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Abstract: Model checking is a well-established and widely adopted framework used to verify whether
a given system satisfies the desired properties. Properties are usually given by means of formulas
from a specific logic; there are several logics that can be used, such as CTL and LTL, which permit the
expression of different types of properties on the branching-time or on the linear-time evolution of
the system. In this paper, we will consider the problem of model checking quantum systems and
present the solutions given in literature for solving such a problem with respect to different types
of properties.
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1. Introduction

One of the main questions a designer needs to answer while developing a new system,
being it a program, a protocol, or some hardware, is: how can I be sure my system works as
expected? There are several ways to answer this question.

• One can test the system, by feeding it with several inputs and looking at the correctness
of the generated output. However, as Dijkstra said in his Turing Award lecture [1],

“program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”

In fact, if the testing inputs do not trigger the bug, it remains undetected, ready to
cause damages once the system is deployed to production.

• One can manually prove that the system is correct by applying the techniques learned
in programming and cryptography courses, such as by using Hoare logic/triples
to prove properties of programs or by showing that the cryptographic protocol is
provably secure. This approach provides the desired guarantees, but it is tedious,
error prone, and reasonably applicable only to very small systems.

• One can apply one of the several techniques developed by researches specifically for
this purpose, such as model checking, abstract interpretation, and high-order theorem
proving. These techniques can be usually applied automatically to the system and are
able to scale to large systems.

This latter approach provides the positive answer to our initial question.

1.1. The Successful Story of Model Checking

Since the seminal works of Clarke and Emerson [2] and Queille and Sifakis [3], model
checking has gained a wide popularity in the formal verification community and in industry.
This is mainly motivated by the fact that once the model checker gives green light to a
system, we can be sure that the system that has been fed into the model checker fulfills
all checked properties. On the other hand, if the model checker gives red light to some
property, it is usually able to provide a counterexample witnessing why the specific property
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is violated; such a counterexample can be used by the developer to more easily trace the
source of the bug and fix it.

Model checking has been used in a variety of scenarios, from hardware [4–8] to
software [9–13], from communication [14–17] and security protocols [18] to pacemakers [19],
from airplane and train control [20,21] to satellites and spacecrafts [22–25], just to cite a
few examples; more applications of model checking can be found in literature and in
several books summarizing the techniques and the results achieved by the researchers, see,
e.g., [26–33]. We can identify a few core aspects from these applications, which should be
considered when choosing the model checking technique that best fits our needs.

• The system can have a probabilistic behavior, as a result of internal random choices
(such as the sampling of nonces in a security protocol) or of external uncertainty (the
message is sent on a noisy channel that may alter it).

• The system can have a nondeterministic behavior, as the result of multiple components
running in parallel and interacting with each other in no predefined order.

• The system needs to take care of the amount of time available for reacting to input or
for completing its tasks: a collision avoidance system installed on an airplane needs
to warn the pilot as soon as possible about the risk of the collision; it is certain that it
needs to do so within the time limits imposed by the aviation authorities.

Depending on the presence or the absence of these and other aspects, different models
and model checking algorithms have been developed specifically for them.

Given the successful application of model checking in several fields, researchers
working on quantum systems considered the application of model checking techniques
to verify the quantum protocols they were proposing. One of the obstacles in the manual
verification of a quantum system is the fact that quantum mechanics is not really intuitive,
since there are quantum phenomena for which researchers have no first-hand experience.
Entanglement and superposition of the states, for instance, are not something that a person
can encounter in daily life; probabilistic choices, instead, are at hand by just flipping a coin
or rolling a dice. As a result, it is more likely for quantum designers to unintentionally
introduce bugs in a protocol than for protocol designers working with classical systems,
where they need to take care of nondeterministic and probabilistic aspects that can be
experienced in our macro-scale world. Having erroneous protocols can have a large impact
on the usability and reliability of quantum systems, in particular when their usage will
become more practical by the advancements in the realization of quantum computers.

Researchers working on quantum systems have already proposed quantum protocols,
such as quantum coin-flipping [34,35], quantum key distribution [34–36], and super-dense
coding [37], that are at the core of quantum cryptography. Quantum cryptography can
be considered a reasonable replacement for classical cryptography, in case the bases of
the latter are mined by the achievements in quantum computation. Nowadays, classical
cryptography is based on the assumption that operations, such as number factorization
and discrete logarithm computation, are difficult to perform, so an attacker needs to spend
a considerable amount of time and resources in order to obtain, say, the prime factors p
and q out of the given large number n = pq. Since factorization and discrete logarithm
computation are indeed difficult problems to be solved by ordinary computers, designers
rely on them when proposing cryptographic protocols providing security and privacy
to our daily life online activities. Quantum computing, however, makes them easy: for
instance, Shor [38] already provided quantum algorithms for integer factorization and
discrete logarithm computation that work in polynomial time. This justifies the need of
quantum protocols that are strong enough to provide the desired levels of security and
privacy; moreover, such protocols need to work as expected, and to be trusted to do so.

Model checking is an appropriate technique for verifying that quantum protocols
behave correctly and to provide evidence that this is the case, since such a verification task
is exactly the motivation why the model checking framework has been developed. In order
to apply model checking on quantum protocols, we first need to answer two questions.
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1. How can we model formally the given quantum protocol?
2. How can we specify the desired properties?

The reminder of the paper is devoted to the answer to these questions.

1.2. How Can We Model Formally the Given Quantum Protocol?

When modelling quantum systems for model checking them, one of the main char-
acteristics we need to take into consideration is that a quantum system is, by its own
nature, continuous. The state space of a quantum system is usually represented as a finite
d-dimensional Hilbert spaceHd (the vector space Cd equipped with an inner product oper-
ation), which is a continuum. Although the Hilbert spaceHd can be finitely represented,
for instance by taking d pairwise orthogonal vectors forming a basis forHd, the states in
the state space are infinitely many. However, model checking usually expects to deal with
finite state spaces, even when applied to continuous systems. For example, for continuous
time Markov chains, the model still has a finite state space and the continuous time is
represented by exponential distributions governing the delay in taking the transition from
a state to another; for timed automata, the automaton has a finite number of locations
and the continuous time is represented by clocks that increase uniformly and that enable,
and possibly force, to take transitions to other locations. Depending on the formula to be
analyzed, the continuous behavior of the system is first made discrete by applying different
discretization techniques (such as regions and zones for timed automata), and then the
obtained system is checked against the given property (cf. [26,27]).

Developing similar discretization techniques for quantum systems does not seem to
be an easy task. Thus, researchers started to look for models with a finite number of states
still able to encode the continuous quantum states. Instead of considering all quantum
states of the system to analyze, Gay et al. [39,40] restricted the state space to a set of finitely
describable stabilizer states; in addition, they also considered only quantum operations
of the Clifford group. In this way, they were able to present an efficient model checker for
quantum protocols based on purely classical algorithms; it has been implemented as an
automatic tool that can be used to model check quantum communication protocols [41].
This approach, while being useful, is also limited: since it is based on stabilizer states, it
does not extend to more general protocols involving non-stabilizer states. Independently
from Gay et al., Hung et al. [42,43] adopted a similar approach for the synthesis of quantum
circuits. In their work, they use a symbolic reachability analysis to formulate the problem
of the quantum logic synthesis problem; in this way, they reduce the original problem
to a multiple-valued logic synthesis problem, which simplifies the search space and the
complexity of the synthesis problem.

In [44], Feng et al. overcome these limitations. The model for quantum protocols they
introduced is defined on top of classical Markov chains: it keeps the classical, discrete state
space of a Markov chain and replaces the probability values decorating the transitions
between states with super-operators. This means that quantum states and operations are
unrestricted, thus it is possible to model general quantum protocols.

We will present the model proposed by [44] in more details in Section 2 but, as
an example, consider the simple loop program shown in the left part of Figure 1. This
program first applies at line `0 the 1

2 -amplitude damping channel A = {E0, E1}, where
E0 = |0〉 〈0|+ 1√

2
|1〉 〈1| and E1 = 1√

2
|0〉 〈1|, on the quantum system q as initialization.

