
����������
�������

Citation: Cao, Z.; Li, Y.; Shin, B.-S.

Content-Adaptive and Attention-

Based Network for Hand Gesture

Recognition. Appl. Sci. 2022, 12, 2041.

https://doi.org/10.3390/app12042041

Academic Editors: Moongu Jeon and

Jeonghwan Gwak

Received: 10 January 2022

Accepted: 14 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Content-Adaptive and Attention-Based Network for Hand
Gesture Recognition
Zongjing Cao , Yan Li and Byeong-Seok Shin *

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea;
zjcao@inha.edu (Z.C.); leeyeon@inha.ac.kr (Y.L.)
* Correspondence: bsshin@inha.ac.kr; Tel.: +82-32-860-7452

Abstract: For hand gesture recognition, recurrent neural networks and 3D convolutional neural
networks are the most commonly used methods for learning the spatial–temporal features of gestures.
The calculation of the hidden state of the recurrent neural network at a specific time is determined
by both input at the current time and the output of the hidden state at the previous time, therefore
limiting its parallel computation. The large number of weight parameters that need to be optimized
leads to high computational costs associated with 3D convolution-based methods. We introduced
a transformer-based network for hand gesture recognition, which is a completely self-attentional
architecture without any convolution or recurrent layers. The framework classifies hand gestures
by focusing on the sequence information of the whole gesture video. In addition, we introduced an
adaptive sampling strategy based on the video content to reduce the input of gesture-free frames
to the model, thus reducing computational consumption. The proposed network achieved 83.2%
and 93.8% recognition accuracy on two publicly available benchmark datasets, NVGesture and
EgoGesture datasets, respectively. The results of extensive comparison experiments show that our
proposed approach outperforms the existing state-of-the-art gesture recognition systems.

Keywords: content-adaptive; attention mechanism; gesture recognition; hand detection

1. Introduction

Hand gestures are a form of non-vocal communication that communicate particular
messages via visible hand movements. Compared to other physical input devices, hand
gestures provide a more natural and convenient way for humans to interact with devices.
Computer vision-based gesture recognition is a form of technology that uses a computing
module to read and interpret hand movements as commands [1–6]. Computer vision-
based gesture recognition technology can be used in several industries, such as interactive
entertainment, smart home, VR/AR, and sign language machine translation [7–13]. Due
to its wide application in several industries, hand gesture recognition based on computer
vision technology has received great attention from researchers in the computer vision
community in recent years.

Gestures in a video consist of spatial information in each frame and temporal informa-
tion in neighboring frames. Capturing motion information between neighboring frames
from sequence data is a key challenge for gesture recognition tasks. For example, the opera-
tion of zooming in and out of the screen with fingers has similar features in spatial domains,
but the temporal information is reversed. Simonyan et al. proposed a method using a
two-stream network [14], which combines a color image frame and multiple stacked optical
flow frames to predict action classes. As an extension to the two-stream method, Wang
et al. presented a temporal segment network (TSN) [15] based on long-range temporal
structure modeling. The main idea of TSN is that we can divide the long video into several
equal segments, process each segment individually, and then obtain a segment consensus
from each segment and perform the final prediction. Despite the performance gains ob-
tained by TSN, this still relies on optical flow features that need to be precomputed. Some

Appl. Sci. 2022, 12, 2041. https://doi.org/10.3390/app12042041 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12042041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9715-0619
https://orcid.org/0000-0003-3950-4575
https://orcid.org/0000-0001-7742-4846
https://doi.org/10.3390/app12042041
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12042041?type=check_update&version=2

Appl. Sci. 2022, 12, 2041 2 of 15

work [16–18] has attempted to use a 3D convolution approach to learn spatial–temporal
features in place of optical flow. In these methods, continuous frames from a video clip are
stacked and then fed into a network for spatial–temporal modeling. Three-dimensional
convolution neural networks (CNNs) have sufficient capacity to encode spatial–temporal
information in densely sampled frames, but the huge number of parameters to be optimized
leads to expensive computational consumption. Recurrent neural networks (RNNs), which
consist of recurrent units, are another kind of neural network used to process sequential
data [19,20]. For any moment in the sequence, there is a recurrent unit corresponding to
it, which will fuse the input of the current moment and output of the recurrent unit of the
previous moment to calculate the output of the current moment. Each recurrent unit of an
RNN has forward dependency, i.e., the output of the network at the current moment is
jointly determined by the previous sequences. This property allows the past information of
the sequence to be continuously transmitted, but also causes a decrease in the efficiency
of model operation. Assuming that the length of the input sequence is n, the minimum
sequential operation required by the recurrent neural network layer is O(n). Since there
are O(n) sequential operations, RNNs cannot be operated in parallel, and this sequential
modeling approach leads to information loss during long-distance passing.

