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Abstract: Authentication systems that employ biometrics are commonplace, as they offer a convenient
means of authenticating an individual’s identity. However, these systems give rise to concerns about
security and privacy due to insecure template management. As a remedy, biometric template
protection (BTP) has been developed. Cancelable biometrics is a non-invertible form of BTP in which
the templates are changeable. This paper proposes a deep-learning-based end-to-end multimodal
cancelable biometrics scheme called cancelable SoftmaxOut fusion network (CSMoFN). By end-to-
end, we mean a model that receives raw biometric data as input and produces a protected template
as output. CSMoFN combines two biometric traits, the face and the periocular region, and is
composed of three modules: a feature extraction and fusion module, a permutation SoftmaxOut
transformation module, and a multiplication-diagonal compression module. The first module carries
out feature extraction and fusion, while the second and third are responsible for the hashing of fused
features and compression. In addition, our network is equipped with dual template-changeability
mechanisms with user-specific seeded permutation and binary random projection. CSMoFN is
trained by minimizing the ArcFace loss and the pairwise angular loss. We evaluate the network,
using six face–periocular multimodal datasets, in terms of its verification performance, unlinkability,
revocability, and non-invertibility.

Keywords: cancelable biometrics system; multimodal biometrics; neural network model; security
and privacy; fusion of features; random projection; authentication

1. Introduction

The scope of deployment of biometrics-based systems is rapidly expanding. In particu-
lar, the use of systems that rely on biometrics, such as mobile, banking, and online systems,
is increasing. Biometrics capture unique physiological or behavioral trait information about
users, and are therefore a convenient and highly accurate means of identity management.
However, a biometric trait cannot be used if it has been exposed or abused even once, and
the same biometric templates cannot be stored across multiple devices, which may increase
the risk of a cross-matching attack [1,2]. A system employing biometrics must therefore
prioritize security, privacy, and accuracy when authenticating individuals.

Cancelable biometrics (CB), a biometric template protection method, has been pro-
posed to address the abovementioned concerns. A CB scheme generally consists of a
feature extractor, a user-specific parameterized transformation function, and a matcher, as
shown in Figure 1. CB does not directly use the original biometric template for matching,
but instead uses the results of a non-invertible transformation. The original biometric
data cannot be restored after being transformed, although a CB template can be generated
immediately from its original counterpart. Furthermore, cross-matching of different CB
templates generated from the same biometric template is highly unlikely. In brief, there are
four conditions that need to be satisfied by the CB scheme, as follows [3]:
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- Non-invertibility: It must be extremely difficult to restore the original biometric tem-
plate from the CB template.

- Revocability: If a CB template is exposed, a new template should be generated immedi-
ately from the original biometric data. This implies that there should be no limit on
the number of CB templates generated from one biometric template.

- Unlinkability: Two or more CB templates generated by the same user should not be
distinguishable, in order to reduce the risk of a cross-matching attack.

- Performance: The accuracy performance of a CB-based system should not be poorer
than its original counterpart.
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In general, biometric systems can be classified into two types based on the number of
biometric modalities used, namely unimodal and multimodal biometrics [4,5]. A unimodal
system recognizes a user based on a single biometric modality, whereas a multimodal
system performs recognition based on more than one biometric modality. Unimodal
biometrics has traditionally been applied, and although its performance has been proven,
it has certain limitations. Since only a single biometric modality is deployed, the presence
of sensor noise may affect the accuracy performance. Other problems may also arise,
such as non-universality, vulnerabilities to spoofing attacks, and intra-class and inter-
class similarities [6]. Multimodal biometrics is an approach that can compensate for these
limitations. Since multimodal biometrics uses multiple biometric modalities, the probability
of modalities being unavailable or missing is low. The accuracy performance can also be
improved due to the fusion of biometrics information. Furthermore, the use of multiple
modalities increases the robustness to security attacks such as spoofing [7]. However, the
risk of template abuse and attack remains the same as for unimodal biometric systems, and
the consequences could be catastrophic, as more private information about the user would
be revealed from multiple compromised templates.

In this paper, we propose a deep-learning-based end-to-end multimodal CB scheme
called cancelable SoftmaxOut fusion network (CSMoFN). By end-to-end, we mean a model
that receives raw biometric data as input and produces a CB template as output [8]. Our
model relies on two biometric traits, the face and periocular region, as input and produces
a CB template as output.

1.1. Related Work
1.1.1. Multimodal Biometrics with Deep Learning

In this subsection, we review several works that have applied deep learning to multi-
modal biometric systems. Ding et al. [9] proposed a multimodal face recognition system
composed of global facial features, rendered a frontal face image using a 3D face model,
and uniformly sampled local face image patches. A combination of multiple convolution
neural networks (CNNs) and a stacked autoencoder were used for feature learning and
performing feature-level fusion.
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Al-Waisy et al. [10] outlined a multimodal biometric system known as IrisConvNet.
The IrisConvNet fuses left and right irises at the ranking-level. Alay et al. [11] considered
iris, face, and finger veins and processed them with separate CNNs, with the output
of each network fused at the score level. Gunasekaran et al. [12] also proposed a deep
multimodal biometric system consisting of the iris, face, and fingerprint, called deep
contourlet derivative weighted rank (DCD-WR) network. The matching is achieved with a
deep learning template matching algorithm.

