interaction
between the platform and environment in real time. The prediction model is adjusted
on the basis of the latest data by using data-driven ML methods [72]. For instance, the
neural networks adjust their parameters on the basis of the newly acquired data [73]. The
reinforcement learning realizes real-time interaction between the system and environment.
The GP regression assesses the uncertainty in the residual error model to adapt the complex
and dynamic working environment. The performance comparisons of the physical model,
deep learning model, and reinforcement learning is presented in Table 1.



Appl. Sci. 2022, 12, 1995 7 of 25

Table 1. The comparisons between the physical model, deep learning model, and reinforcement
learning model under different evaluation parameters (ratings: none, low, medium, and high).

Evaluation Contents

Prediction Model

Learning-Based Model

Physical Model Deep Learning Model Reinforcement Learning Model

Simulation accuracy Low Medium High
Simulation calculation Low Medium High

Modeling difficulty High Low Medium
Training difficulty None Medium High

Adaptability Low High High
References [71] [29,30,66–69,74] [28,32,70,75]

3.1.1. Theoretical Basis for Modeling

The prediction models of different governing equations in MPC have a different effect
on the path tracking control. The Gaussian model considers the Gaussian distribution as the
model parameter [74]. It has a better control performance when dealing with periodically
time-varying disturbances. The robust model predictive control (RMPC) and stochastic
model predictive control (SMPC) are commonly used in uncertain systems. RMPC is
especially suitable for control systems in which the stability and reliability are the primary
objectives because the dynamic characteristics in the process are known and the range of
uncertain factors is predictable. Moreover, RMPC does not require an accurate process
model [76,77]. On the other hand, SMPC is generally intended to guarantee stability and
performance of the closed-loop system in probabilistic terms by explicitly incorporating
the probabilistic description of model uncertainty into an optimal control problem [78].
The disturbance rejection model predictive control (DRMPC) is based on MPC and is used
for compensating the disturbances in real time. It tries to bring the disturbed system as
close as possible to the calibrated system and find the nominal optimal solution by using
compensation methods [79]. This is the main difference between RMPC and SMPC. In this
work, both RMPC and SMPC are designed on the basis of the upper bound of disturbance.
As a result, both methods are highly conservative and sacrifice some performance. The
control equations of the aforementioned methods are shown in Table 2.

3.1.2. Data-Driven Prediction Models

The data-driven prediction models include two parts, i.e., the nominal system model
and the dynamic model composed of additional uncertainties. The nominal system model
is learned on the basis of the data, and it ensures the security and stability of the closed-loop
system. However, due to prior uncertainty, the experimental data does not incorporate the
entire state space. Consequently, the prediction accuracy of the model is not satisfactory.
The uncertainty in the system arises from unmodeled nonlinearities or external disturbances
and are contained in a finite set of dependent states [25]. Therefore, the uncertainty set is
obtained from the data by using GP regression [80,81] or reinforcement learning [82,83],
and then a dynamic model is formed with additional uncertainties. Finally, a data-driven
prediction model is formed by combining the nominal system model.

The data-driven prediction models perform path tracking in mobile platforms effi-
ciently and improve the path tracking performance in uncertain environments. An accurate
vehicle model that covers the entire performance envelope of a vehicle is highly nonlin-
ear, complex, and unrecognized. In order for uncertainties to be dealt with and for safe
driving to be achieved [84], GP regression is used to obtain the residual model, which is
also applied to the remote-control racing cars [48]. The trained reinforcement learning
model is integrated with the controller to efficiently deal with the tracking error [85]. The
inaccuracy in the prior model leads to a significant decline in the performance of MPC.
The reinforcement learning based on the online model assists in learning the unknown
parameters and updating the prediction model, thereby reducing the path error [86].
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In the field of robotics, high precision path tracking forms the basis of robot operations.
The GP of offline training is used to estimate the mismatch between the actual model and
the estimated model. The extended Kalman filter estimates the mismatches in the residual
model online to achieve the robot arm offset-free tracking [87]. The prediction model based
on ML methods and MPC is the best solution for path tracking in cooperative autonomous
unmanned aerial vehicles in the cases of different formation [88–90].