Then, at line `1 it measures q, by means of the two-outcome projective measurement
M = λ0 |0〉 〈0| + λ1 |1〉 〈1|. If the observed outcome is λ1, then the program applies
the Hadamard super-operator G to q and its outcome is measured again in line `1. The
application of G is repeated until the outcome λ0 is observed: the program just terminates
at line `3. The corresponding quantum Markov chain is depicted on the right of Figure 1:
the single lines of the program are taken as the classical states of the quantum Markov
chain, while the instruction performed on each line is used to decorate the corresponding
transition; note that we split the projective measurement M into the two super-operators
E0 = {|0〉 〈0|} and E1 = {|1〉 〈1|}, since there are two possible outcomes λ0 and λ1,



Appl. Sci. 2022, 12, 2016 4 of 22

respectively, leading to two different states/program lines. This simple loop program
cannot be represented in the model given by Gay et al., since the 1

2 -amplitude damping
channel A is not an operation available in the Clifford group.

`0: q := A(q);
`1: while M[q] do
`2: q := G(q);
`3: end

`0

`1`2 `3

AE1
E0

G
I

Figure 1. A simple loop program and its model as a quantum Markov chain.

In this paper we use the model of quantum Markov chains, as introduced by [44],
to which we refer to for a more detailed comparison with other types of super-operator
weighted Markov chains available in literature. This model is well suited to model quan-
tum programs and protocols: as we have seen for the loop program above, representing
the given program or protocol as a quantum Markov chain is not so complicated, since
the classical states correspond to the single lines/steps of the quantum system, and the
transitions are decorated with the (components of the) super-operators.

The main aspect to remember while modelling a quantum protocol in this framework
is that the classical states do not represent the effect of the quantum operations on the
quantum states, but only the current step in the algorithm. For instance, consider the
quantum Markov chain shown in Figure 1: state `1 represents the fact that we applied the
operation A to the input quantum state q and that the next operation is its measurement,
with two possible outcomes E0(A(q)) and E1(A(q)). However, state `1 does not represent
the actual quantum state A(q) and how it is modified by the different operations, or
whether successive visits to `1 correspond to the same state of the quantum system.

1.3. How Can We Specify the Desired Properties?

Once the quantum protocol has been modelled as a quantum Markov chain, we need to
consider how to formalize the properties we want to analyze. For classical model checking
problems, properties are expressed as formulas in some given logic; the most common ones
are the Computation Tree Logic (CTL) [2], the Linear-time Temporal Logic (LTL) [45], and
their combination CTL* [46].

CTL is a branching time logic that focuses on the possible future behaviors of a system,
given by the different successors of the current state. This means that whenever we are
in a state with multiple successors, we branch our future execution by considering all
possible successors, such as the branches of a tree. CTL has two kinds of formulas: state
formulas and path formulas. State formulas, as the name suggests, refer to the properties
that each single state satisfies: basic facts represented by atomic propositions, conjunctions
and negations of states formulas, and quantified path formulas, where the quantification
is given by either the universal (∀) or the existential (∃) quantifier on the paths, i.e., the
branches of the tree. Path formulas, instead, refer to what happens in the states that are
visited along a single path, with different temporal operators characterizing the behavior
of the sequence of states visited by the path.

LTL, as the name indicates, is a linear time logic that considers what happens along a
single execution of the system, instead of considering all alternatives as in CTL. This means
that along the execution, all choices about the successor states have already been resolved.
Since LTL focuses on a single, whole execution at a time, it has only one kind of formulas
that combine freely Boolean and temporal operators. ω-regular properties extend LTL, by
directly specifying the executions that are “good”; ω-regular properties are given as the
language of an automaton accepting infinite words (cf. [27]).
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Depending on the characteristics of the system, such as the presence of probabilistic
choices, rewards, or time information, these logics have been extended and adapted to
use specific operators to take care of such additional characteristics. For instance, the
probabilistic version of CTL, PCTL [47], replaces the path quantifiers of CTL with a single
probability operator that is used to compute the probability of all paths satisfying the given
path formula. PLTL [48] is similar: instead of requiring all paths to satisfy the formula,
it just computes their probability and then checks whether it is bounded by the given
threshold. This is a reasonable choice: in the probabilistic setting, a single path can violate
the given path property; however, we can ignore it as long as its probability is negligible.

When moving to quantum systems, the logic also needs to be adapted. In this work,
we consider the quantum extension of CTL given in [44] and of LTL as presented in [49], as
well as the extension of CTL with a fidelity operator proposed in [50].

The former two logics can be considered the natural extension of PCTL and PLTL
to quantum systems: instead of computing the probability of the paths, we compute
the super-operator E accumulated along these paths and then we compare it with the
given threshold super-operator F . Such a comparison intuitively represents the fact that
the success probability of performing E is bounded by the probability of performing F ,
independently from the initial state. The idea underlying this choice is to use the logics
to characterize classical aspects of the quantum system, given the fact that the quantum
protocols usually aim at achieving some classical tasks, such as exchanging encryption
keys or flipping coins. As an example of the properties we can express in this logic, we
have the formula Q&E [F`3]. This formula holds whenever the probability that the loop
program shown in Figure 1 eventually terminates is at least E , for each initial quantum
state. Therefore, to check whether the program terminates almost surely on any input, we
can just use the formula Q&I [F`3], where I is the identity super-operator which can be
regarded as the value 1 in the context of probabilistic model checking.

Although the quantum counterparts of CTL and LTL seen above are able to quantify
classical properties of quantum protocols, they are not able to quantify the similarity
between two quantum states. In order to consider this similarity, the authors of [50] adopt
the fidelity operator to represent the homonym popular measure used by the quantum
community [51–54]. Fidelity can be used, for instance, to measure the effect of noise on
the transmission of a quantum bit on a channel: if the received qubit is not affected by the
noise, then fidelity reaches its maximal value 1; on the other hand, if the noise flips the
qubit, then fidelity obtains its minimal value 0.

To summarize, quantum CTL can be used to formalize the branching-time behavior of
the quantum system with respect to classical properties; quantum LTL considers linear-time
properties instead of branching time properties, in the same setting; fidelity CTL, on the
other hand, focuses on the quantum branching-time effects of the quantum system.

1.4. Organization of the Paper

After recalling from literature the preliminary definitions about quantum Markov
chains in Section 2, we present in Section 3 how to model check quantum Markov chains
against properties given in the quantum CTL; this section is mainly based on the results
of [44]. Then, in Section 4, we consider the problem of checking properties involving the
fidelity operator, which provides a means to know how well a super-operator preserves
quantum states; we use [50] as reference. We present, in Section 5, how to check LTL and
ω-regular properties, with material taken from [49]. Lastly, in Section 6 we provide some
final remark about quantum model checking.

We refer the readers interested in the technical details of the different constructions to
the literature we used as reference. They can also refer to the recently published book [55],
which provides more technical details about model checking quantum systems against the
quantum CTL and LTL logics. It also gives a more comprehensive presentation of the basics
of quantum theory and the challenges in adapting classical model checking techniques to
the quantum setting; for instance, the authors of the book consider also quantum automata,
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that are well suited to represent closed quantum systems, i.e., quantum systems without
interference from the environment. The quantum Markov chains we consider in this paper,
instead, can be used to model open quantum systems, i.e., those that are affected by the
environment, such as the presence of an eavesdropper trying to intercept the cryptographic
key during the execution of a quantum key-exchange protocol. The book [55] is based on
the same work available in literature about quantum CTL and LTL, so this paper can be
considered also as an introduction, or a summary, for [55]. In this paper, however, we also
present the results developed for model checking fidelity properties, not present in [55].

2. Quantum Markov Chains

In this section, we recall from literature the required notions and notations about
quantum systems and quantum Markov chains. For a more thorough discussion, we refer
the interested reader to, e.g., [44,50,56].

Given a finite dimensional Hilbert spaceH, let L(H) be the set of linear operators on
it. Let S(H) be the set of super-operators, where a super-operator is a completely positive
linear operator on L(H). We identify two specific super-operators in S(H), namely IH
and 0H, that are the identity and the null super-operator, respectively. Given a finite set J of
indices, for simplicity of presentation, we exchange freely a super-operator and its Kraus
representation, that is, for a given super-operator E , we write E = { Ej | j ∈ J } where
{ Ej | j ∈ J } is a set of Kraus operators of E ; that is, E(A) = ∑j∈j Ej AE†

j for all A ∈ L(H),

where E†
j is the complex conjugate and transpose of Ej. For any E ,F ∈ S(H), we denote

the composition of E and F by (E ◦ F )(A) = E(F (A)). To simplify the notation, we may
drop the symbol ◦ and just write EF instead of E ◦ F .