The study in [13] presented a multifeature deep learning network (MDLN) architecture
that fused the facial and periocular regions, with the addition of texture descriptors. MDLN
was designed as a feature-level fusion approach that correlated raw biometric data with
texture descriptors to produce a new representation.

Algashaam [14] fused the iris and periocular region using a hierarchical fusion network.
Their network allowed the system to automatically explore and discover the best strategy
for combining the individual biometric scores. Luo et al. [15] outlined a deep neural network
for fusion of the iris and periocular features. A co-attention feature fusion module was used
to fuse the features adaptively, to obtain iris-periocular features for accurate recognition.

Jung et al. [16] proposed a teacher–student network for periocular representation
learning. The teacher network, which is pre-trained with face images, is leveraged to
regulate the student (periocular) network in order to enhance the periocular performance.
Soleymani et al. [17] suggested a generalized compact bilinear fusion algorithm composed
of multiple CNNs. Three multimodal features (iris, face, and fingerprint) are fused through
a fully connected layer.

In summary, deep learning is a natural and well-suited approach for multimodal
biometric systems, as deep neural networks enable feature extraction, fusion, and authenti-
cation to be performed “under one roof”. However, this approach does not consider the
issue of template protection.

1.1.2. Cancelable Multimodal Biometrics with Deep Learning

Multimodal biometrics with template protection is not a new topic, with many papers
having been published on this subject [18–22]. However, deep-learning-based multimodal
biometric systems that include template protection remain very scarce.

Abdellatef et al. [23] designed a multi-instance CB for the face using multiple CNNs
to extract features from multiple regions of a face image, such as face, eyes, nose, mouth,
etc. After fusion of several deep features, a cancelable template was generated via bio-
convolving encryption. Their method achieved a better performance than when a unimodal
biometric was applied. However, a detailed analysis of CB design criteria was not provided.

Talreja et al. [24] introduced a method for generating CB templates from face and iris
biometrics. Each biometric image was subjected to feature extraction via a CNN, with a
random component selected from the generated features and used as a transformation key.
The transformed templates generated from the CB module were then converted to a secure
sketch via a forward error correction (FEC) decoder and cryptographic hashing. However,
a compromised transformation key may pose the risk of CB template inversion.

Sudhakar et al. [25] put forward a finger vein and iris-based CB scheme in which
a CNN was applied to perform feature extraction and a support vector machine (SVM)
was used for user verification. The template was protected with a random projection-
based approach.

More recently, El-Rahiem et al. [26] proposed a multibiometric CB system using
fingerprint, finger vein, and iris images. First, feature extraction was performed for each
biometric modality through a CNN and fusion of the three modalities was achieved using
feature maps. The DeepDream algorithm was then applied to give a cancelable template.
However, a security analysis was not performed.

A detailed comparison with the above papers is provided in Section 4.6.
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1.2. Motivations and Contributions

In this paper, we propose an end-to-end CSMoFN scheme for multimodal biomet-
ric systems. Our network fuses face and periocular biometric traits at the feature level,
producing a single CB template as output. More specifically, CSMoFN is composed of
two components, the first of which transforms the fused biometric vectors based on the
notion of random permutation maxout transform (RPMoT), which was proposed in [27].
Although RPMoT is a CB transformation scheme, it is not learnable and is data-agnostic,
and hence barely meets the performance requirements for the CB scheme. RPMoT is refor-
mulated as a part of the deep neural network and is referred to here as the permutation
SoftmaxOut transform (PSMoT). PSMoT is data-driven, learnable, and parameterized by
user-specific permutation seeds to satisfy the revocability and unlinkability criteria. PSMoT
can be viewed as a locality-sensitive hashing process that transforms biometric data from a
high-dimensional input space to a relatively low-dimensional hash space [28].

The PSMoT comes with a customized layer called permutation SoftmaxOut layer.
The layer composed of maxout units and a modified softmax function to approximate
the permutation and the winner-takes-all operations in the RPMoT. Apart from that, the
modified softmax function is also useful to minimize the quantization errors introduced by
the SoftmaxOut approximation. Since PSMoT aims to produce a discrete hash vector from
the network directly, it is a representation learning problem. Hence, a pairwise distance-
based loss called Pairwise Angular (PA) loss, is introduced to optimize the margin between
intra- and inter-class distances.

The output of PSMoT (i.e., a hash vector) is immediately followed by the second
component of the network, called the multiplication-diagonal compression (MDC) module.
The MDC module is designed to further enhance the security and compress the PSMoT
hash vector, and offers a user-specific seeded binary random projection mechanism as a
means to enhance the revocability and unlinkability of the proposed method.

Both the PSMoT and MDC transformation follow the many-to-one mapping principle
attributed to their hashing trait, meaning that inversion (one-to-many mapping) of the
terminal hash output is theoretically impossible and computationally hard in practice. This
is essential to satisfy the non-invertibility requirement for a CB scheme.

In this paper, we opt to fuse the face and periocular features. The periocular region,
also known as the periphery of the ocular area, includes the vicinity of a person’s eyes and
contains information on the subject’s eyebrows, eyelashes, and skin texture. The periocular
region is a complementary biometric of the face that is helpful in terms of enhancing the
biometric performance of the face alone. It is particularly useful in situations such as when a
mask is worn, where the face is occluded and a performance degradation is expected. As we
will show in the experiment section, fusion of the face and periocular region outperforms
the respective unimodal counterparts, i.e., the face or periocular region alone.