In unknown environments, such as the unstructured or off-road terrains, the robot–
terrain interaction model usually does not exist. Even if such a model exists, finding the
suitable model parameters is very difficult. The prior model is unable to deal with the
influence of complex and dynamic terrains. The learning-based nonlinear model predictive
control (LB-NMPC) algorithm includes a simple prior model and a learning disturbance
model of environmental disturbance [32,75]. The disturbance is modeled as a GP function
based on the system state, input, and other related variables to reduce the path tracking
error of repeated traversal along the reference path. On the basis of the existing LB-NMPC
algorithm, researchers have proposed a robust min–max learning-based nonlinear model
predictive control [91] and a robust constraint learning-based nonlinear model predictive
control (RC-LB-NMPC) method [92] to track the path of off-road terrain. The learning is
used to generate low-uncertainty and non-parametric models on site. According to these
models, the linear velocity and angular velocity are predicted in real time. The control
framework and experimental terrain of RC-LB-NMPC are presented in Figure 4. The neural
networks and model-free reinforcement learning have been used to generate walking
gait for motion tasks. The neural networks are used to learn complex state transition
dynamics [93]. The information learned regarding the terrain height is helpful for the robot
MPC controller to track paths in uneven terrains.

Table 2. The governing equations for different models.

Gaussian Model [74] Stochastic Model [78]

Gaussian processes
r(z) ∼ GP(m(z), k(z, z′))
m(z): Rnz → R Mean function
k(z, z′): Rnz × Rnz → R+

0 Symmetric, positive semi definite covariance
function
z, z′ ∈ Rnz Independent variables or
inputs to the GP
r(z)— At specific locations
z— Normal distribution
R—The set of real numbers
Rnz —The set of n-dimensional real column vectors

A discrete-time, uncertain system
xk+1 = f (xk, uk, wk, θ)
yk = h(xk, vk)
k ∈ N0 Time index
xk ∈ Rnx —System states
uk ∈ Rnu —System inputs
yk System outputs
θ ∈ Rnθ System parameters
wk ∈ Rnw Stochastic process noise
vk ∈ Rnv Measurement noise
f (xk, uk, wk, θ) System state equations
h(xk, vk) Output equations

Robust Optimization Model [76,77] Immunity Model [79]
∼
u
∗
f (tk) = arg minu f (τ|tk) J f

(∼
pe(tk),

∼
ue(tk)

)
u f (t) = M−1

(
θ f (t)

)[
M
(

θ̃∗f (t | tk)
)

ũ∗f (t | tk) + Kp f e(t)
]
, t ∈ [tk, tk+1)

ũ∗f (tk) Optimal predictive control
sequence
u f (t) Actual control signal

J f

(∼
pe(tk),

∼
ue(tk)

)
—The cost functions in model predictive control

p̃e(tk)—The tracking error of the system
ũe(tk)—The control of input error
θ f (t)—The angle of system state
p f e(t) State of the actual system

∼
u
∗
f (tk) = arg min∼u f (τ|tk)

J
(∼

pe(tk),
∼
ue(tk)

)
u f (τ) = κ

(
ũ∗f (tk | tk), d̂v(tk)

)
ũ∗f (tk)—Optimal control sequence
u f (τ)—Composite control signals
d̂v(tk)—Estimation of actual disturbance
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3.1.3. Prediction Model Pre-Training Based on Transfer Learning

In ML, a large amount of data is often required to learn complex features. The process
of acquiring the data for training the mobile platform prediction model is a laborious task.
It is noteworthy that as soon as the feature space or feature distribution of the test data
changes, the performance of model degrades. As a result, new data must be collected to
retrain the model for enhancing the performance.

The transfer learning methods exploit the knowledge accumulated from data in auxil-
iary domains to facilitate the predictive modeling consisting of different data patterns in
the current domain [94]. These methods include sample transfer, feature transfer, model
transfer, and relation transfer. In natural language processing and computer vision, the
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pre-trained models created for a specific task are used to solve problems of a different
domain [95]. However, there are not many neural networks available for path tracking
control in mobile platforms. Therefore, the simulation dataset for model pre-training is
obtained by building simulation models, such as dynamics. The data obtained from the
real mobile platform is used to fine-tune the prediction model. As a result, the requirement
for real data is reduced. The degree of similarity between the simulation and real data
significantly influences the results of pre-training.