Since 2017, a new model architecture called transformer [21] has received significant
attention due to its performance beyond RNNs in many natural language processing (NLP)
tasks. Transformers use a mechanism called self-attention to build sequence models that
do not rely on any convolution or recurrent layers. Table 1 compares the minimum number
of sequential operations, maximum path length, and complexity for CNNs, RNNs, and
transformer layers [21]. As shown in Table 1, self-attention has both an advantage of shortest
maximum path length and minimum sequential operation. Therefore, it is attractive to
solve machine learning tasks using deep networks based on a self-attention mechanism.
Recently, some research [22,23] has attempted to use transformers in the field of computer
vision, which traditionally relies on CNNs. Dosovitskiy et al. proposed a vision transformer
(ViT) network [24] for image recognition tasks. This is a pure transformer-based network
that outperformed the convolutional-based approach. Inspired by ViT and the fact that
self-attention enjoys parallel processing, we introduced a transformer-based network for a
hand gesture recognition task. This is an entirely self-attentional architecture that predicts
gestures by focusing on the whole video sequence information. More specifically, we use
a transformer encoder-derived architecture for hand gesture recognition tasks, resulting
in a high-accuracy and low-latency model for real-time applications. The architecture of
our approach consists of three submodules: a content-based adaptive sampler, a temporal
attention-based encoder, and a classification multi-layer perceptron (MLP) header. After
obtaining the sequence of tokens mapped from the video data, each token is given a
position embedding information gained through learning or fixed absolute encoding.
In the same manner as with ViT, we prefix the sequence of the features with a special
classification token (CLS). We use the final state of the features related to this CLS token
as the final representation of the input video after propagating the sequence through the
transformer encoder. Finally, an MLP head processes the CLS token to obtain the final
class prediction. Furthermore, we present a dynamic sampling strategy based on content
adaptation to efficiently sample the video sequence. We use a sliding window to perform
gesture detection on the input video content. When the sampler detects a gesture, it starts
sampling evenly according to the time strategy until it reaches the set maximum number of
frames. Another role of this sampler is to act as a switch for the encoder. When a gesture
is detected in the video sequence, the encoder is activated and starts receiving the input
from the sampler. Since most of the time, no gesture appears in the video sequence, there
is no need for the feature extractor and encoder to process these frames, which would
significantly increase the consumption of the system.

Appl. Sci. 2022, 12, 2041 3 of 15

Table 1. Comparison of the time complexity of each layer of RNNs, CNNs, and transformer. n
indicates the length of the sequence, d indicates the size of the hidden layer, and k indicates the kernel
size of the convolution.

Model Layer Type
Minimum
Sequential
Operations

Maximum Path
Length

Complexity
Per Layer

CNNs Convolutional O(1) O(logk(n)) O
(
k · n · d2)

RNNs Recurrent O(n) O(n) O
(
n · d2)

Transformer Self-Attention O(1) O(1) O
(
n2 · d

)
The following are the main contributions of our work:

(1) We suggest a transformer-based network for hand gesture recognition tasks, which is
a fully self-attentional architecture. The framework classifies gestures by focusing on
the entire video sequence without any convolution or recurrent layers. It effectively
manages the high number of spatial–temporal tokens that may appear in the video.

(2) We propose an adaptive sampling strategy based on video content to reduce the
sampling of gesture-free frames and improve the performance of the model. We use a
sliding window to continuously detect the input frame sequence. When a gesture is
detected, continuous sampling from the current frame is conducted, with no additional
gesture detection.

The rest of this paper will consist of the following. The related studies and background
techniques in gesture recognition are discussed in Section 2. Section 3 describes our
proposed approach in detail. The experiments and experimental results are shown in
Section 4. Section 5 contains the conclusion and suggestions for further studies.

2. Related Work
2.1. Convolution-Based Methods

Action is composed of two components: appearance information carried by a single
frame and motion information between neighboring frames. Capturing motion informa-
tion between neighboring frames from sequence data is a key step in gesture recognition
systems. In reference [14], Simonyan et al. proposed a two-stream approach that combined
predictions from a single-color image frame and a stack of externally computed multiple op-
tical flow frames to predict action classes. Two-stream networks are only modeled in a short
time and cannot effectively model the temporal structure over a long range. To address
this problem, Wang et al. presented a TSN [15] that combined a sparse temporal sampling
strategy with video-level supervision to efficiently learn the long-range temporal structure
of the video. The TSN’s main idea is that the entire video can be evenly divided into several
segments, each of which is processed separately. The video-level prediction will then be
formed from a consensus among the segments. Subsequently, many studies [16,17,25,26]
have employed this idea and designed different deep models for action recognition. How-
ever, we observed that this algorithm does not work well for scene-independent action
recognition, such as hand gestures. In addition, although optical flow can describe the
motion effectively, computational consumption is expensive.