Super-operators can be (pre-)ordered according to their preservation of the trace. The
trace of a linear operator A ∈ L(H) is defined as ∑d

i=1 〈ηi| A |ηi〉 where { |ηi〉 | 1 ≤ i ≤ d }
is an orthonormal basis of the Hilbert space H with dimension d. Let D(H) denote the
set of partial density operators in L(H), where we say that a linear operator A ∈ L(H) is
a partial density operator if A is positive (i.e., 〈η| A |η〉 ≥ 0 for all |η〉 ∈ H) and its trace
tr(A) satisfies tr(A) ≤ 1; we denote by D1(H) the set of density operators, that is, the
partial density operators whose trace is 1. Recall that the trace of a partial density operator
denotes the probability that the corresponding (normalized) quantum state is reached [57].
Given two super-operators E ,F ∈ S(H), we write E . F if for any ρ ∈ D(H), we have
tr(E(ρ)) ≤ tr(F (ρ)). Intuitively, E . F means that the success probability of performing
E is always at most the probability of performing F , whatever the initial state is. We define
h to be . ∩ &.

For any ρ ∈ D(H), the support supp(ρ) is defined to be the space spanned by the
eigenvectors of ρ with non-zero eigenvalues. Let {Xk} be a family of subspaces ofH. The
join of {Xk} is defined to be

∨
k Xk = span(

⋃
k Xk).

We denote by SI (H) = { E ∈ S(H) | 0H . E . IH } the set of trace-nonincreasing
super-operators over H. In particular, this means that E ∈ SI (H) if, and only if, for any
ρ ∈ D(H), we have that tr(E(ρ)) ∈ [0, 1]. For the reader familiar with the probabilistic
setting, it is natural to consider the set SI (H) as the quantum counterpart of the probability
domain [0, 1]. This is the underlying idea of the quantum Markov chains defined in [44].

Definition 1. A super-operator weighted Markov chain M over a Hilbert space H is a pair
M = (S, Q), where

• S is a finite set of classical states;
• Q : S× S→ SI (H) is called the transition matrix where for each s ∈ S, the super-operator

∑s′∈S Q(s, s′) is trace-preserving, that is ∑s′∈S Q(s, s′) h IH.

We just refer to this kind of Markov chains as quantum Markov chains (QMCs).
Similar to the setting of classical Markov chains, to talk about the (probability) measure

of different events in a quantum Markov chain, we need to introduce a measurable space
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and the measure we want to use. The basic events of the measurable space will be based on
the notion of path.

Given a QMC M = (S, Q), we call a finite or infinite sequence σ = s0s1 · · · of states in
S a path of M if, for each valid index i ≥ 1, we have Q(si−1, si) 6= 0H. We denote by PathM

fin

the set of finite paths and by PathM the set of infinite paths. We let σ[i] denote the state si.
The basic events of our measurable space are the cylinder sets of finite paths. We

define the cylinder set of the finite path σ = s0s1 · · · sn to be the set Cyl(σ) = { σ′ ∈ PathM |
∀0 ≤ i ≤ n : σ[i] = σ′[i] }. In practice, the cylinder set of a finite path σ contains all possible
infinite paths that are an extension of σ.

Let (PathM, Σ) be a measurable space where Σ is the σ-algebra generated by all
the cylinder sets Cyl(σ) where σ ∈ PathM

fin . For any s ∈ S, we define the measure

QM
s : PathM

fin → S(H) as follows. Given the finite path σ = s0s1 · · · sn,

QM
s (s0s1 · · · sn) =


0H if s0 6= s;
IH if s0 = s and n = 0;
Q(sn−1, sn)Q(sn−2, sn−1) · · ·Q(s0, s1) if s0 = s and n > 0.

Then, QM
s induces a (super-operator valued) measure on (PathM, Σ), also denoted by

QM
s for simplicity, by setting QM

s (Cyl(σ)) = QM
s (σ). According to [44] (Theorem 3.2), this

measure is unique up to h.
In the reminder of the paper, we are interested in analyzing properties of a given QMC.

We assign labels to the states of the QMC to indicate the basic properties that hold in each
state, that is, we decorate each state of the QMC with the atomic propositions it satisfies.
Atomic propositions represent some simple known facts we want to express about the
single states of the system, such as “the execution is terminated”, “the measured qubits are
different”, “eavesdropping detected”, and so on. Thus, we consider an extension of QMCs
in which each state obtains assigned atomic propositions by a labelling function.

Definition 2. A labelled quantum Markov chain (LQMC) is a tuple M = (S, Q, AP, L) where
(S, Q) is a QMC and

• AP is a finite set of atomic propositions and
• L : S→ 2AP is a labelling function.

The notions of paths, measures, etc. given above extend in the natural way to LQMCs;
for the labelling from states to paths, we set L(s0s1s2 · · · ) = L(s0)L(s1)L(s2) · · · .

3. Model Checking CTL Properties

As we have seen in the introduction, the branching time logic CTL focuses on the
possible future behaviors of a system, given by the different successors of the current state,
instead of a single execution as in LTL and ω-regular properties. CTL has two kinds of
formulas: state formulas and path formulas. State formulas, as the name suggests, refer to
the properties that the single states satisfy: basic facts represented by atomic propositions,
conjunctions and negations of states formulas, and quantified path formulas, where the
quantification is given by either the universal (∀) or the existential (∃) quantifier. Path for-
mulas, instead, refer to what happens to the states that are visited along a single paths. This
“state-based” nature of CTL makes the CTL model checking problem, i.e., whether a system
satisfies a given CTL formula, rather easy and intuitive, which results in the development
of efficient algorithms; see, e.g., [26,27] for more details. The quantum counterpart of CTL,
QCTL [44], replaces the path quantifiers ∀ and ∃ with a single quantum quantifier Q∼E ,
which accumulates the super-operators corresponding to the paths satisfying the given
path formula, and then compares it with E . This is similar to the probabilistic CTL, where
the path quantifiers are replaced by the probabilistic operator P∼p computing the overall
probability of the satisfying paths and comparing it with p.
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3.1. The Model Checking Problem

We start with the LQMC M and the property ϕ we want to verify. The property is
usually given as a QCTL state formula ϕ, that is, a formula expressible according to the
following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | Q∼E [ψ]
ψ ::= Xϕ | ϕ U≤k ϕ | ϕ U ϕ,

where a ∈ AP is taken from the given finite set of atomic propositions, ∼ ∈ {.,&,h},
E ∈ SI (H), and k ∈ N is a bound. The ψ formulas Xϕ, ϕ1 U≤k ϕ2, and ϕ1 U ϕ2 are usually
referred to as path formulas. In addition to the usual Boolean operators ∧ and ¬, the QCTL
logic makes use of the temporal operators Next X, Until U, and bounded Until U≤k. We
freely use the usual syntactic sugar like the Boolean operators false, true, ∨,⇒, and⇔
and the temporal operator Finally/Eventually Fϕ = true U ϕ. In literature, it is possible to
find the temporal operators© and ♦, corresponding to X and F, respectively.

The semantics of QCTL is given by means of the satisfaction relation |=, defined as
follows. For state formulas, given a state s ∈ S, we have

s |= a if a ∈ L(s);

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2;

s |= ¬ϕ if it is not the case that s |= ϕ; and

s |= Q∼E [ψ] if QM
s ({ σ ∈ PathM | σ |= ψ }) ∼ E .

For path formulas, given a path σ ∈ PathM, we have

σ |= Xϕ if σ[1] |= ϕ;

σ |= ϕ1 U≤k ϕ2 if ∃0 ≤ n ≤ k : σ[n] |= ϕ2 and ∀0 ≤ i < n : σ[i] |= ϕ1;

σ |= ϕ1 U ϕ2 if ∃n ∈ N : σ[n] |= ϕ2 and ∀0 ≤ i < n : σ[i] |= ϕ1.

The model checking problem for LQMCs against a QCTL state formula ϕ is formalized
as follows.

Definition 3. Let M be an LQMC, s ∈ S be a state, and ϕ be a QCTL state formula. The model
checking problem for M against ϕ asks to verify whether s |= ϕ holds.