In multibody dynamics simulation (MBS) analysis, there are three challenges, namely,
high modeling difficulty, high computational complexity, and restricted solver. The MBS
based on deep learning network (MBSNet) is applied to vehicle tracking systems [96]. This
model is robust in the presence of different track irregularities. The MBSNet accurately
and quickly predicts the low-frequency components of dynamic response. The technical
flowchart of MBSNet is presented in Figure 5.
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The end-to-end training methods use the original sensor data as the input and train
the output directly by commands. These methods decrease the volume of training data
because they are only trained on real devices or simulations without experiments. The
convolutional neural network (CNN) is used as an image embedder for estimating the
current and future position of the vehicle relative to the path [97]. As presented in Figure 6,
a region randomization method is proposed to generate different types of paths with
random curvature and length, initial lateral, and heading errors for the vehicle during
simulation. This method covers all the possible training scenarios. In addition, this method
prevents the network from overfitting, which makes it more universal as compared to other
similar methods. The mobile platforms follow the path smoothly and slow down where
the curvature is larger.
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In cases of uncertain disturbances, the data-driven prediction models have a better
environmental adaptability as compared to the traditional physical models. The transfer
learning is used to pre-train the prediction model in the simulation environment, which
solves the problem of high demand for real training data. The transfer learning also
improves the reliability of the data-driven prediction models, which is the basis of LB-MPC.

3.2. Learning and Optimizing for Controller

It is important to control the mobile platforms to follow a complex curvature path. The
prediction model is the core element of the model predictive controller, and other elements,
such as cost functions, constraints, and real-time response, also have a significant impact
on the final closed-loop control performance.

3.2.1. Learning and Optimizing for Control Precision

The model predictive controller optimizes the cost function under various constraints.
The optimization design of the controller precision is based on the parameterization of
the cost function and constraints. The cost function and the constraint condition can
be parameterized into the function of the system state variables, application input, and
random variables. Table 3 shows a parameterized version of an MPC problem, including a
parameterization of the cost function l(xi, ui, θt) and constraints X (θX ), U (θU ) [31]. This is
convenient for subsequent learning and optimization of the controller parameters under
uncertain disturbances.
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Table 3. The parameterized version of an MPC problem [31].

Evaluation Contents Expression Formula

The system dynamics in discrete time

x(k + 1) = ft(x(k), u(k), k, w(k), θt)
x(k) The system state
u(k) The applied input at time k
w(k) The noise in the system
θt The parametric uncertainty of the system

The cost or objective function
Jt = E

(
N
∑

k=0
lt(x(k), u(k), k)

)
N The possibly infinite horizon

Both the system dynamics and the prediction
model in LB-MPC under
uncertain disturbances

f (x, u, k, θ, w) = fn(x, u, k) + f1(x, u, k, θ, w)
fn The nominal system model
f1 The additive learned term

The parameterization of the cost function and
constraints in optimal control problem

U∗ = argmin
U

N
∑

i=0
l(xi, ui, θl)

subject to xi+1 = f
(

xi, ui, θ f

)
U = [u0, . . . , uN ] ∈ U (θU )
X = [x0, . . . , xN ] ∈ X (θX )
x0 = x(k).

l(xi, ui, θl) The cost function
X (θX ) The constraints of system state
U (θU ) The constraints of applied input

It is difficult to track the paths effectively by using the model-based controller under
uncertain environments. In addition, it is unrealistic to adjust the controller parameters
manually for all the conditions. In order for the aforementioned problems to be solved, the
data-driven ML methods described in Section 3.1 are usually used to estimate the environ-
mental disturbance, and the data-driven model is used to design the controller. However,
the lack of data can easily lead to incorrect approximation of uncertain disturbances. There-
fore, the adaptive predictive control strategy is the key to achieving high-performance path
tracking control. The recorded data are converted to the corresponding MPC parameters.
On one hand, the closed-loop performance is improved by adjusting the parameterized
cost function and constraint conditions on the basis of the performance-driven controller
learning. On the other hand, the path tracking controller adjusts its parameters online
by adapting to uncertain environmental disturbances. The input and state trajectories of
the dynamic system are parameterized by the basis function to reduce the computational
complexity of MPC [98]. When the input constraints are considered, the uncertainty is
estimated and compensated in the design of the controller, and the recorded data are
converted to the corresponding parameterization of the MPC problem.

The performance-driven controller learning focuses on finding the parameterization
of the cost function and constraint conditions in MPC. The closed-loop performance is
optimized by solving the optimal control problem. One solution is to adjust the controller
on the basis of Bayesian optimization, and the other solution is to learn the terminal
components to counteract the finite-horizon nature of the controller.