Additionally, 3D convolution and recurrent convolution are two effective methods
for modeling temporal structure. In [16], Tran et al. proposed an approach for action clas-
sification using 3D CNNs for spatial–temporal feature learning. Compared to 2D CNNs,
3D CNNs are excellent for learning spatial–temporal features. However, the exponential
increase in the number of parameters to be optimized for 3D CNNs-based models leads to
high computational consumption and the need for more data to train the model. RNNs
are neural networks composed of recurrent units [19,20]. The input of the current mo-
ment recurrent unit consists of the output of the previous moment and the input of the
current moment, which can also be understood as the output obtained from the network’s
current moment calculation being jointly determined by the previous sequence. For long

Appl. Sci. 2022, 12, 2041 4 of 15

videos, long distances can cause information to be lost during delivery, and this sequential
modeling approach also limits the parallel computing of the system. To address all these
issues, we proposed a transformer-based network for hand gesture recognition. It is a fully
self-attentional architecture without any convolutional and recurrent convolutional layers.
In contrast to using the segmental consensus-based approach [25,26], our proposed method
classifies actions by focusing on the temporal structure of the entire video sequence.

2.2. Attention-Based Methods

Since 2017, the transformer has received substantial attention due to its performance
beyond RNNs in many NLP tasks. The transformer was first introduced for solving machine
translation tasks [21]. Since then, transformer-based sequence modeling approaches have
gradually become the state-of-the-art solution for other NLP tasks [27,28]. Traditional
self-attention-based models usually rely on RNNs for input representations [29,30]. In
contrast, the transformer model does not have any recurrent or convolutional layers and is
a model entirely based on attention mechanisms [21,31]. The transformer consists of two
submodules: the encoder and the decoder. Both encoder and decoder are stacked with self-
attention-based modules. The embedding representations of the input and target sequences
are fed into the encoder and decoder, respectively, after adding positional encoding. The
encoder of the transformer is composed of N identical layers stacked on top of each other (in
reference [21], N is set to 6). Each layer consists of two sublayers: a self-attention sublayer
and a feed-forward network sublayer. Similar to the design of the ResNet module, both
sublayers are connected using a residual connection layer, followed by layer normalization.
Specifically, when computing the encoder’s self-attention, the queries, keys and values
are taken from the output of the previous encoder layer. Like the encoder, the decoder of
the transformer is stacked with N identical layers, with each sublayer also using residual
connections and layer normalizations. Unlike the encoder, the decoder adds a sublayer
called the encoder–decoder attention layer between the two sublayers of the self-attention
layer and the feed-forward network. The encoder–decoder attention sublayer is still based
on the self-attention mechanism, so it has the same structure as the self-attention sublayer.
As with the input of the encoder self-attention, the queries, keys, and values in the self-
attention decoder are also taken from the output of the previous decoder layer. In the new
encoder–decoder attention sublayer, the input keys and values are taken from the output
of the transformer encoder layer, while the queries are from the output of the previous
decoder layer.

Although the original transformer was proposed for solving sequence-to-sequence
tasks, it is now widely used in other deep learning areas, such as speech processing, rein-
forcement learning, and computer vision [31–34]. Inspired by the advanced performance
achieved by transformers in the field of NLP, Dosovitskiy et al. [24] proposed a vision
transformer network (ViT) for image classification. For an input image, ViT first splits it
into N fixed-size patches and then uses the linear embeddings sequence of these patches as
the input to the transformer encoder. In ViT, image patches are treated in the same manner
as words (tokens) are processed in an NLP application. To our knowledge, ViT was the first
approach to apply transformer to computer vision tasks. After this, transformers started to
be employed in a wide range of other computer vision tasks. For example, DETR [35] for
object detection and VisTR [36] for video instance segmentation have yielded competitive
results using transformer-based approaches. Since the transformer has a component based
on the self-attention mechanism, it enables the network to capture contextual information
from the whole sequence data, which leads to the success of the transformer. However, the
computation of self-attention grows quadratically with the length of the sequence data,
resulting in the standard transformer-based model being unable to effectively process long
sequence data. To address this challenge, Beltagy et al. proposed an improved transformer
architecture, called longformer [37]. The longformer has an improved self-attention mecha-
nism, and the operations of this attention mechanism are scaled linearly with the sequence
length, enabling it to handle longer sequence data. Longformer’s self-attention mechanism

Appl. Sci. 2022, 12, 2041 5 of 15

has a time complexity of O(n). Considering its ability to process long sequences and its
temporal complexity, we use longformer as our self-attention module.