3.2. The Standard Bottom-Up Approach

As said previously, the QCTL properties are kind of “state-based” properties. The
algorithm for checking whether an LQMC M satisfies a given QCTL state property ϕ
mimics the similar algorithms developed for CTL and PCTL: the state formula ϕ is analyzed
from bottom to top, and for each of its state subformulas, the set of states satisfying the
subformula is computed. When a quantified path formula needs to be analyzed, different
techniques are used according to the underlying temporal operator.

Let Sat(ϕ) denote the set of states satisfying the QCTL state formula ϕ, that is, Sat(ϕ) =
{ s ∈ S | s |= ϕ }. The set Sat(ϕ) can be computed recursively on the structure of ϕ
as follows.

Sat(a) = { s ∈ S | a ∈ L(s) }
Sat(ϕ1 ∧ ϕ2) = Sat(ϕ1) ∩ Sat(ϕ2)

Sat(¬ϕ) = S \ Sat(ϕ)

Sat(Q∼E [ψ]) = { s ∈ S | QM
s ({ σ ∈ PathM | σ |= ψ }) ∼ E }
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The above algorithm for computing the satisfaction set Sat(ϕ) of a QCTL state formula
ϕ relies on the computation of the super-operator that is h-equivalent to QM

s and then
∼-compares it with E . The computation of QM

s depends on the actual path formula
that needs to be satisfied; to simplify the notation, below we just write QM

s (ψ) to mean
QM

s ({ σ ∈ PathM | σ |= ψ }).
Consider the Next operator X. The computation of QM

s (Xϕ) is rather easy: by hy-
pothesis, we already have computed Sat(ϕ), so QM

s (Xϕ) reduces to compute the overall
super-operator leading to the successors of s that belong to Sat(ϕ), namely,

QM
s (Xϕ) h ∑

s′∈Sat(ϕ)

Q(s, s′).

Consider, now, the bounded Until operator U≤k. The computation of QM
s (ϕ1 U≤k ϕ2)

is a bit more involved: since k is a given finite natural number, we can just consider M

and unfold it k times; then, we accumulate the super-operators layer by layer, as long as
the states satisfy the conditions given by the semantic of U≤k. Formally, we have that
QM

s (ϕ1 U≤k ϕ2) is h-equivalent to
IH if s ∈ Sat(ϕ2);

∑s′∈S QM
s′ (ϕ1 U≤k−1 ϕ2)Q(s, s′) if k > 0 and s ∈ Sat(ϕ1) \ Sat(ϕ2);

0H otherwise.

Intuitively, this is essentially the application of the Next X operator k times, while
checking the satisfaction of ϕ1 and ϕ2, since ϕ1 U≤k ϕ2 is equivalent to ϕ2 when k = 0 and
to ϕ2 ∨ (ϕ1 ∧ X(ϕ1 U≤k−1 ϕ2)) when k ≥ 1.

The last case, the (unbounded) Until operator U, is more challenging: intuitively, it
is just the limit for k to infinity of the bounded case. However, a naïve computation of
such a limit is likely to be inefficient, so it is preferable to adopt a different approach, such
as the one underlying the PCTL model checking algorithm that is based on a fixed point
computation. To this end, we partition the state space S into three sets: SIH , with all states
that we are sure satisfy ϕ1 U ϕ2; we can assign the super-operator IH to these states. S0H ,
containing the states that we are sure do not satisfy ϕ1 U ϕ2; we can assign the super-
operator 0H to these states. S?, for the remaining states for which we do not know whether
they satisfy ϕ1 U ϕ2 and for which we cannot assign a predefined super-operator. States
that belong to SIH are clearly those in Sat(ϕ2), as well as those in Sat(ϕ1) that cannot avoid
to reach SIH in one step. Symmetrically, it is certain that the states in S \ (Sat(ϕ1)∪ Sat(ϕ2))
belong to S0H , since they clearly violate ϕ1 U ϕ2; moreover, also the states that have no way
to reach Sat(ϕ2) in the underlying graph can be included in S0H .

Regarding the super-operator to assign at the states in S?, by [44] (Theorem 5.1) it
is the least fixed point of the function f (X) = XT + G, where T and G are two matrices
indexed by the states in S? and whose entries depend on Q. More formally, Theorem 5.1
of [44] shows that, given the matrices T = (Q(s′, s))s,s′∈S? of size |S?| × |S?| and G =

(∑s′∈SIH Q(s, s′))s∈S? of size 1× |S?|, it holds that QM
s (ϕ1 U ϕ2) h Ẽs, where Ẽ is the least

fixed point of f (X) = XT + G and Ẽs is the entry of Ẽ relative to the state s. The matrix
G represents the super-operators that lead each state s ∈ S? to the goal set SIH in one
step; the matrix T instead contains the super-operators that in one step lead each state
s ∈ S? to other states also in S?. Note that we do not need to consider the super-operators
leading to S0H since they would lead to a failure in satisfying the formula ϕ1 U ϕ2. Detailed
algorithms for the computation of QM

s (ϕ1 U ϕ2), based on Jordan decomposition or matrix
inversion, can be found in [49,50].

Example 1. As an example of application of quantum CTL, consider the QMC shown in Figure 1
and its labelled counterpart where each classical state `i obtains label `i, that is, we only assign the
state name as the label for the state. As formula, consider Q&IH [(¬`2)U `3], which requires to check
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whether the super-operator corresponding to the paths that eventually reach `3 without passing
through `2 is at least IH. The algorithm for model checking this property works as follows: we start
from the state properties in the leaves of the parsing tree of Q&IH [(¬`2) U `3], that is, `2 and `3,
and we compute Sat(`2) = {`2} and Sat(`3) = {`3}. Then, we compute Sat(¬`2) = {`0, `1, `3}.
Now we can compute the super-operator associated with the paths satisfying the path formula
(¬`2) U `3.

We initialize the sets SIH , S0H , and S? as SIH = {`3}, S0H = {`2}, and S? = {`0, `1}. The
Bellman equations for the states in S? are the following, once we plug in the known values 0H and
IH for the states in S0H and SIH , respectively: X`0 h X`1A and X`1 h E0, which correspond to
the least fixed point of the function f (X) = XT + G, where

T =

(
0H 0H
A 0H

)
G =

(
0H E0

)
used in [44] (Theorem 5.1). The final result is X`0 h E0A and X`1 h E0, for which we have
X`0 6& IH, as well as X`1 6& IH. Thus, we obtain Sat(Q&IH [(¬`2) U `3]) = {`3}, since `3 is the
only state from which the computed super-operator is at least IH.

3.3. Complexity of the QCTL Model Checking Problem

As said at the beginning of this section, textbooks like [26,27] provide a detailed
analysis of the model checking algorithms for CTL and PCTL, and they show that such
algorithms are efficient. More precisely, such algorithms are polynomial in both the size
of the model M and the size of the state formula ϕ; the size |ϕ| of ϕ is defined [47] as the
number of logical connectives and temporal operators in ϕ plus the sum of the size log(k)
of each bounded temporal operators U≤k occurring in ϕ.

This polynomial complexity carries over the QCTL model checking problem: according
to [44], the complexity is polynomial in the size of M, of ϕ, and the dimension of the Hilbert
spaceH.

4. Model Checking Fidelity Properties

The quantum CTL logic we have considered in the previous sections focus on the
probability of events, as carried by the computed super-operator. For instance, when
model checking an LQMC against a CTL formula Q∼E [ψ], we solve the problem to check
whether QM

s ({ σ ∈ PathM | L(σ) ∈ Words(ψ) }) ∼ E for some given ∼ ∈ {.,&,h}
and E ∈ SI (H) (cf. Definition 3). This means, more precisely, to check whether, for each
ρ ∈ D(H), the trace of QM

s ({ σ ∈ PathM | L(σ) ∈ Words(ψ) })(ρ) is bounded by the trace
of E(ρ).

Quantum CTL is not able to characterize the effect of the super-operators on the
quantum states, unless this is reflected on the probability value of their trace. This means,
for instance, that the effect of a measurement can be recognized, since the associated
probability value is likely to decrease; on the other hand, a bit flip remains undetected,
since the whole probability mass is preserved.