The Bayesian optimization method models the unknown function as a GP, evaluates
the function, and guides it to the optimal position. Then, the controller parameters are
estimated on the basis of experiments to optimize the controller performance. The infor-
mation samples in Bayesian optimization are usually far away from the original control
law, which leads to unstable evaluation and system failure of the controller in the early
optimization process [99]. The security problems are solved by using the improved security
optimization controllers and exploring new controller parameters whose performance
lies above a safe performance threshold [100]. By combining the linear optimal control
with Bayesian optimization, a parameterized cost function is introduced and optimized to



Appl. Sci. 2022, 12, 1995 13 of 25

compensate the deviation between real dynamics and linear predictive dynamics, resulting
in an improved controller with fewer evaluations [101]. The controller is designed using
the current linear dynamic model and the parameterized cost function on the basis of the
Bayesian optimization. This method evaluates the controller performance gap with the
actual physical device in the closed-loop operation, and iteratively updates the dynamic
model on the basis of this information to improve the controller performance [102]. The
inverse optimization control algorithm is used to learn the appropriate cost function pa-
rameters of MPC from the human demonstrated data [103]. The motion generated by the
path tracking controller matches the specific characteristics of human-generated motion
and avoids massive parameter adjustments. In the consideration of the online estimation
and adjustment of control parameters, a framework composed of real-time parameter
estimators and feedback control strategies can improve the path tracking performance in
mobile platforms [104].

The terminal set is an important design parameter in MPC. The MPC reduces the bad
effects caused by the limitation of the prediction range by using terminal cost functions and
constraints. The data are collected through the ML methods to improve the terminal com-
ponents. A large terminal set leads to a large area, and it is quick and feasible in solving the
MPC problem in this area. The state convex hull terminated on the trajectory of the origin
is proven to be control invariant [105]. On this basis, a method for constructing a terminal
set from a given trajectory solves the optimization problem required for parameterized
offline calculation terminal controllers [106]. The final terminal controller is a solution
for state-dependent optimization problem. For constrained uncertain systems, a robust
learning model predictive controller is used for collecting the data from iterative tasks and
estimating the current value function, which meets the system constraints accurately [107].
The terminal security set and the terminal cost function for iterative learning are designed
to improve the closed-loop tracking performance of the controller [108]. This method
estimates the unknown system parameters and generates high-performance state trajectory
at the same time. The iterative learning has been further studied, and a task decomposition
method for iterative learning model predictive control has been proposed [109]. This
method quickly converges to the local optimal minimum time trajectory as compared to
simple methods.

It is necessary for the controller to ensure that the mobile platforms accurately track
the predefined path under uncertain disturbances. In order for the influence of uncertain
environmental disturbances on parameterized objective functions and constraint definitions
to be overcome, the components of the controller are learned and adjusted to adapt the
environment, and an improved predictive control strategy is established. The combination
of the high-level model predictive path following controller (MPFC) and the low-level
learning-based feedback linearization controller (LB-FBLC) is used for nonlinear systems
under uncertain disturbances [110], as shown in Figure 7. The LB-FBLC uses GP to learn
the uncertain environmental disturbances online and accurately track the reference state
on the premise of probability stability. The MPFC uses the linearized system model and
the virtual linear path dynamics model to optimize the evolution of path reference targets
and provides reference states and controls for LB-FBLC. The deep neural networks with a
large number of hidden layers significantly improve the learning process of NMPC control
law as compared to shallow networks [111]. The integrated design of model learning
and model-based control design obtains the advanced prediction model for MPC cost
function, the disturbance state space model satisfying robust constraints, and the robust
MPC law [112]. Finally, the data-driven controller effectively deals with the constraints and
tracks the desired reference output.
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3.2.2. Learning and Optimization for Controller Real-Time Response

In addition to ensuring the control precision of path tracking control, the controller
should also improve the computational complexity. The method for generating a neural net-
work controller with MPC training samples solves the problem of poor real-time response
of MPC controllers while ensuring control precision [113]. However, the training samples
used in the aforementioned method lose the feedforward information. This problem can be
solved by reducing the number of control steps of the controller and using a point-to-line
NMPC neural network (PLNMPC-NN) in articulated vehicle path tracking control [114].
The PLNMPC method uses the position and state errors between the predictive horizon and
on the reference path as penalty terms and generates the training samples in the non-global
coordinate system. The training process and training parameters of PLNMPC-NN are
presented in Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25 
 

MPC law [112]. Finally, the data-driven controller effectively deals with the constraints 

and tracks the desired reference output. 