3. Proposed Method

Inspired by the application of the transformer in image classification tasks [24], we
introduced a transformer-based architecture for hand gesture recognition tasks. The pro-
posed network uses only a self-attention mechanism and standard feed-forward neural
networks without any recurrent units or convolutional operations. The architecture of our
proposed network is illustrated in Figure 1. The network is composed of three submodules:
a content-based adaptive sampler, a temporal attention-based encoder, and a classification
MLP head.

Class Token
Embedding

Adaptive Sampler

Embed to Tokens

Time

Video Sequence

Transformer Encoder

MLP Head Class

……

n321 ……0Token + Position
Embedding

Figure 1. The architecture of the gesture recognition network based on content adaptation and attention.

3.1. Content-Adaptive Sampler

Gestures can be roughly categorized into two components: appearances and motion.
Understanding the motion in gesture videos relies heavily on long-range temporal infor-
mation. Learning video representations that capture long-range temporal information
is a pivotal challenge for gesture recognition. To use the dynamic information from the
whole video for video-level prediction, a sparse temporal sampling strategy is currently the
dominant approach. The main idea is to divide a video into k segments evenly and then
randomly select n frames from each segment. We visualized the sampling results of the
sparse temporal sampling strategy, as shown in Figure 2. Figure 2a presents the sampling
results in a NVIDIA dynamic hand gestures (NVGesture) dataset when k = 16 and n = 1.
Figure 2b indicates the results when k = 32 and n = 1. We found that when k is set too low,
the sampling results do not effectively represent the whole video; when k is set too high,
too many frames without gestures are sampled, increasing the input length of the model.

Appl. Sci. 2022, 12, 2041 6 of 15

(a)

(b)

(c)

Figure 2. Comparison of results using different sampling strategies: (a) sparse temporal sampling
strategy (k = 16, n = 1); (b) sparse temporal sampling strategy (k = 32, n = 1); (c) our proposed
content-adaptive sampling strategy (n = 16, step = 3).

To sample the video sequence efficiently, we proposed a dynamic sampling strategy
based on content adaptation. We use a sliding window to perform gesture detection
over the incoming video frames. As shown in Figure 1, frames without gestures will not
be sampled by the sampler, i.e., they cannot pass the sampler (shown as a light-colored
crossed-out arrow). When the sampler detects a gesture, it starts sampling evenly (no
more gesture detection) according to the time strategy until it reaches the established
maximum number of frames. If the frame count of a video is less than the maximum frame
count set by the sampler, we will pad the input sequence with zeros. The pseudo-code of
our proposed content-based adaptive sampling algorithm can be found in Algorithm 1.
Algorithm 1 can be briefly described as follows: first perform continuous gesture detection
on the incoming frames and record the index of the current frames; when a gesture is
detected, then stop gesture detection; the index of the gesture-containing frame and the
time sampling ‘step’ are used to generate the final list of sampled frames. The input of
Algorithm 1 is a gesture video and the output is a list of sampled frames. Figure 2c presents
the sampling results of our adaptive sampler. Another role of the sampler is to act as a
switch for the encoder. When a gesture is detected in the video sequence, the encoder is
activated and starts receiving the input from the sampler.

Being able to detect hand gestures of various sizes is a challenge for hand detectors.
In practice, we have selected the single-shot multibox detector [38] as our hand detector
module because of its accuracy and real-time performance. Before feeding the sampled
frames into the encoder, they need to be mapped into a sequence of tokens. In our work, we
use a pre-trained DenseNet121 [10] as a 2D spatial feature extractor to map the extracted
frames into meaningful features.

Appl. Sci. 2022, 12, 2041 7 of 15

Algorithm 1 Content-adaptive sampler.
Input: gesture video data
Output: frame index list

1: initialization [frame list], counter=0, flag=True
2: while cap is opened & flag do
3: if a gesture is not detected then
4: counter ← counter + 1
5: continue
6: else
7: flag ← False
8: end if
9: end while

10: for each ‘index’ i in range(length n) do
11: [frame list] ← i*step + counter
12: i ← i + 1
13: end for
14: return [frame list]

3.2. Attention-Based Encoder

The architecture of the transformer encoder is shown in Figure 3. As shown in
Figure 3a, the encoder consists of a stack of N identical layers. Following the suggestions
in reference [21], in our work we set N to 6. Each layer consists of two submodules: a
multi-head self-attention module, and a position-wise fully feed-forward neural network.
Each submodule is connected using a residual connection (denoted as “Add” in Figure 3),
followed by layer normalization. The multi-head self-attention module uses a self-attention
mechanism to perform a new representation of the input sequence; the feed-forward
network uses a fully connected feed-forward neural network to further transform the input
vector sequence.