We can summarize our contributions as follows:

• A deep-learning-based CB scheme for multimodal biometrics is proposed. Although
the face and periocular biometrics form the focus of this paper, our proposed method
can also be applied to other biometrics modalities, provided the input is a raw image.

• A deep network, CSMoFN is composed of three modules: a feature extraction and
fusion module, a PSMoT module, and an MDC module is proposed to realize the
above proposal. The first module is responsible for performing feature extraction and
fusion and the latter two are cancelable transformation functions, which are devised
with respect to the four CB design criteria.

• The three modules are trained in an end-to-end manner with a combination of classifi-
cation loss and representation learning, namely ArcFace loss and PA loss.

• We evaluate the proposed network on six face–periocular multimodal datasets in
terms of verification performance, unlinkability, revocability, and non-invertibility.
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2. Preliminaries: Random Permutation Maxout Transform

RPMoT [27] is a data-agnostic CB scheme that transforms a biometric feature vector
into a discrete hash vector, as illustrated in Figure 2. RPMoT is parameterized by a user-
specific seeded permutation matrix, which means that the hash vector can be revoked if it
is compromised. The flow of the algorithm is summarized as follows:

1. A user-specific permutation matrix is first created. Suppose the size of the biometric
feature vector X is d and permutation matrix is d × d. There are m permutation
matrices that are generated and stacked to form P.

2. X and P are multiplied to yield a matrix W with size m× d.
3. The first q column vectors of W are used and the rest are discarded, yielding a matrix

Y with size m× q.
4. Finally, the position of the feature with the largest value in each row of Y is recorded

as the index value. When all rows have been processed, the RPMoT hash vector u
with size m is obtained. Note that u is an integer-value vector ranging from 1 to q.

In this paper, RPMoT is redesigned as a component of CSMoFN, which is learnable and
data-driven. However, the essence of PRMoT as a CB scheme that satisfies the requirements
of non-invertibility, revocability, and unlinkability remains intact.
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3. Proposed Method
3.1. Overview

The proposed CSMoFN system takes face and periocular biometric information as
its input and is composed of three modules: a feature extraction and fusion module, a
PSMoT module, and an MDC module. As portrayed in Figure 3, the backbone of CSMoFN
is based on a CNN, which performs feature extraction from images of faces and periocular
regions via multiple convolutional blocks. The extracted features are fused at the feature
level. PSMoT then transforms the fused vector to a discrete hash vector, which is further
compressed to yield a terminal hash vector (CB template) from the MDC module. A user-
specific token or password is required to generate a random seed for permutation and
binary random projection in the PSMoT and MDC modules, respectively.

In essence, the proposed system is a two-factor cancelable multimodal biometric
system for which both biometric inputs and user-specific token/passwords are required.
The entire network is trained end-to-end following an open-set (database and identity
independence) evaluation protocol [29]. This means that the model is trained on datasets
that are independent of the enrolled subjects, which is preferable for biometric systems as
the model does not need to be retrained when a new user is enrolled or an old CB template
is reissued. In the latter case, the user only needs to change the token or password.
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3.2. Feature Extraction and Fusion Module

In Figure 4, we adopt ResNet-50 as the backbone for the proposed method, which
consists of 49 convolution layers and a linear activated fully connected layer with p neurons,
thus producing a p-dimensional feature vector for each face and periocular image. The
backbone is pre-trained using the MS-Celeb-1M dataset [30]. Two feature vectors from the
face z f ace and periocular region zperiocular are fused at the feature level by concatenation,
and hence the number of dimensions of the fused vector z = [z f ace zperiocular] is 2p. Fusion
with concatenation can largely preserve the useful information from both biometrics despite
the increase in feature size compared to other strategies such as the feature sum or average.
In this work, we set p = 512.
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3.3. Permutation SoftmaxOut Transform (PSMoT) Module

The PSMoT module is located immediately after the FC (Fully Connected) layer of
the feature extraction and fusion module. As depicted in Figure 5, it is composed of two
ReLU activated hidden layers, the first of which (h1) consists of l1 neurons, and the second
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(h2) consists of l2 neurons for nonlinear transformation purposes. We set l1 = l2 = 2014.
The SoftmaxOut layer is a dedicated layer designed for hashing. There are m maxout units
mi composed of q permutable linear activated neurons. A permutation has user-specific
and/or application-specific dependence. The maxout unit is a function that returns the
index of the maximal entry of the q neurons. The hashing layer produces m discrete hash
codes vi forming a hash vector v ∈ {1, . . . , q}m.
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Recall that the RPMoT (Section 2) produces the index value of the maximum entry of
a q-dimensional permuted vector, as described in Step 4. This is equivalent to taking the
index value vi from a permutable maxout unit, as follows [31]:

vi = argmax
q

πi(mi) ∈ {1, . . . , q}, i = 1, . . . , m (1)

However, Equation (1) is non-differentiable and hence non-trainable with backpropa-
gation. In view of this, we approximate Equation (1) with the following function:

vi =
q

∑
j=1

jsµ(πi(mi)) ∈ {1, . . . , q} (2)

where sµ() is the Softmax function parameterized with µ > 1:

sµ(v) =
eµv

∑
q
i=1 eµvi

(3)

Unlike the conventional Softmax function, sµ(v) is parameterized by a scalar factor
µ > 1 that forces the output of the network towards zero or one, thereby allowing the
PSMoT to learn a discrete hash code. In our experiments, we use µ = 9.