To express properties about how well the super-operator modelled by the QMC
preserves the quantum state it is applied on a different operator is needed, such as a
fidelity operator. The logic we consider is the Fidelity CTL logic (FCTL) proposed in [50],
also based on CTL. (The authors of [50] call this logic Quantum CTL. Instead, we call it
Fidelity CTL to avoid confusion with the homonym logic in Section 3.) As such, this logic
is essentially the same as the classical and probabilistic CTL from literature, and QCTL
considered in Section 3. The only difference is on the operator wrapping the path formulas:
instead of using the universal ∀, existential ∃, probabilistic P∼p, or quantum Q∼E operators,
FCTL uses the fidelity operator F∼τ , to check whether the fidelity is bounded by τ. (For
uniformity of notation, we use the operator F∼τ instead of the operator F∼τ that is used
in [50]).
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4.1. The Model Checking Problem

Similarly to the other model checking problems, we are given the LQMC M and the
property ϕ we want to verify. The property is usually provided as an FCTL state formula ϕ
respecting the following grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | F∼τ [ψ]

ψ ::= Xϕ | ϕ U≤k ϕ | ϕ U ϕ,

where a ∈ AP, ∼ ∈ {≤,≥}, τ ∈ Q ∩ [0, 1] is a threshold, and k ∈ N. Note that all other
comparisons, such as <, >, =, and 6=, that could be used as ∼ in F∼τ [ψ] can be derived
from ≤ and ≥ with the help of conjunction and negation.

As we can see, the only difference between QCTL and FCTL is that Q∼E [ψ] has been
replaced with F∼τ [ψ]. This means that also the semantics of FCTL differs from the one of
QCTL only for this path quantifier. We give the full semantics of FCTL for completeness.
Given a state s ∈ S and a path σ ∈ PathM, we have

s |= a if a ∈ L(s);

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2;

s |= ¬ϕ if it is not the case that s |= ϕ;

s |= F∼τ [ψ] if Fid(QM
s ({ σ ∈ PathM | σ |= ψ })) ∼ τ;

σ |= Xϕ if σ[1] |= ϕ;

σ |= ϕ1 U≤k ϕ2 if ∃0 ≤ n ≤ k : σ[n] |= ϕ2 and ∀0 ≤ i < n : σ[i] |= ϕ1; and

σ |= ϕ1 U ϕ2 if ∃n ∈ N : σ[n] |= ϕ2 and ∀0 ≤ i < n : σ[i] |= ϕ1.

Given a super-operator E , the Fid operator is defined as

Fid(E) = min
ρ∈D1(H)

Fid(E , ρ)

where
Fid(E , ρ) =

√
ρ1/2E(ρ)ρ1/2.

When ρ is a pure state ρ = |η〉 〈η|, then Fid(E , |η〉 〈η|) =
√
〈η| E(|η〉 〈η|) |η〉; more-

over, by the joint concavity property (cf. [56] (Exercise 9.19)), it holds that
minρ∈D1(H) Fid(E , ρ) = min|η〉∈H Fid(E , |η〉 〈η|).

The model checking problem for LQMCs against an FCTL state formula ϕ is the
natural counterpart of the one against QCTL (cf. Definition 3).

Definition 4. Let M be an LQMC, s ∈ S be a state, and ϕ be an FCTL state formula. The model
checking problem for M against ϕ asks to verify whether s |= ϕ holds.

4.2. The Standard Bottom–Up Approach

As one can reasonably expect, the model checking algorithm for FCTL is analogous to
the one for QCTL: it follows a bottom-up approach to compute the sets Sat(ϕ′) for each
the state subformula ϕ′ occurring in the formula ϕ we need to verify. Everything is the
same, except for the evaluation of Sat(F∼τ [ψ]). For this, first the matrix representation of
the super-operator Es = QM

s ({ σ ∈ PathM | σ |= ψ }) is obtained, which corresponds to
the analogous computation for QCTL. Then, the expression Fid(Es) ∼ τ is evaluated by
converting it to the quantified constraint Q∼ |η〉 ∈ H : Fid(Es, |η〉 〈η|) ∼ τ, where Q≤ = ∃
and Q≥ = ∀. The resulting constraint, after some appropriate manipulation, is then verified
by means of the existential theory of the reals.

Example 2. As an example of the application of the fidelity operator, consider the QMC for the loop
program depicted in Figure 1 and the fidelity formula F≥1[(¬`2) U `3]. We have already computed
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in Example 1 the super-operators X`i
corresponding to the path formula (¬`2) U `3 for each state

`i, that is, X`0 h E0A, X`1 h E0, X`2 h 0H, and X`3 h IH. The formula F≥1[(¬`2) U `3] holds
in the state `i if the corresponding super-operator X`i

is such that min|η〉∈H Fid(X`i
, |η〉 〈η|) ≥ 1;

this holds only when X`i
h IH (cf. [50]), which is true only for `3.

The technical details for the constructions presented in this section, as well as some
improvements on the computation of QM

s ({ σ ∈ PathM | σ |= ψ }), are rather involved;
the interested reader can find them in [50] (Section 5), together with examples showing
their application.

4.3. Complexity of the FCTL Model Checking Problem

Since FCTL differs from CTL, PCTL, and QCTL only for one operator, the detailed
complexity analysis available in literature (see, e.g., [26,27,58]) for this kind of logic carries
over to FCTL [50]. However, the presence of the fidelity operator F∼τ increases the resulting
complexity from polynomial to exponential [50] (Theorem 5.12).

5. Model Checking LTL and ω-Regular Properties

As we mentioned in the introduction, LTL and ω-regular properties are well suited for
describing the behavior of a system in the long run, such as its liveness (e.g., the system
never crashes), repeated reachability (e.g., the system is ready to accept requests again and
again), and fairness (e.g., if the system has to make a choice infinitely often, all options are
chosen infinitely often) properties. This kind of properties has been studied extensively for
classical Markov chains [27,59–61]. In the classical setting, the usual approach to compute
the probability P(ϕ) that a certain LTL property ϕ is satisfied in a Markov chain M is
to adopt an automaton-based approach, as the one introduced by Vardi and Wolper for
program verification [62]. This approach works as follows; see, e.g., [26,27] for more details.

5.1. The Model Checking Problem

We start with the model M and the property ϕ we want to verify. The property is
usually given as an LTL formula, that is, a formula expressible according to the follow-
ing grammar:

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕ U ϕ,

where a ∈ AP is taken from the given finite set of atomic propositions. In addition, the
syntactic sugar shared with CTL, we also consider the Globally/Always temporal operator
Gϕ = ¬F¬ϕ, sometimes written as �ϕ.

The semantics of LTL is analogous to the one of CTL, in particular for the temporal
operators. We call word an infinite sequence of sets of atomic propositions w ∈ (2AP)ω . We
say that w satisfies ϕ, denoted by w |= ϕ, in the following cases:

w |= a if a ∈ w[0];

w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2;

w |= ¬ϕ if it is not the case that w |= ϕ;

w |= Xϕ if w[1 · · · ] |= ϕ; and

w |= ϕ1 U ϕ2 if ∃n ∈ N : w[n · · · ] |= ϕ2 and ∀0 ≤ i < n : w[i · · · ] |= ϕ1,

where w[i · · · ] = w[i]w[i+ 1] · · · . We denote the set of all words satisfying ϕ by Words(ϕ) =
{w ∈ (2AP)ω | w |= ϕ }.

The model checking problem for LQMCs against an LTL formula ϕ is formalized
as follows.

Definition 5. Let M be an LQMC, s ∈ S be a state, and ϕ be an LTL formula. Given ∼ ∈
{.,&,h} and E ∈ SI (H), the model checking problem for M against ϕ asks to verify whether
QM

s ({ σ ∈ PathM | L(σ) ∈ Words(ϕ) }) ∼ E holds.
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The model checking problem for LQMCs against an ω-regular propertyW ⊆ (2AP)ω

is defined analogously.

Definition 6. Let M be an LQMC, s ∈ S be a state, andW ⊆ (2AP)ω be an ω-regular property.
Given ∼ ∈ {.,&,h} and E ∈ SI (H), the model checking problem for M against W asks to
verify whether QM

s ({ σ ∈ PathM | L(σ) ∈ W }) ∼ E holds.

5.2. The Standard Automata-Based Approach

In the standard automata-based approach [62] to LTL model checking in the context
of classical Markov chains, the first step requires to transform the given LTL formula ϕ into
an equivalent nondeterministic Büchi automaton accepting the same language as ϕ, i.e.,
Words(ϕ); such an automaton always exists (cf. [27] (Theorem 5.37)). Since nondeterministic
Büchi automata are as expressive as ω-regular languages (cf. [27] (Theorem 4.32)), we can
also solve the model checking problem against ω-regular properties, by the same approach.