（a） （b） （c）

Add & Layer Norm

Positionwise
Feed-forward Network

Multi-Head Attention

N×

Add & Layer Norm

Embedding Position+

Linear Linear Linear

SoftMax

Scaled Dot-Product
Attention

Q K V

h

MatMul

SoftMax

Mask

Scale

MatMul

Q K VQ

Figure 3. The architecture of transformer encoder: (a) encoder architecture; (b) multi-head attention;
(c) scaled dot-product attention.

Self-Attention. Mapping a query and a group of key-value pairs to an output is the
main role of the attention function. In other words, a given query can interact with the
keys to guide the biased selection of values. If a key is closer to a given query, then more
attention weight is assigned to the value of the key. The self-attention mechanism treats
the representation of each position in the sequence as query and the representation of all
positions as key and value. The self-attention model computes a weighted sum of the values
of each position by calculating the degree of match between the current position and all
positions, which is the attention weight in the attention mechanism. Mathematically, given

Appl. Sci. 2022, 12, 2041 8 of 15

a query q and m key-value pairs (k1, v1), . . . , (km, vm), the attention function f is instantiated
as a weighted sum of the values, which can be defined as following Equation (1) [21]:

f (q, (k1, v1), . . . , (km, vm)) =
m

∑
i=1

α(q, ki)vi (1)

where query q, key k, value v, and output are all vectors. The attention weight of query q
and key ki is obtained by mapping the two vectors into scalars using the attention-scoring
function a and then by SoftMax operation:

α(q, ki) =
exp(a(q, ki))

∑m
j=1 exp

(
a
(
q, k j

)) (2)

where a indicates the attention-scoring function. From Equation (2), it is clear that choosing
different attention-scoring function a leads to different attentional behaviors. Additive
attention and scaled dot-product attention are the two most commonly used attention-
scoring functions. The scaled dot-product attention of queries q and keys k can be expressed
as follows:

a(q, k) = q>k/
√

d (3)

where d denotes the length of the query q and the key k. Since the time complexity of the
self-attention operation of the original transformer model is O(n2) (n is the length of the
input sequence), this limits its ability to process long sequences. To address this limitation,
we use an efficient self-attention variant called longformer [37] as our attention module.
Longformer combines local and global attention, and its temporal complexity is linearly
related to the length of the sequence, which allows long-range dependence problems to be
better solved.

Multi-Head Attention. Another important technique used in the transformer is the
multi-head attention mechanism. To capture the various ranges of dependencies within
a sequence, we can transform queries, keys, and values using h sets of linear projections
learning independently. As shown in Figure 3b, these h groups of transformed queries,
keys, and values are then fed in parallel to the scaled dot-product attention. Finally, the
outputs of h scaled dot-product attention are concatenated together and transformed by
another linear projection that can be learned to produce the final output. Mathematically,
given a query q, a key k, and a value v, each attention head hi can be computed using the
following Equation (4) [21] :

hi = f
(

W(q)
i q, W(k)

i k, W(v)
i v

)
(4)

where W is the weight parameter to be learned, and f is scaled dot-product attention
function.

Positional Embeddings. Unlike RNNs, which process video frames one by one, the
self-attention is computed in parallel. Since videos are ordered sequences of frames,
the transformer model needs to consider order information. To use the sequence order
information, the transformer introduces positional encodings into the representation of
the original input to inject relative or absolute positional information. There are various
ways to calculate positional encodings, which can be obtained by learning or being fixed
directly [39]. In this work, we use fixed positional encoding based on sine and cosine
functions of different frequencies as shown in Equation (5) and (6):

PE(pos, 2i) = sin
(

pos
10, 0002i/d

)
(5)

PE(pos, 2i + 1) = cos
(

pos
10, 0002i/d

)
(6)

Appl. Sci. 2022, 12, 2041 9 of 15

where PE() denotes the function of positional encodings, pos denotes the position, i rep-
resents the dimension in the positional encoding vector, and d is a base parameter of
transformer that denotes the size of the hidden layer at each position. We do this via
positional encoding. We simply embed the positions of the frames present within videos
with an embedding layer. We then add these positional embeddings to the precomputed
CNNs features.