Unlike RPMoT, which is data-agnostic, PSMoT is data-driven. In addition, RPMoT
transforms a biometric feature vector that is separately processed by a feature extractor,
whereas the PSMoT module is connected to the CNN backbone and both are trained in an
end-to-end manner. The inclusion of two hidden layers is beneficial in terms of improving
the feature discrimination, which can be attributed to the nonlinear transformation of the
fused features.
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3.4. Multiplication-Diagonal Compression (MDC) Module

MDC is a learning-free module located immediately after the PSMoT. As shown in
Figure 6, the PSMoT hash vector with size m is first reshaped into a matrix V′ with size k× n,
where k = m/n. Then, based on a user-specific seed, a binary random matrix R ∈ {0, 1}n×k

is generated and multiplied with V′, yielding a matrix Q ∈ {0, 1}k×k. Finally, the diagonal
elements of Q are extracted and a terminal hash vector (CB template) s ∈ {1, . . . , q}k

is obtained.
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The MDC module is devised to further enhance the non-invertibility, revocability,
and unlinkability of the CSMoFN. Another important goal for the MDC module is to
compress the PSMoT hash vector from size m to k (where k � m) without sacrificing
accuracy. Offering computational advantages, the multiplication of the user-specific binary
random projection and the hash matrix is a special kind of random projection [32] that
can approximately preserve the pairwise distances of the hash vectors with respect to the
distance of their original counterpart [33].

Finally, the extraction of the diagonal elements from Q can be seen as yet another
many-to-one mapping that enhances the non-invertibility property of the proposed scheme.

3.5. Loss Function

• ArcFace Loss

The ArcFace loss [34] is used in the feature extraction and fusion module as a means of
enhancing the terminal hash code discrimination. It is a modified Softmax classification loss
in which the prototype weight vector of the jth identity wj is L2-normalized. Specifically,
the target logit (activation of the classification layer before applying the Softmax function)
is redefined as wT

j zi = ||wj||||zi|| cos θj, where zi are the L2-normalized fused features

(Section 3.2) of the ith sample, belonging to the jth identity. The normalization of the fused
features and weights means that the predictions rely only on the angle between zi and wj,
denoted as θj. The prediction of the yith identity then only depends on θyi . The ArcFace
loss is defined as:

LArcFace = −
1
B

B

∑
i=1

log
eγ(cos (θyi+β))

eγ(cos (θyi+β)) + ∑N
j=1,j 6=yi

eγ cos θj
(4)

where B is the batch size, β is an angular margin introduced to force the classification
boundary closer to that prototype weight wj, and γ is a feature rescaling factor. In this
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manner, the learned fused features are distributed on a hypersphere with a radius of γ. In
this paper, we set β = 0.35 and γ = 25.

• Pairwise Angular Loss

The pairwise angular (PA) loss function is introduced to optimize the PSMoT module.
Face–periocular pairs are associated with similarity labels cij, where cij= 1 implies that two
face–periocular pairs are from the same identity (positive pair) and cij= 0 indicates that they
are from different identities (negative pair). The aim of the loss function is to ensure that
the similarity between a pair of hash vectors si and sj in the MDC module is high if they
are positive pairs, and to make the dissimilarity greater than a given margin for negative
pairs. Our PA loss is defined as follows:

LPA = −log
[
cij

eδ cos(φ+α)

eδ cos(φ+α)+eδ sinφ

]
−log

[(
1− cij

) eδ sin(φ+α)

eδ sin(φ+α)+eδ cosφ

] (5)

where δ is a scaling factor, α is the angular margin, and φ is the cosine distance between
ŝi and ŝj (i.e., φ = cos−1

(
ŝT

i ŝj

)
, given that ŝ is the L2-normalized hash code to be rescaled

based on δ).
Similarly, to the ArcFace loss, normalization and rescaling on ŝi and ŝj means that the

similarity measure relies only on the angle between the two hash codes, and thus forces the
hash codes to be set down on a hypersphere with radius δ. An additive angular margin
penalty α between ŝi and ŝj is introduced to enhance the intra-class compactness and the
inter-class separation simultaneously. Here, we set δ = 2.5 and α = 0.5.

• Total Loss

In a nutshell, the total loss function Ltotal used to optimize the CSMoFN is given as:

minLtotal = LArcFace + LPA + αL2 (6)

where L2 is a weight decay regularizer and α is a coefficient that is beneficial to reduce
overfitting. In this paper, we set α = 0.5.

4. Experiments
4.1. Datasets

Our experiments were performed on six face–periocular datasets. Although these
datasets originally contained only face images, periocular images were obtained by crop-
ping the eye region from the face images. The six datasets considered are AR [35], Eth-
nic [36], Facescrub [37], IMDB Wiki [38], Pubfig [39], and YTF [40].

• AR was generated by the Computer Vision Center (CVC) at Universitat Autonoma de
Barcelona and consists of over 4000 frontal view color images of 126 subjects. It was
constructed under strictly controlled conditions, and each image shows a different
facial expression, with different illumination conditions and occlusions.