The nondeterminism present in the Büchi automaton, however, does not play well
with the computation of the probability measure. For this motivation, the Büchi automaton
needs to be made deterministic; however, deterministic Büchi automata are strictly less
expressive than nondeterministic ones (cf. [27] (Theorem 4.50)), so more powerful deter-
ministic automata need to be used. Therefore, the nondeterministic Büchi automaton is
transformed into an equivalent deterministic automaton A with a more complex acceptance
condition, such as Rabin, Streett, Muller, or parity (cf. [63–65]). The construction of such
deterministic automata usually makes use of a variant of the Safra’s [66] approach, see
for instance [67,68], or some of the more recent Safraless constructions, such as the ones
proposed in [69–71].

Once the deterministic automaton A is available, it can be combined with the Markov
chain M as the product M⊗A; this product is in practice a Markov chain extended with
the information about the paths that are accepted by the automaton A (i.e., the paths that
satisfy the formula ϕ); we call such a product a parity Markov chain, when A is a parity
automaton. As the last step, the probability of the accepting paths is computed. Since all
accepting paths need to be infinite, the finite number of states of M⊗A implies that such
paths need to become trapped into a set of states from which they cannot escape, that is,
the states that form a bottom strongly connected component (BSCC). Intuitively, a BSCC is
composed by states that can be reached by each other, and all their successors are also in the
same BSCC. These BSCCs can be computed by means of algorithms operating on the graph
structure of the product Markov chain; the outcome of these algorithms is a classification
of the states of M⊗A as those belonging to a BSCC and the transient states, i.e., all other
states. Since only states in a BSCC can be visited infinitely often with strictly positive
probability, the acceptance condition provided by A is used to mark each BSCC as either
accepting or rejecting. As the last step, the probability that ϕ holds in a given state s of the
Markov chain M is computed by finding the unique solution of a systems of equations:
if s belongs to an accepting BSCC, the probability ps is 1; if s belongs to a rejecting BSCC,
the probability ps is 0; if s is a transient state, then the probability ps satisfies the Bellman
equation ps = ∑s′∈S P(s, s′) · ps′ , where P(s, s′) is the probability in M to make a transition
from s to s′, i.e., the probabilistic counterpart of Q in quantum Markov chains.

5.3. The Standard Automata-Based Approach Does Not Work Directly for LQMCs

In the remainder of this section, we present how the approach used to check Markov
chains against ω-regular properties can be extended to quantum Markov chains.

The only difference between classical Markov chains and quantum Markov chains
is the use of super-operators instead of probability values to decorate the transitions; this
difference, however, has a considerable effect on the model checking algorithm, as pointed
out in, e.g., [49,72]. Consider the two Markov chains, enriched with a parity acceptance
condition, shown in Figure 2. The parity acceptance is provided by the priorities 0 and 1
labelling the classical states s0, s1, and s2. As we will see more formally below, a path is
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accepted if the minimum priority occurring infinitely often is even. This means, for instance,
that the path s0s1s2s1s2 · · · is accepted, since its corresponding sequence of priorities is
00101 · · · whose minimum priority occurring infinitely often is 0; on the other hand, the
path s2s2 · · · is rejecting, since its minimum priority occurring infinitely is 1.

s0

0

s1

0

s2

1

1− p

p
p

p

1− p 1− p

s0

0

s1

0

s2

1

E1

E0
E0

E0

E1 E1

Figure 2. Example showing that BSCC decomposition for the underlying graph does not work for
model checking parity QMCs.

The Markov chain on the left of Figure 2 is a classical one where transitions are
governed by the two transition probabilities p and 1− p with 0 < p < 1. The Markov
chain on the right is a quantum one governed by the two super-operators E0 and E1, such
that E0, E1 6= 0H and E0 + E1 h IH. It is obvious that both Markov chains have the same
classical state space, thus they have exactly the same underlying graph. If we would define
the BSCCs just by looking at the underlying graph, they would have the same set of BSCCs,
namely just the single BSCC {s1, s2}, and the same single transient state s0. However, we
will see that this BSCC technique does not help in the evaluation of parity QMCs.

In the classical Markov chains model, s0 is a transient state that will eventually reach
almost surely the unique BSCC {s1, s2}. Thus, its priority makes no difference. Since the
probability that both states in the BSCC are visited infinitely often is 1, we have that the
BSCC {s1, s2} is marked as accepting, since the minimum priority of its states is 0. Since the
BSCC {s1, s2} is accepting and all paths from s1 eventually enter {s1, s2} almost surely, we
find that the overall probability of the paths eventually becoming trapped in an accepting
BSCC is 1 for all states.

Consider now the quantum Markov chain on the right part of Figure 2 and assume
that E0 = {|0〉 〈0|} and E1 = {|1〉 〈1|}. Note that for i ∈ {0, 1} it holds EiEi = Ei and
EiE1−i = 0H. It is easy to check that if we start from s0, the infinite path s0s0 · · · , with the
corresponding nonzero super-operator limn→∞ En

1 = {|1〉 〈1|}, never leaves s0 to reach the
other states s1 and s2. This means that s0 cannot be considered a BSCC, since s0 cannot reach
itself almost surely, i.e., with super-operator IH. At the same time, s0 cannot be considered
a transient state, since it will not eventually reach a BSCC almost surely. Therefore, the first
problem we encounter is that a state in a QMC cannot be classified either as transient or as
belonging to a BSCC, as happens for classical Markov chains. In addition to this problem
with the classification of s0, we also have a second problem, namely, that the infinite path
(s0)

ω has minimum priority 0, so it must be taken into account when computing the super-
operator corresponding to the accepting paths. This means that it does not suffice to look
only at the states as performed for classical parity Markov chains, but we need to consider
all possible paths.

Consider now the state s1: we have only two infinite paths occurring with nonzero
super-operator, namely (s1)

ω with associated super-operator {|1〉 〈1|} and priority 0, and
(s1s2)

ω with associated super-operator {|0〉 〈0|} and priority 0. Thus, the super-operator
corresponding to the accepting paths in state s1 is {|0〉 〈0|}+ {|1〉 〈1|} h IH. The situation
for s2 is however different: we still have only two paths, namely (s2s1)

ω with associated
super-operator {|0〉 〈0|} and priority 0, and (s2)

ω having super-operator {|1〉 〈1|} and
priority 1. Thus, the value in s2 is {|0〉 〈0|}, that is different from IH in s1. Therefore, we
have a third problem, namely, we cannot associate the same value to all states in a BSCC,
as we can do for classical Markov chains, but each state must be evaluated individually.

Let us reason more about what happens along the path s2s2s1s1s1 · · · : its correspond-
ing super-operator is 0H, as effect of the composition of the two orthogonal super-operators

E1 = {|1〉 〈1|} and E0 = {|0〉 〈0|} in the first two transitions s2
E1−→ s2 and s2

E0−→ s1, respec-
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tively. In practice, it is as the first transition from s2 to s2, decorated with E1, “disables” the
second transition from s2 to s1, decorated with E0. In other words, it is like we are missing
the Markovian property that allows us to forget about the past, namely that the transitions
we can perform depend only on the current state, not on how we reached it. Therefore, we
cannot assume that the underlying graph is immutable, since the previous transitions we
performed to reach the current state might change the available edges in the underlying
graph. This means that we cannot just use the standard BSCC decomposition algorithms on
the underlying graph to solve the LTL and ω-regular model checking problem for LQMCs:
neither are BSCCs reached with certainty, nor do all states of a BSCC have the same value.
In addition, the value of a state in a BSCC can be different from both 0H and IH.

In order to overcome these problems, in [49] we proposed an alternative approach:
instead of relying on the graph structure of the product M⊗A, we transformed it into a
single super-operator and we considered the BSCC decomposition of the classical-quantum
Hilbert space induced by this super-operator, i.e., the tensor product of the classical state
space with the quantum one. By operating on this larger Hilbert space, we have the
information we need to solve the model checking problem for ω-regular properties for
labelled quantum Markov chains.