MLP Head. As in BERT [27] and ViT [24], we add a special token CLS in front of each
input sequence. After the input sequence is propagated through the transformer layers, the
output of hidden state associated with this CLS is considered to be the final representation
of the entire input sequence. Finally, this CLS token is fed to a classification MLP head
for processing to obtain the final gesture prediction. The MLP blocks contain two linear
layers with a GELU [40] nonlinearity and dropout [41] between them. To summarize, The
input token representation is first processed by layer normalization, then encoded by the
transformer, and finally the CLS tokens are sent to the MLP head to predict the results.

3.3. Loss Function

For the final layer in MLP used for gesture classification, the SoftMax function is
normally used to convert from real-valued activations to likelihoods. The SoftMax function
used in MLP can be formulated using the following equation:

ŷk =
exp(ak)

∑n
i=1 exp(ai)

(7)

where n indicates the number of classes. Since the outputs are meant to be class probabilities
that sum up to 1, we use the cross-entropy loss as the loss function to minimize during
training. The multi-class cross-entropy loss can be expressed as the following:

l = −
n

∑
k=1

yk log
exp(ak)

∑n
i=1 exp(ai)

(8)

where yk is the label of the correct solution, only the index of the correct solution label in yk
is 1, and all others are 0.

4. Experiment and Results
4.1. Datasets

The performance of the proposed network was evaluated using two publicly available
datasets, namely the NVGesture dataset [42] and the EgoGesture dataset [43,44]. Figure 4
presents some sample frames captured from these two datasets. The NVGesture dataset is
a large dataset of 25 gesture types recorded by multiple sensors and viewpoints, each of
which is used for human–computer interfaces. It contains a total of 1532 dynamic hand
gesture videos, each containing only one gesture. We followed [42] and split the data with
a ratio of 5:2:3, resulting in 750 training, 300 validation, and 482 testing videos, respectively.

(a)

(b)

Figure 4. Some frames captured from two datasets: (a) NVGesture dataset; (b) EgoGesture dataset.

Appl. Sci. 2022, 12, 2041 10 of 15

The EgoGesture dataset is a large-scale dataset for egocentric hand gesture recognition,
consisting of 83 classes collected from four indoor and two outdoor scenes. The dataset
has a total of 24,161 gesture samples recorded from 50 different subjects. The dataset was
grouped in a 6:2:2 ratio, resulting in 14,416 training samples, 4768 validation samples, and
4977 testing samples, respectively. The details of the datasets used in our experiments are
summarized in Table 2.

Table 2. The details of datasets used in our experiments.

Data Sets Classes Training Validation Testing Total

NVGesture 25 750 300 482 1532
EgoGesture 83 14,416 4768 4977 24,161

4.2. Evaluation Metrics

To evaluate the generalization ability of the models and compare the performance of
different models, we conducted experiments using several standard evaluation metrics.
Commonly used metrics for evaluating gesture recognition models are accuracy, precision,
recall and F1 score. In this work, we use the standard top-1 accuracy to evaluate the
prediction accuracy of proposed model. If the ŷi,j is the predicted class for the i-th sample
corresponding to the j-th largest predicted score and yi is the corresponding true value,
then the top-k accuracy can be defined as Equation (9):

Top-k Accuracy(y, ŷ) =
1
n

n−1

∑
i=0

k

∑
j=1

1(ŷi,j = yi) (9)

where n is number of the samples. Precision and recall can be defined using the following
equations:

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
(10)

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives
(11)

F1-score, also known as balanced F-score or F-measure. The best value that can be
achieved for the F1 score is 1 and the worst value is 0. F1-score is the harmonic mean of
precision and sensitivity, which can be expressed as follows:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

where the precision and recall are calculated by Equations (10) and (11).

4.3. Experimental Setting

An input video is first sampled using a content-based adaptive sampler. In practice,
we set the maximum number of sampled frames per video to 16 and the stride of the
sampler to 3. We then resized the shorter side of all sampled frames to 256 pixels, and
random crop, color jitter, and random horizontal flip were employed for data augmentation.
In the inference phase, only the center crop, resizing, and normalization operations were
performed on the input frames. Finally, a center crop of size 224× 224 pixels was used
for all frames, thus creating a batch of shape x ∈ RB×3×16×224×224, where B indicates the
batch size.

The proposed network was implemented using the PyTorch deep learning framework.
The model was trained and validated on a server equipped with two NVIDIA GeForce RTX
3090 GPUs. We adopted a stochastic gradient descent as the optimizer with a momentum
of 0.9. We trained the model for 25 epochs with a batch size of 4. The initial learning

Appl. Sci. 2022, 12, 2041 11 of 15

rate was set to 0.001 and then decayed by 0.1 times every 7 epochs. The total trainable
parameters of the model are 121.28 million. Such a large model typically a requires larger
training dataset to avoid overfitting. To effectively train our models on our two datasets,
we employed several regularization strategies, such as data augmentation methods used
in data pre-processing. In addition, we used the label smoothing mechanism [31,45] to
regularize the model by estimating the marginalized effect of label dropout during training.
During the testing phase, the setup is the same as in the validation phase.