• Ethnic is a large collection dataset composed of subjects of different ethnicities. All
periocular images were obtained under various uncontrolled conditions as found in
a wild environment (i.e., with variations in camera distance, pose, and location). It
consists of 85,394 images of 1034 subjects.

• Facescrub is a large face dataset composed of 530 celebrity face images. It consists of
about 200 images per person, with a total of 106,863 images. Images were retrieved
from the Internet and shot in a real-world environment, i.e., under uncontrolled
conditions.

• IMDB Wiki is a large dataset of celebrities, including their birthdays, names, genders,
and related images. A dataset was constructed by obtaining meta-information from
Wikipedia as well as the IMDB website. It consists of a total of 523,051 face images
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of 20,284 celebrities, of which 460,723 images were drawn from IMDB and 62,328
from Wikipedia.

• Pubfig (Public Figures Face) consists of 58,797 images of 200 people obtained from
the Internet. Images were taken in completely uncontrolled situations and with non-
cooperative subjects. It therefore has large variations in the characteristics of the
environment, such as pose, lighting, expression, and camera.

• YTF (YouTube Face) dataset consists of 1595 subjects and 3425 videos. All videos were
downloaded from YouTube, with an average of 2.15 videos per subject, and each video
ranged from 48 to 6070 frames.

We followed the open-set evaluation protocol [29], in which the training and testing
datasets do not overlap. The training set was constructed from the Ethnic and IMDB
Wiki subsets, and the subjects were independent of the testing sets. Six datasets were
used for testing. Table 1 gives a summary of the composition of each of the training and
testing datasets.

Table 1. Description of training and testing datasets.

Training
Set

Testing Set

AR Ethnic Facescrub IMDB
Wiki Pubfig YTF

No. of subjects 1054 126 325 530 2129 200 1595
No. of images 166,737 700 1645 31,066 40,241 9220 150,259

4.2. Experimental Setup

Evaluations were carried out under authentication (verification). The equal error rate
(EER) and the receiver operating characteristic (ROC) curve were used as authentication
metrics for the proposed method. The specifications of the computer used for the experi-
ment were an Intel(R) Core (TM) i7-6700 K CPU @ 4.00 GHz, 32 GB of RAM, and NVIDIA
GeForce GTX 1080 Ti GPU, with the model implemented using the Pytorch library.

For network training, the batch size B was fixed to 256, the epoch was 90, and the
learning rate was 0.0001. Matching of the hash vectors was performed using the Hamming
distance. All experiments were conducted using the same user-specific seeds and a scenario
called the stolen-token scenario [27], to enable a fair comparison.

4.3. Hyperparameter Analysis

In this section, we explore the impact of the two essential hyperparameters, q and m,
used in CSMoFN, where q determines the range of elements of the PSMoT hash vector and
m is the hash vector size. We set m = 256, 512, 1024, 2048, and 4096, and q = 8, 16, 32,
and 64.

Table 2 shows the performance on the six datasets at various settings of m and a fixed
value of q = 32. For all datasets, it can be seen that the smaller the value of m, the lower the
accuracy performance, which implies a loss of information. As m increases, the degree of
information loss decreases, which leads to a lower EER.

For Table 3, we set m = 4096 and checked the performance for different values of q. We
can observe that although the parameter q does not have a significant effect on the overall
accuracy performance, medium (i.e., q = 32) and small values (such as q = 8) give a slightly
higher EER. However, it is better to set q to a larger value to enhance the security, as a larger
q increases the complexity of a brute-force guessing attack on a hash vector.

Figure 7 shows the EER (%) performance for m and q, while Figure 8 shows the ROC
curve and area under the curve (AUC) for six datasets with m = 4096 and q = 32.
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Table 2. Accuracy of the model for various values of m and q = 32.

Equal Error Rate (EER) (%)

q = 32
m

256 512 1024 2048 4096

AR 11.99 8.36 7.47 6.74 5.64
Ethnic 14.66 11.51 9.49 8.58 7.40

Facescrub 6.81 4.55 3.20 2.42 2.12
IMDB Wiki 14.84 10.52 8.03 6.55 5.97

Pubfig 12.43 8.81 6.69 5.44 4.56
YTF 22.55 19.05 16.61 15.16 14.33

Average 13.88 10.47 8.58 7.48 6.67

Table 3. Accuracy of the model for various values of q and m = 4096.

Equal Error Rate (EER) (%)

m = 4096
q

8 16 32 64

AR 6.99 5.76 5.64 5.63
Ethnic 7.29 7.21 7.40 8.05

Facescrub 2.09 2.26 2.12 2.02
IMDB Wiki 6.17 6.01 5.97 5.91

Pubfig 4.94 4.31 4.56 4.62
YTF 14.44 14.84 14.33 14.05

Average 6.99 6.73 6.67 6.71
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As discussed in Section 3.4, the MDC module reshapes the PSMoT hash vector with
size m to a matrix V′ with size k × n, and hence m = k × n. Note that the size of the
final hash vector (CB template) is k, with the value of k dependent on m and n. For this
experiment, we examine two combinations of k and n, i.e., (k, n) = (128, 16) and (256, 8)
with a fixed value of m = 2048. The EER is shown in Table 4. We observe that (256, 8)
outperforms (128, 16), which implies that k = 256 is a better choice than k = 128. It is worth
noting that the EERs for the PSMoT hash vector (without reshaping) and (256 × 8) are



Appl. Sci. 2022, 12, 2023 12 of 20

identical, although the size of the final hash vector in the latter case is only 256. This
demonstrates the performance of the MDC module in terms of compression.
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Table 4. Performance comparison for varying values of (k, n) with m = 2048 and q = 32.