 

Figure 7. The architecture of the proposed strategy for nonlinear system path under uncertain dis-

turbances [110]. 

3.2.2. Learning and Optimization for Controller Real-Time Response 

In addition to ensuring the control precision of path tracking control, the controller 

should also improve the computational complexity. The method for generating a neural 

network controller with MPC training samples solves the problem of poor real-time re-

sponse of MPC controllers while ensuring control precision [113]. However, the training 

samples used in the aforementioned method lose the feedforward information. This prob-

lem can be solved by reducing the number of control steps of the controller and using a 

point-to-line NMPC neural network (PLNMPC-NN) in articulated vehicle path tracking 

control [114]. The PLNMPC method uses the position and state errors between the pre-

dictive horizon and on the reference path as penalty terms and generates the training sam-

ples in the non-global coordinate system. The training process and training parameters of 

PLNMPC-NN are presented in Figure 8. 

 

Figure 8. The PLNMPC-NN training process and its training parameters [114]. Figure 8. The PLNMPC-NN training process and its training parameters [114].

The online update of the recurrent neural network (RNN) models captures the non-
linear dynamics when the model is uncertain. In [115], the RNN method is applied to a
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chemical process with time-varying disturbances under LMPC and LEMPC. A real-time
control Lyapunov barrier function-based model predictive control (CLBF-MPC) system
is developed in the aforementioned research [116]. The CLBF-MPC system considers
time-varying disturbances to ensure the closed-loop stability and operation safety, which
proves its effectiveness in dealing with the problem of ML model online updating in
real-time control.

The reinforcement learning (RL) learns the optimal control command on the basis of
the predefined reward function, simulates the real environment in advance, and improves
the real-time control process response in the real environment. The RL network is trained
offline, and a large volume of offline training data is used for the RL agent, including initial
positions, headings, and velocities of the vehicle [97]. The evaluation of the real vehicle
shows that the trained agent steadily controls the vehicle and adaptively reduces the speed
to adapt the sample path. Such a control process has better real-time performance.

It is noteworthy that the learning and optimization of controller parameters signifi-
cantly influence the control precision. The offline training of samples is a very effective
way to improve the real-time response of the controller. The controller design based on
learning methods improves the performance of the path tracking controller itself.

3.3. Learning and Optimizing for Controller Output under Uncertain Disturbances

When the uncertain disturbances act on the mobile platforms, the predicted position of
the controller may be different from the actual tracking position. Most of the path tracking
control methods are unable to ensure that security constraints under physical limitations,
especially during learning iterations. It is necessary to choose soft output constraints
instead of hard constraints on the input and the rate for achieving more accurate path
tracking in mobile platforms.

3.3.1. Learning and Optimizing Controller Output Based on Reinforcement Learning

When the mobile platform is driving at a high speed in a known environment or
driving in an unknown complex terrain, the MPC controller is unable to slow down the
mobile platforms considerably during steering. It is necessary to optimize the output of the
MPC controller. The reinforcement learning algorithm evaluates the feedback signal of the
environment to improve the action plan and adapt the environment in order to achieve
the intended goals. The adaptive MPC path tracking controller based on reinforcement
learning is designed to correct the predicted output of the model by interacting with the
real environment. The reinforcement learning algorithm is used to adaptively adjust the
MPC controller online to realize path tracking in mobile platforms with high robustness on
complex terrains.