5.4. Parity Automata and Parity Quantum Markov Chains

We shortly recall a well-known mechanism to decide whether a word is included
in a given ω-regular language. Recall thatW is called ω-regular if it is the language of
some nondeterministic Büchi automaton (cf. [27] (Theorem 4.32)) and that nondeterministic
Büchi automata are equivalent to parity automata (cf. [63–65]). A parity automaton is
defined formally as follows.

Definition 7. A (deterministic) parity automaton (PA) is a tuple A = (A, a, AP, t, pri), where

• A is a finite set of automaton states;
• a ∈ A is the initial state;
• AP is a finite set of atomic propositions;
• t : A× 2AP → A is a transition function; and
• pri : A→ N is a priority function.

A path of A is an infinite sequence σ = a0L0a1L1 · · · ∈ (A× 2AP)ω, such that a0 = a
and for all i ≥ 0, ai+1 = t(ai, Li). We extend the priority function to paths by setting
pri(σ) = lim infi→∞ pri(ai). We use PathA to denote the set of all paths of A. The language
of A is defined as

L(A) = { L0L1 · · · ∈ (2AP)ω | ∃σ = a0L0a1L1 · · · ∈ PathA : pri(σ) is even }.

As we have enriched QMCs with labels, obtaining LQMCs (cf. Definition 2), we also
decorate QMCs with parity conditions, so to obtain parity QMCs; these will be useful to
represent the result of the product of an LQMC and a PA, that we will present later.

Definition 8. A parity quantum Markov chain (PQMC) is a tuple M = (S, Q, pri), where
(S, Q) is a QMC and pri : S→ N is a priority function.

As we have done for LQMCs, we extend in the natural way the notion of paths,
measures, etc. to PQMCs and we set pri(s0s1s2 · · · ) = lim infi→∞ pri(si). We define the value
of a PQMC M in s ∈ S as

valMs = QM
s ({ σ ∈ PathM | pri(σ) is even }).

Parity QMCs can be obtained by combining together an LQMC and a PA; in practice,
the PA just follows the evolution of the LQMC by synchronizing on the labels of the classical
states that are visited by the LQMC.
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Definition 9. The product of an LQMC M = (S, Q, AP, L) and a PA A = (A, a, AP, t, pri) with
the same set of atomic propositions AP is the PQMC M⊗A = (S′, Q′, pri′) where

• S′ = S× A;
• Q′((s, a), (s′, a′)) = Q(s, s′) if a′ = t(a, L(s)), and Q′((s, a), (s′, a′)) = 0H otherwise; and
• pri′((s, a)) = pri(a).

An important property that is used in the model checking problem of an LQMC M =
(S, Q, AP, L) against an ω-regular propertyW recognized by A = (A, a, AP, t, pri) is that
the value of M⊗A = (S′, Q′, pri′) is trace equivalent to the super-operator corresponding
toW in M. Formally, by [49] (Lemma 9) we have that for any s ∈ S,

QM
s (L(A)) h valM⊗A(s,a) .

This property is the expected quantum counterpart of the product Markov chain
used for solving the model checking problem of classical Markov chains against LTL and
ω-regular properties (cf. [27]). This equivalence ensures that the super-operator we obtain
in the product PQMC is equivalent to the one corresponding to the paths of the LQMC
satisfying the given ω-regular property, and this is needed to justify the correctness of the
automata-based approach to model checking.

Example 3. As an example of the parity construction, consider again the QMC shown in Figure 1
and the LTL formula (¬`2) U `3.

On the left part of Figure 3 we present the parity automaton A corresponding to the formula
(¬`2) U `3. The automaton has 3 states, namely a, ⊥, and >; the value assigned by the priority
function pri to each state is given as the number near the state: this means that all states have
priority 1 except for pri(>) = 0. The transition relation is given by the depicted arrows, where we
encode the sets of atomic propositions by a Boolean formula: for instance, the formula `3 is satisfied
by all subsets A of AP = {`0, `1, `2, `3}, such that `3 ∈ A; similarly, the formula `2 ∧ ¬`3 is
satisfied by all subsets A of AP, such that `2 ∈ A but `3 /∈ A.

a
1

>
0

⊥
1

A

`3

¬`2 ∧ ¬`3

`2 ∧ ¬`3

true true

`0, a
1

`1, a
1

`2,⊥
1

`3,>
0

`1,⊥
1

`3,⊥
1

A

E1

E0
I

E1

E0

G

I

Figure 3. Parity construction for the QMC from Figure 1 and the LTL formula (¬`2) U `3.

5.5. Computing PQMC Values

As we have seen in Section 5.3, it is not enough to compute the BSCCs by looking only
at the classical states of the product PQMC. The solution adopted by [49] is to encode the
behavior of M into a single super-operator acting on the extended Hilbert space Hc ⊗H
representing both the classical states and the super-operators decorating the transitions.
This is obtained by taking the tensor product of the classical state space and the quantum
one; then the notion of BSCC subspaces for super-operators, as defined in [73], is used in
the computation of the PQMC values. The intuition underlying this extended construction
is to keep track of the classical states reached step by step in the Hc part of Hc ⊗H, and
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to accumulate the effects of the super-operators decorating the taken transitions on theH
part of Hc ⊗H. This allows us to overcome the problem of the BSCC decomposition of
the underlying graph of the given PQMC: as we have seen in Section 5.3, by performing a
transition we might change the underlying graph, since some transition might be disabled
as effect of the composition of super-operators; this does not happen in the classical and
probabilistic setting, where the underlying graph is immutable.

Let E be a super-operator acting onH; given a subspace X ofH, we call X:

• invariant for E if E(X) ⊆ X;
• a BSCC of E if R(|ψ〉 〈ψ|) = X holds for each pure state |ψ〉 ∈ X, where R(ρ) =∨∞

i=0 supp(E i(ρ)) is the reachable subspace of E starting in ρ ∈ D(H);
• transient if limk→∞ tr(PXE k(ρ)) = 0 for each ρ ∈ D(H), where PX is the projection

onto X.

Intuitively, we have that the probability of remaining forever in a transient subspace
X tends to 0, as happens for the transient states in a classical Markov chain. Similarly, it
is not possible to leave a BSCC X, and eventually all elements of X are visited again and
again, as happens for states in the BSCCs of a classical Markov chain.

We are now ready to present how to combine together the classical part and the
quantum part of a PQMC. Let M = (S, Q, pri) be a PQMC on H; for each s, t ∈ S, let
E s,t = { Es,t

j | j ∈ Js,t } be the set of Kraus operators with Js,t as set of indexes for the

super-operator E s,t = Q(s, t). Following [72], let EM = { |t〉 〈s| ⊗ Es,t
j | s, t ∈ S, j ∈ Js,t }

be the super-operator acting on the extended Hilbert space Hc ⊗ H, where Hc is the
|S|-dimensional Hilbert space with orthonormal basis { |s〉 | s ∈ S }.

For each s ∈ S, let Os = { (t, j) | t ∈ S, j ∈ Js,t } and Ms = { Es,t
j | (t, j) ∈ Os }. To see

how EM encodes the behavior of M, consider the following steps, which exactly capture
the intended meaning of M.

1. A projective measurement M = { |s〉 〈s| | s ∈ S } is performed on the classical system
Hc to determine the current classical state.

2. If the measurement outcome of M is s, then the quantum measurement Ms is per-
formed on the quantum systemH.

3. If the observed outcome of Ms is (t, i), then the classical state is set to be |t〉 〈t|.
The super-operator EM enjoys a couple of nice properties: starting from a product

initial state, the classical and quantum systems remain separable (disentangled) along
the whole execution (cf. [49] (Lemma 11)); moreover, each fixed point state σ of EM, i.e.,
EM(σ) = σ, has the form σ = ∑s∈S |s〉 〈s| ⊗ σs. According to [73], we find that any BSCC
of EM can be spanned by pure states of the form |s〉 |η〉 where s ∈ S and |η〉 ∈ H.

We are now ready to collect all BSCCs of EM and classify them according to their
acceptance condition. Given a BSCC B of EM, let

C(B) = { s ∈ S | |s〉 |η〉 ∈ B for some |η〉 ∈ H }

be the set of classical states supported in B. Note that it is possible to have C(B)∩C(B′) 6= ∅
for two different BSCCs B and B′; this happens when there are two states |s〉 |η〉 ∈ B and
|s′〉 |η′〉 ∈ B′ with s = s′. However, this is not a real problem: as shown by [49] (Lemma 12),
two BSCCs are orthogonal as long as they differ on at least one classical state.