Equal Error Rate (EER) (%)

q = 32
m = 2048

Without Reshaping (128, 16) (256, 8)

AR 6.74 7.12 6.74
Ethnic 8.58 8.88 8.58

Facescrub 2.42 3.11 2.42
IMDB Wiki 6.55 7.83 6.55

Pubfig 5.44 6.19 5.44
YTF 15.16 16.33 15.16

Average 7.48 8.24 7.48

4.4. Performance Comparison with Unimodal CB Systems

In this section, we demonstrate the advantage of the proposed multimodal CB sys-
tem through a comparison with unimodal CB systems (i.e., where either the face or the
periocular region alone is adopted).

Table 5 shows the average EER performance for two unimodal CB systems and a
multimodal CB biometric system for six datasets. Figure 9 shows the change in performance
for varying m and with q fixed at 32. In general, the performance of each system improves
with large m and a moderate value of q. This is consistent with the finding in Section 4.3.
However, we also note that the best EER can be achieved by the face–periocular CB system
over its unimodal counterparts, with an EER reduction of around 50% for the unimodal
systems with m = 4096 and q = 32. This suggests that fusion is essential for performance
gain, despite the simplicity.
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Table 5. Average performance of unimodal and multimodal CB systems on six datasets for varying
values of m and q.

Equal Error Rate (EER) (%)

Face

q
m(k)

256(32) 512(64) 1024(128) 2048(256) 4096(512)

8 15.68 14.82 13.83 12.87 12.56
16 18.06 15.27 14.30 13.66 13.01
32 17.65 15.85 14.14 13.62 13.16
64 17.83 15.87 14.90 13.70 13.31

Periocular

q
m(k)

256(32) 512(64) 1024(128) 2048(256) 4096(512)

8 16.35 15.43 15.61 15.00 15.20
16 18.35 17.96 16.04 15.57 15.02
32 19.44 17.75 16.74 15.94 15.33
64 19.70 18.34 17.27 15.91 15.29

Fused

q
m(k)

256(32) 512(64) 1024(128) 2048(256) 4096(512)

8 13.63 10.73 8.53 7.35 6.99
16 14.33 10.69 8.53 7.43 6.73
32 13.88 10.47 8.58 7.48 6.67
64 13.64 10.53 8.44 7.49 6.71
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4.5. Ablation Studies

This section presents an ablation study on the proposed CSMoFN. We first explore the
accuracy performance of the sole feature extraction module with cosine distance, which is
equivalent to an unprotected biometric system, and serves as a baseline. We then examine
the feature extraction module + PSMoT, and lastly the entire CSMoFN. The latter two are
CB systems.

From Table 6, we can observe that the baselines for the face and periocular region
alone perform better than their CB counterparts (i.e., PSMoT and CSMoFN). This is as
expected, and can be attributed to the performance–security tradeoff made in CB systems,
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where the performance may be degraded after the CB transformation. However, the use of
face–periocular fusion largely restores the verification performance for CSMoFN.

Table 6. Ablation study for each module (baseline, PSMoT, and CSMoFN).

Equal Error Rate (EER) (%)

Baseline (Feature Extraction without Hashing)

AR Ethnic Facescrub IMDB Wiki Pubfig YTF Average

Face 4.23 4.06 1.58 4.79 3.50 11.84 5.00
Periocular 6.77 5.61 3.13 6.53 5.48 15.16 7.11

Fused 4.67 5.29 1.75 5.12 4.07 13.56 5.74

PSMoT (m = 4096, q = 32 )

AR Ethnic Facescrub IMDB Wiki Pubfig YTF Average

Face 10.71 15.98 5.89 16.92 14.93 22.66 14.51
Periocular 15.36 16.85 10.40 18.69 16.31 22.73 16.72

Fused 5.90 7.48 2.16 5.97 4.68 14.55 6.79

CSMoFN (PSMoT + MDC)

AR Ethnic Facescrub IMDB Wiki Pubfig YTF Average

Face 9.62 15.34 5.07 15.64 12.68 20.61 13.16
Periocular 11.75 16.56 9.43 17.40 15.43 21.38 15.32

Fused 5.64 7.40 2.12 5.97 4.56 14.33 6.67

4.6. Remarks on Deep-Learning-Based Multimodal Cancelable Biometrics Schemes

In this section, we present a summary with remarks in Table 7 rather than a comparison
between different approaches. This is because a fair comparison between different template
protection schemes is very difficult, or even impossible, due to several factors such as the
choice of biometric modality, fusion method, datasets, and evaluation metrics.

Table 7. Summary of works related to cancelable multimodal biometric systems.