As compared with the traditional MPC controller, the adaptive MPC path tracking
controller based on reinforcement learning further reduces the system overshoot and
oscillations. It optimizes the performance of system dynamics and steady-state error.
The hierarchical reinforcement learning method improves the generalization ability of
reinforcement learning for optimal path tracking in wheeled mobile robots [117]. The
behavior–reward scoring mechanism of reinforcement learning is used to learn the behavior
rules so that the unmanned surface ships are able to estimate the best path tracking
control behavior [118]. The proximal policy optimization (PPO) method is used as a deep
reinforcement learning algorithm and combined with the traditional pure pursuit method
to construct the vehicle controller architecture [119]. The blend of such controllers makes
the overall system operations more robust, adaptive, and effective in terms of path tracking.
Similarly, the PPO method is also used to achieve the trade-off between smooth control
and path errors by designing the reward function to consider the smoothness and tracking
error [120]. Figure 9 presents the flowchart of PPO control framework. The trained model
can be nested in the combined controller to improve the accuracy of path tracking control
on the basis of the interactions with the environment.
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On the basis of the aforementioned works, we propose a reinforcement learning-based
model predictive control (RLB-MPC) path tracking control framework. Additionally, the
output of the controller is optimized on the basis of the reinforcement learning model.
First, the predictive path is obtained by controlling the data-driven prediction model in
the path-tracking controller. The target path is obtained by using visual and radar sensors.
Second, the path deviation generated by the comparison between the predicted path and
the target path is considered as the optimization objective. Finally, the path-tracking
controller interacts with the real environment on the basis of the reinforcement learning
model and corrects the path deviation generated by the comparison between the actual
path and the optimized predicted path. The state information that conforms to the internal
reward and punishment function of the reinforcement learning model is returned to the
reference output and output directly. The other state information is returned to the MPC
internal optimization until it meets the requirements of direct output. The RLB-MPC control
framework is shown in Figure 10.
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3.3.2. Learning and Optimizing Controller Output Based on Security Framework

The complex and high-dimensional control performance is achieved without the prior
knowledge of the system by general learning control technique, especially the reinforcement
learning control technique [121]. However, most of the learning control techniques are
unable to ensure the security constraints with the physical limitations, especially during
the learning iterations. In order for the aforementioned problem to be solved, the security
framework was proposed in the control theory [122].

The centralized linear system security framework ensures the security by matching
the learning-based input with the initial input of the MPC law online. The MPC law
drives the system to a known secure terminal set. The model predictive security filter
is applied to control the state and input space [123], as shown in Figure 11. The filter
transforms the constrained dynamic system into an unconstrained security system, and
any reinforcement learning algorithm can be applied in the security system without any
constraint. The security system is established by constantly updating the security strategy.
The security strategy is based on MPC formulation using a data-driven prediction model
and considering state- and input-dependent uncertainties. The filter ensures the vehicle
security during aggressive maneuvers, which was demonstrated by the applications for
assisted manual driving and deep imitation learning using a miniature remote-controlled
vehicle [124].
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Figure 11. The model predictive security filter. On the basis of the current state x(k), a learning-based
algorithm provides a control input uζ(k) = πζ(k, x(k)), which is processed by the security filter,
i.e., u(k) = πS

(
k, x(k), uζ(k)

)
, and is applied to the real system. The detailed working of a model

predictive security filter is presented at the bottom of the illustrations, which shows the state of the
system at time k with a secure backup plan for a shorter horizon obtained from the solution at time
k-1 (depicted in brown), as well as areas with poor model quality (depicted in green). An arbitrary
learning input uζ(k) can pass through the model predictive security filter if a feasible solution towards
the terminal secure set St is obtained (depicted in green). If this new backup solution cannot be
found and the planning problem is infeasible, the system can be driven to the secure set St along the
previously computed trajectory (depicted in brown) [123].

As compared to the centralized linear system security framework, the distributed
model predictive security certification scheme ensures the state and input constraint satis-
faction when applying any learning-based control algorithm to an uncertain distributed
linear system with dynamic couplings [125]. In addition, two different sets of distributed
system security have been proposed on the basis of the latest research findings regarding
structural invariant sets [126]. Different sets are different in their dynamic allocation of
local sets and provide different trade-offs between the required communication and the
realized set size. The synthesis of a security set and control law offer improved scalability
by relying on the approximations based on convex optimization problems [127]. For non-
linear and potentially larger-scale systems with security certification, a security framework
is proposed to improve the learning-based and insecure control strategies. Furthermore,
a probabilistic model predictive security authentication that can be combined with any
reinforcement learning algorithm is proposed, relying on the Bayesian scheme. This model
provides security assurance in terms of state and input [128].