4.4. Results and Discussion

Learning Curves. Learning curves are widely used tools for deep learning to diagnose
the learning and generalization behavior of models. The accuracy and loss curves of our
model during the training and validation phases are illustrated in Figure 5, where the
x-axis is the time axis, the primary y-axis(left) is the value of accuracy and the secondary
y-axis(right) is the loss value. As can be seen from Figure 5, after 15 epochs, the plot
of validation loss decreases to a stable point and has a small gap with the training loss,
which indicates that our model acquires a good fit. We observed that the gap between
the validation and training loss on the NVGesture dataset was different from that on the
EgoGesture dataset. In other words, our model acquires a better fit on the EgoGesture
dataset than on the NVGesture dataset. The learning curve of a good fit is usually influenced
by the size of the training dataset and is also related to the complexity of the model. We
analyzed that the gap between the training loss and validation loss in Figure 5a is caused
by the small number of samples in the training set.

(a) (b)

Figure 5. Accuracy and loss curves of the model during training and validation phases: (a) NVGesture
dataset; (b) EgoGesture dataset.

Accuracy Comparison with State-of-the-Art Methods. We compared our results with
the current state-of-the-art methods on NVGesture and EgoGesture datasets, and the re-
sults are summarized in Table 3. Both datasets provide corresponding color and depth
videos, and in this work we evaluated the proposed model using only color videos. All
these methods to be compared can be roughly divided into three categories. The first class
is 2D CNN-based methods, such as TSN [14], which require pre-computation to obtain
optical flow features. The second category is 3D CNN-based methods, such as R3D [42],
ResNeXt [2] and C3D [16], which uses 3D convolution to learn the spatial–temporal struc-
ture of the video. The last class is the current popular 2D+1D CNN-based methods,
including I3D [25] and TSM [17]. This method decouples the 3D convolution kernel to
reduce the parameters of the kernel, but the spatial–temporal modeling capability of this
method is limited. Unlike these three types of methods, our proposed approach is based on
the attention mechanism and does not use any convolution or recurrent operations.

Table 3 shows the comparison results of recognition accuracy on two datasets. The
number of the sampling frames was set to 16 for the input of all comparison methods
and the same modality (color) of the test set was used. Our method achieved recognition
accuracies of 83.2% and 93.8% on NVGesture and EgoGesture datasets, respectively. From
Table 3, it can be seen that the proposed approach achieves the best recognition performance

Appl. Sci. 2022, 12, 2041 12 of 15

compared to other methods. To measure the influence of our proposed adaptive sampler
on the performance of the model, we conducted ablation experiments on two datasets. As
shown in the last two rows of Table 3, our model achieves 80.7% and 92.6% accuracy on
NVGesture and EgoGesture datasets, respectively, when using only the attention mech-
anism. After improving the sampling using the proposed sampler, the accuracy of the
model was improved by 2.5% and 1.2%, respectively. This illustrates the effectiveness of
our proposed sampler in improving the accuracy of model recognition.

Table 3. Accuracy comparison with other methods on the test sets of NVGesture and EgoGesture
datasets.

Methods Models NVGesture EgoGesture

TSN [14] Two-stream 65.6% N/A

R3D [42] 3D CNNs 74.1% 78.4%
C3D [16] 3D CNNs + SVM 69.3% 86.4%

ResNeXt [2] 3D CNNs 66.4% 90.9%

I3D [25] Inflated 3D CNNs 78.3% 90.3%
TSM [17] 2D + 1D CNNs N/A 92.1%

Ours Attention 80.7% 92.6%
Ours Attention + Sampler 83.2% 93.8%

F1-score. The F1 score is a common metric for measuring the precision of gesture
recognition models. The F1-score can be defined as the harmonic mean of the precision
and recall. We counted the recall, precision and F1 score of our proposed model on both
NVGesture and EgoGesture datasets, and the results are summarized in Table 4. As can be
seen from Table 4, our proposed attention-based model achieves F1 score of 82.98% and
93.10% on the NVGesture and EgoGesture datasets, respectively.

Table 4. Precision, recall, and F1-score of our proposed model on two datasets.