Ref. Modalities Fusion Remarks

Our
proposed
method

Face,
periocular

region
Feature-level

Methods: End-to-end deep-learning-based cancelable biometrics scheme with
three modules (feature extraction and fusion module, permutation SoftmaxOut
transformation module, multiplication-diagonal compression module).
Revocability: 4

Unlinkability: 4

Non-invertibility: 4

Accuracy performance: EER = 2.12% (Facescrub dataset), EER = 6.67%
(average over six datasets)

Abdellatef
et al. [23]

Face, eye
region,
nose

region,
mouthregion

Feature-Level

Methods: Feature extraction is performed with multiple CNNs. After fusion of
multiple deep features, BTP transformation is performed with
bioconvolving encryption.
Revocability: 8

Unlinkability: 8

Non-invertibility: 8

Accuracy performance: Accuracy = 93.4% (PaSC dataset)

Talreja et al.
[24] Face, iris Feature-level

Methods: Deep feature extraction and binarization using CNN from
multimodal modalities. A random component is selected from the generated
features and used as a transformation key. The transformed templates are
converted to a secure sketch via an FEC decoder and cryptographic hashing.
Revocability:8
Unlinkability: 8

Non-invertibility: 8

Accuracy performance: Accuracy = 99.16% (stolen key scenario)
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Table 7. Cont.

Ref. Modalities Fusion Remarks

Sudhakar
et al. [25]

Finger vein,
right and left

irises
Feature-level

Methods: Feature extraction is performed through a CNN and SVM is used for
verification. The template is protected with a random
projection-based approach.
Revocability: 4

Unlinkability:4
Non-invertibility: 4

Accuracy performance: EER = 0.05% (FV-USM dataset)

El-Rahiem
et al. [26]

Fingerprint,
finger vein, Iris Feature-level

Methods: After feature extraction with a CNN, fusion is performed through
the fusion layer. A cancelable template is generated through the reconstruction
process by applying the DeepDream algorithm consisting of many Convnets.
Revocability:8
Unlinkability: 8

Non-invertibility:8
Accuracy performance: EER = 0.0032%

Analysis keys: 4 = Explicit, 8 = None.

5. Unlinkability and Revocability Analysis
5.1. Unlinkability Analysis

In our unlinkability analysis, we follow the protocol and method proposed in [41]. The
“mated score” and “non-mated score” first have to be calculated and are defined as follows.

Mated sample scores: This is a score calculated through cross-matching of the same
subject. In our case, we use the face–periocular pair X of the same user and different
permutations and random projection seeds r.

Let the mated CB template pair be Tm1 = CSMoFN(X1, r1) and Tm2 = CSMoFN(X1, r2).
The mated-samples score can then be obtained via s = dH(Tm1, Tm2), where dH is the Ham-
ming distance.

The mated sample distribution is denoted as p(s|Hm) , where Hm belongs to the
relationship in which both CB templates are mated.

Non-mated sample scores: The non-mated score is calculated in a similar way but
for different subjects. Using a similar notation to that given above, let the non-mated
CB template pair be Tnm1 = CSMoFN(X1, r1), Tnm2 = CSMoFN(X2, r2). The non-mated
scores are then estimated as s = dH(Tnm1, Tnm2), and the distribution of the non-mated
sample scores is p(s|Hnm) , where Hnm is when both templates are non-mated.

In addition, we use two measures of unlinkability: a local and a global measure.
Local measure D↔(s): This measure represents the likelihood ratio of two score

variances, D↔(s) = p(Hm|s)− p(Hnm|s) ∈ [0, 1]
Global measure Dsys↔

: Unlike the local measure, this metric evaluates the unlinkability
of the overall system independently of the score domain. This measure also has a range
of [0, 1].

A CB scheme is judged to ideally satisfy the unlinkability criterion if p(Hm|s) =
p(Hnm|s). If they are completely separated, the CB templates are fully linkable; in other
words, if both the local and global measures are close to zero, the CB scheme is deemed
nonlinkable.

According to the proposed benchmark protocol in [41], we carried out experiments by
generating three CSMoFN hashed vectors with m = 4096 and q = 32, by using the Pubfig,
Facescrub, and YTF datasets with different user-specific seeds. The three distributions, the
mated samples score, non-mated samples score, and local measure values are all plotted
together in Figure 10. It can be seen that the two score distributions, mated and non-mated,
explicitly overlap. Furthermore, the meaning of this demonstrates that CB templates are
unlinkable. Furthermore, the global measure Dsys↔

of three datasets are 0.056, 0.039, and
0.104, respectively. For each specific linkage score s, D↔(s) = 0 denotes fully unlinkability,
while D↔(s) = 1 is a fully linkable of two transformed templates. With the significant
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overlap, the overall linkability of the proposed method is close to zero. This indicates that
the CSMoFN hashed vectors are unlinkable.
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5.2. Revocability Analysis

To analyze the revocability of the proposed scheme, we generated three score distri-
butions: the mated-imposter score, the genuine score, and the imposter score [42]. The
genuine and imposter score distributions were calculated by matching CSMoFN hashed
vectors generated from the same and different subjects, respectively. The mated-imposter
score is identical to the mated-samples score described in Section 5.1, and is calculated
from the matching of two CB templates generated by the same subject with different
user-specific seeds. In other words, it is assumed that the user revokes the old CSMoFN
hashed vectors and creates a new instance, meaning that the mated-imposter score is the
matching score of the old and new CSMoFN hashed vectors. The revocability criterion is
deemed to be satisfied if the mated-samples score distribution overlaps with the imposter
score distribution.