The control of complex systems faces a trade-off between high performance and
security assurance, which in particular limits the application of learning-based methods
in security-critical systems. Ensuring the security constraints under physical limitations
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and improving the performance of mobile platforms during the learning process are
important to the security control system. The LB-MPC can be used in common situations
where the model prediction security filter has uncertainties and needs to learn from data.
The general security framework based on Hamilton–Jacobi reachability methods uses
approximate knowledge of the system dynamics to satisfy the constraints and minimize
the disturbances during the learning process [129]. The Bayesian mechanism is further
introduced to improve the security analysis by obtaining new data through the system. The
reachability analysis is combined with ML [130]. The reachability analysis maintains the
security performance, and the ML improves the system performance. When both control
inputs and disturbances are bounded, a secure mandatory control action is required only
when the system approaches the boundary of the insecure set. At other times, the system
can freely use any other controller. The statistical identification tools are used to identify
better prediction models that can deal with state and input constraints and optimize the
system performance on the basis of the cost function [131]. The statistical model of the
system is established by using the regularity assumption of GP on dynamics [132]. More
data are collected from the system and the statistical model is updated, improving the
control performance and ensuring the security of the learning process.

The proposed security framework removes the security constraints of learning-based
control under physical limitations and optimizes the controller by using the model predic-
tive security filters. The combination of model predictive security filters and different types
of learning-based control methods not only meets the high-performance requirements of
complex systems but also ensures the security in the control process.

4. Future Research Challenges

For the interpretability of the prediction model, the prediction model built using
the ML method is a kind of black box model and is applicable to specific small-scale
environment. However, once the learning fails, it is difficult to ensure the system security
based on ML only. Most of the traditional physical models are simplified, linearized, and
theoretical. However, the complex modeling process is time-consuming, and the model has
calculation errors. The model built by using the LB-MPC belongs to the gray-box model.
When the advantages and characteristics of ML and MPC are combined, the LB-MPC
method achieves interpretable optimal performance. However, it has poor adaptability to
the path without learning tests.

For the accuracy of the prediction model, the traditional prediction model simplified
by expressions is not comprehensive because it does not consider the influence of uncertain
disturbances. The data-driven prediction model is constructed on the basis of the data
generated by the actual operations in mobile platforms. It has good adaptability and higher
accuracy in the special working conditions. However, the data-driven prediction model
requires a large number of labeled data, and the reinforcement learning model needs to
interact with the environment. In order for the unexpected states to be dealt with, both
prediction models require a large amount of training time. Reducing the volume of data
required by the data-driven prediction model and promoting greater adaptive capacity are
challenges in the future.

For controller design, only small random uncertainties can be handled in the mobile
platform path tracking controller design, and all behavioral responses under uncertain
disturbances cannot be considered. It is necessary to continuously learn from the uncer-
tain disturbances during the operation process in order to improve the performance of
the controller.

For the real-time capability of LB-MPC, the data may not capture the mobile platform
operation characteristics when it is controlled by MPC. The mobile platform model also
requires continuous updating to capture the changes of some physical characteristics over
time due to changes in external and internal factors, such as weather, complex curvature
variation conditions, mechanical friction, and fatigue failure. However, the automatic
model update mechanism is an important challenge for the LB-MPC systems proposed in
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previous studies. The way to solve the challenge in the future is to develop a self-adaptive
ML-based prediction model that exploits online mobile platform operation data to update
the prediction model continuously as the mobile platforms are controlled by MPC in
real time.

For the optimization of the controller, the input and output constraints limit the path
tracking the performance in mobile platforms. The current security control framework
combines the model predictive security filters with different types of learning-based control
methods. It solves the trade-off problem between high performance and security assurance
faced by the control of complex systems. In order for the performance of path tracking
controllers to be further improved under uncertain disturbances, the seeking of more
reasonable optimization methods and addressing input and output constraint methods
have great research potential.

5. Conclusions

The present work reviews the LB-MPC technique and its application in the field of
mobile platforms for path tracking control. The LB-MPC and its two components, namely,
MPC and ML, are summarized. According to the relevant literature and research results, the
application of the LB-MPC in path tracking is classified, and the characters and advantages
of the application is explained. Under uncertain environmental disturbances, the data-
driven prediction models obtained by LB-MPC can better adapt to complex situations. In
controller design, the parameterized version of the LB-MPC problems and offline training
samples are introduced to ensure control precision and real-time response. Moreover,
combined with the security control framework, the controller output can be optimized
in path tracking control. This work also highlights the current research challenges of
prediction model interpretability and accuracy, controller design, and output optimization
in LB-MPC. It will provide a reference for the research and application of LB-MPC in path
tracking control in mobile platforms.
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