Given the set of all BSCCs of EM, we can organize it with respect to the minimal
priority assigned to the classical states in each BSCC. For a priority k ∈ N, let BSCC=k be
the span of all BSCCs of EM whose minimal priority is k, that is,

BSCC=k =
∨
{ B is a BSCC of EM | min{ pri(s) | s ∈ C(B) } = k }.

Similarly, let BSCC<k and BSCC>k be the spans of all BSCCs with the minimal priority
being less than and larger than k, respectively. Since BSCC=k, BSCC<k, and BSCC>k have
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different sets of classical states, they are pairwise orthogonal by [49] (Lemma 12). This
implies, by [73], thatHc ⊗H can be decomposed uniquely into

Hc ⊗H = T ⊕BSCC=k ⊕BSCC<k ⊕BSCC>k,

where T is the maximum transient subspace of EM.
An important result (cf. [49] (Lemma 13)) is that the BSCCs in BSCC=k, BSCC<k, and

BSCC>k do not interfere with each other: let tr(Rk
t (ρ)) denote the probability that k is the

lowest priority occurring infinitely often from the initial state |t〉 〈t| ⊗ ρ. Then, we have that:

• if supp(|t〉 〈t| ⊗ ρ) ⊆ BSCC=k, then tr(Rk
t (ρ)) = tr(ρ);

• if supp(|t〉 〈t| ⊗ ρ) ⊆ BSCC<k, then tr(Rk
t (ρ)) = 0; and

• if supp(|t〉 〈t| ⊗ ρ) ⊆ BSCC>k, then tr(Rk
t (ρ)) = 0,

that is, once we enter BSCC=k with probability tr(ρ), we will see k as the minimum priority
almost surely; instead, if we enter BSCC<k or BSCC>k, we will see k as minimum priority
with probability 0. In practice, BSCC=k acts like the standard BSCC with minimum priority
k in classical Markov chains.

It now remains to collect all BSCC=k with even priority k to obtain the accepting
BSCCs, and combine together their super-operators. This is formalized as follows.

Theorem 1 ([49] (Corollary 15)). Let M = (S, Q, pri) be a PQMC. Then, for any s ∈ S,

valMs h trc ◦ Peven ◦ E∞
M ◦ Es

where trc is the partial trace super-operator, such that trc(|s〉 〈t| ⊗ ρ) = 〈t〉 s · ρ, Peven =

∑{ k∈pri(S)|k is even } P=k where P=k = {P=k} is the projection super-operator onto BSCC=k,
E∞
M = limN→∞

1
N ∑N

n=1 En
M, and Es(ρ) = |s〉 〈s| ⊗ ρ.

Similarly to the QCTL case (cf. Section 3), the value valMs is not computed exactly,
but only a trace equivalent super-operator is obtained. This is in line with the statement
of [44] (Theorem 3.2), saying that the super-operator valued measure for a QMC (hence,
for a PQMC) is well-defined only up to the trace equivalence h, already at the level of
the measure for the measurable space (PathM, Σ). This means that we are not able to
compute the exact super-operator corresponding to a measurable set of paths, but only a
super-operator in the same h-equivalence class. This suffices for our purposes, since LTL
and ω-regular model checking for LQMCs (as well as the QCTL model checking) only look
for the probability of satisfying the given property, which is preserved by h.

As an application of the above construction, consider the right part of Figure 3, where
we show the product of the QMC shown in Figure 1 and the PA A encoding the formula
(¬`2) U `3. It is easy to observe that, for this specific case, we have only one accepting
BSCC, composed only by the state (`3,>), and that the super-operator corresponding to
the paths leading to it is E0A, the same as we computed in Example 1, as expected.

As another application of the above construction, consider again the PQMC depicted
on the right of Figure 2 where the super-operators decorating the transitions are E0 =
{|0〉 〈0|} and E1 = {|1〉 〈1|}. Then, the super-operator EM encoding M is

EM = {|s1〉 〈s0|} ⊗ E0 + {|s0〉 〈s0|} ⊗ E1

+ {|s2〉 〈s1|} ⊗ E0 + {|s1〉 〈s1|} ⊗ E1

+ {|s1〉 〈s2|} ⊗ E0 + {|s2〉 〈s2|} ⊗ E1.

In practice, for each pair of states s and t for which Q(s, t) 6h 0H, we add {|t〉 〈s|} ⊗
Q(s, t), which can be intuitively interpreted as: we transition from s to t while performing
Q(s, t). We can now decompose EM into the BSCCs and the maximal transient space,
obtaining that the maximal transient space of EM is T = span{|s0〉 |0〉} and that the
BSCCs are
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B1 = span{|s0〉 |1〉}, B2 = span{|s1〉 |1〉},
B3 = span{|s1〉 |0〉 , |s2〉 |0〉}, B4 = span{|s2〉 |1〉}.

Since the priorities range over {0, 1}, we obtain only BSCC=0 =
∨{B1, B2, B3} with

even minimum priority, with corresponding projection super-operator (in Kraus notation)

P=0 = {|s0〉 〈s0| ⊗ |1〉 〈1|+ |s1〉 〈s1| ⊗ I + |s2〉 〈s2| ⊗ |0〉 〈0|},

which is also the projection super-operator Peven occurring in Theorem 1.
Regarding the super-operator E∞

M, we first compute its components. For any n ≥ 1,
we have E2n−1

M h F0 ⊗ E0 +F ⊗ E1 and E2n
M h F1 ⊗ E0 +F ⊗ E1, where

F0 = {|s1〉 〈s0| , |s2〉 〈s1| , |s1〉 〈s2|}
F1 = {|s2〉 〈s0| , |s1〉 〈s1| , |s2〉 〈s2|}
F = {|s0〉 〈s0| , |s1〉 〈s1| , |s2〉 〈s2|}.

Thus, E∞
M h F0+F1

2 ⊗ E0 +F ⊗ E1, and

P0 ◦ E∞
M h F0 +F1

2
⊗ E0 + (Ps0 + Ps1)⊗ E1.

Lastly, we have Es = {|s〉 ⊗ IH} and trc = { 〈si| ⊗ IH | i = 0, 1, 2 }. By Theorem 1, it
follows that

valMs h trc ◦ P0 ◦ E∞
M ◦ Es =

{
E0 + E1 h IH if s = s0 or s = s1;
E0 if s = s2.

These values coincide with the informal discussion we have given in Section 5.3.

5.6. Complexity of the LTL and ω-Regular Model Checking Problem

A detailed algorithm providing the necessary computational steps implementing the
construction given above can be found in [49]. Its complexity for computing the matrix
representation of trc ◦ Peven ◦ E∞

M ◦ Es is polynomial in the size of the given PQMC and in
the dimension of its Hilbert space.

If we want to express the size of the product PQMC M⊗Aϕ in terms of the original
LQMC M and of the LTL formula ϕ, then M⊗ Aϕ is linear in the size of M and double
exponential in the size of ϕ. The double exponential blowup is common in model checking
LTL properties: the first exponential blowup occurs in the translation from ϕ to an equiva-
lent nondeterministic Büchi automaton; the second blowup is caused by its determinization
as a Rabin, a Streett, a Muller, or a parity automaton. These blowups cannot be avoided
(cf. [26,27,63]).

6. Conclusions

In this paper we have presented three logics and relative model checking algorithms
for quantum Markov chains given in literature: quantum CTL, quantum LTL and ω-regular
properties, and fidelity CTL. The former two kinds of properties focus on evaluating the
probability of certain events; the latter, instead, looks for how well the super-operator
modelled by the LQMC preserves the quantum states it is applied on.

The algorithms for the quantum counterparts of CTL and LTL follow the steps of the
algorithms already developed for these logics in the setting of classical and probabilistic
model checking. The quantum nature of the system to be checked, however, prevents
the naïve adaptation of these algorithms, in particular for LTL and ω-regular properties:
the usual BSCC decomposition of the underlying graph fails, so a similar decomposition
needs to be performed in an extended Hilbert space representing both the classical and
the quantum states of the product PQMC. The algorithm for the computation of the states
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satisfying the fidelity operator, instead, is newly designed, since fidelity is a concept strictly
related to quantum systems that has no counterparts in classical and probabilistic systems.
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