It can be observed from Figure 11 that the distributions of the mated-imposter and
imposter scores substantially overlap for the three datasets, which indicates that the revoca-
bility criterion is satisfied.
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6. Non-Invertibility Analysis

For our non-invertibility analysis, we consider two types of attack: brute-force and
false acceptance (FA) attacks.

6.1. Brute-Force Attack

The goal of a brute-force attack is to estimate the CSMoFN hashed vectors by brute
force, with it assumed that the attacker knows the structure of the CSMoFN and the
corresponding hyperparameters [42].

The CSMoFN hashed vector s is a discrete vector with size k, where every element
is within the range [1, q]. For a configuration such as q = 32 and k = 512 (m = 4096),
the guessing complexity for each element is q = 32 = 25. Since there are k entries, the
minimum guessing complexity is 2(5×512) = 22560, which is prohibitively large in practice
and prevents the attacker from going through all possible combinations. Furthermore,
since CSMoFN is revocable, the hash vector can be replaced with a new one if it is found to
be compromised.

6.2. False Acceptance Attack

An FA attack, also called a dictionary attack, is an attempt to gain illegal access to
a biometric system [43]. This attack is realistic for any biometric system that relies on
a decision threshold value. In other words, if the matching score of the authentication
instance sa and the transformed template s is less than a pre-defined threshold value τ,
the right to access the biometric system is obtained. In the stolen token scenario, sa is
a CSMoFN hashed vector generated with a biometric vector Xa and stolen user-specific
keys. The decision rule for authentication is then DistH(sa, s) > τ, where DistH() is the
Hamming distance and τ is the threshold value when the False Acceptance Rate (FAR) is
equal to the False Rejection Rate (FRR).
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To mitigate the FA attack, the threshold value should be set high, to achieve FAR = 0%.
However, this implies a GAR (Genuine Acceptance Rate) reduction that suggests a degra-
dation in accuracy. To balance the performance with security, a suitable threshold value τ
should be carefully calibrated.

In this paper, the distance between the fake template s∗ and s is calculated via
DistH(s, s∗) = UBimp, where UBimp is the upper bound on the imposter scores for the
considered dataset, and represents the worst scenario. To succeed in this approach, an
attacker can attempt to find s∗ to satisfy DistH(sa, s∗) = τ. That is, the goal is to generate a
fake template such that the distance score with sa falls into the interval [τ, UBimp]. Hence,

the complexity of an FA attack can be estimated as qm(τ−UBimp).
To analyze and respond to FA attacks in our context, it is necessary to determine the

threshold value according to each GAR. Table 8 shows the complexity of an FA attack
calculated for the six datasets used with the proposed method, with m = 4096 and q = 64.
The complexity of the FA attack is evaluated based on GAR = 85%, 90%, and 95%. The
UBimp for each dataset can be obtained from the largest value of the imposter scores. Note
that if

(
τ −UBimp

)
is negative, the complexity of the attack cannot be estimated.

In summary, the complexity of an FA attack can be increased in two ways: by increasing
the value of m or reducing the GAR. However, the latter also implies a compromise in
the accuracy performance. For GAR = 90%, our proposed method is reasonably robust in
resisting FA attacks. In addition, an FA attack can be prevented by restricting the number
of attempts at the authentication stage.

Table 8. Complexity of the false acceptance attack on the proposed system.

Datasets q m UBimp τ qm (τ−UBimp) Total Attack Complexity GAR

AR

26 512

0.783 0.821

26×512 = 23072

0.038 ≈2117

85%

Ethnic 0.771 0.805 0.034 ≈2104

Facescrub 0.789 0.824 0.035 ≈2108

IMDB Wiki 0.792 0.817 0.025 ≈277

Pubfig 0.784 0.811 0.027 ≈283

YTF 0.785 0.818 0.033 ≈2101

AR

26 512

0.783 0.807

26×512 = 23072

0.024 ≈274

90%

Ethnic 0.771 0.790 0.019 ≈258

Facescrub 0.789 0.811 0.022 ≈268

IMDB Wiki 0.792 0.805 0.013 ≈240

Pubfig 0.784 0.798 0.014 ≈243

YTF 0.785 0.802 0.017 ≈252

AR

26 512

0.783 0.794

26×512 = 23072

0.011 ≈234

95%

Ethnic 0.771 0.785 0.014 ≈243

Facescrub 0.789 0.803 0.014 ≈248

IMDB Wiki 0.792 0.787 −0.005 N/A
Pubfig 0.784 0.786 0.002 ≈26

YTF 0.785 0.791 0.006 ≈218

7. Conclusions

In this paper, we propose a deep-learning-based multimodal cancelable biometrics
scheme which we call CSMoFN. Our scheme fuses two biometric traits, namely the face and
the periocular region, and is composed of three modules: a feature extraction and fusion
module, a PSMoT module, and an MDC module. CSMoFN is trained by minimizing the
ArcFace loss and the pairwise angular loss. Experiments were conducted on six datasets,
with the verification performance approximately preserved with respect to its original
counterpart. In addition, we have analyzed four conditions for our cancelable biometrics
scheme and have shown that the proposed method satisfies them. In future research, we
will consider more than two biometric modalities.
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