Data Sets Precision Recall F1-Score

NVGesture 83.56% 83.13% 82.98%
EgoGesture 93.92% 93.82% 93.10%

Model Complexity. When evaluating a deep model for gesture recognition, the com-
plexity of the model should be considered in addition to performance metrics. The number
of parameters and floating-point operations (FLOPs) are two commonly used indicators to
evaluate the complexity of a deep model. The number of parameters describes the storage
space required to store the model, and FLOPs describe the computational force required
to use the model. We evaluate the complexity of our model by measuring the number of
parameters and FLOPs, and the results are shown in Table 5. We report the differences
in model parameters, FLOPs and processing time when 8, 16, 24 and 32 frames are used
as sampling lengths. As can be seen from Table 5, as the sampling length increases, the
computation and processing time of the model increases accordingly.

Table 5. Parameters, floating-point operations and inference time of our proposed model.

Input Shape Parameters (M) FLOPs (G) Processing Time
(ms)

(1, 3, 8, 224, 224) 121.277 M 189.877 G 23.5 ms
(1, 3, 16, 224, 224) 121.284 M 379.698 G 46.3 ms
(1, 3, 24, 224, 224) 121.290 M 569.519 G 67.2 ms
(1, 3, 32, 224, 224) 121.296 M 759.340 G 73.4 ms

Appl. Sci. 2022, 12, 2041 13 of 15

Confusion Matrix. To evaluate the recognition accuracy of the proposed network for
each type of gesture, we computed the confusion matrix table. The confusion matrix was
obtained by comparing the predicted labels and the ground truth labels. We visualized the
confusion matrix table obtained on two datasets, as shown in Figure 6. The values on the
diagonal line represent the number of gestures correctly recognized by the model, while the
values on the off-diagonal line represent the number incorrectly recognized. The value can
also be distinguished based on the shade of the color. The higher diagonal value indicates
the better performance of the model. In Figure 6, we use different colors to indicate the
magnitude of the values separately. The confusion matrix shows that the proposed network
is robust to each gesture class.

（a） （b）

Figure 6. The confusion matrix of the gesture recognition results using our method on two datasets:
(a) NVGesture dataset (25 gesture actions); (b) EgoGesture dataset (83 gesture actions).

5. Conclusions

In this work, we present a network based on content-adaptive and attention mech-
anisms for hand gesture recognition. The proposed network is a pure self-attention
mechanism-based architecture, which does not have any convolution or recurrent op-
erations. The self-attention mechanism has the advantage of both shortest maximum path
length and minimum sequential operation sequential operation. The properties of the
self-attention mechanism give the network the ability to classify gestures by focusing on
information from the entire video sequence. To improve the sampling of the model and
reduce the input of gesture-free frames, we introduced a content-based adaptive sampler.
We use a sliding window for gesture detection on the incoming frames to determine the
starting sampling frame for the encoder. We evaluated the proposed network on two pub-
licly available benchmark datasets, NVGesture and EgoGesture. The extensive comparative
experimental results demonstrate that the proposed hand gesture detection and recognition
method outperforms the existing approaches based on CNNs or RNNs. In the future, we
plan to further improve the recognition accuracy of the attention-based model on gesture
recognition tasks. The study of uncertainty in the attention-based model will also be our
future work.

Author Contributions: Conceptualization, Z.C.; methodology, Z.C. and Y.L.; software, Z.C.; valida-
tion, Z.C. and Y.L.; investigation, Z.C. and Y.L.; writing original draft preparation, Z.C.; writing review
and editing, Z.C., Y.L. and B.-S.S.; supervision, Y.L. and B.-S.S.; project administration, B.-S.S.; funding
acquisition, B.-S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00594,
Morphable Haptic Controller for Manipulating VR·AR Contents), and in part by the China Scholar-
ship Council.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2022, 12, 2041 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mitra, S.; Acharya, T. Gesture recognition: A survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 311–324.

[CrossRef]
2. Köpüklü, O.; Gunduz, A.; Kose, N.; Rigoll, G. Real-time hand gesture detection and classification using convolutional neural

networks. In Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition, Lille, France,
14–18 May 2019; pp. 407–414.

3. Kang, J.; Kim, C.S.; Kang, J.W.; Gwak, J. Anomaly Detection of the Brake Operating Unit on Metro Vehicles Using a One-Class
LSTM Autoencoder. Appl. Sci. 2021, 11, 9290. [CrossRef]

4. Mustaqeem; Kwon, S. Att-Net: Enhanced emotion recognition system using lightweight self-attention module. Appl. Soft Comput.
2021, 102, 107101. [CrossRef]

5. Mustaqeem; Kwon, S. MLT-DNet: Speech emotion recognition using 1D dilated CNN based on multi-learning trick approach.
Expert Syst. Appl. 2021, 167, 114177. [CrossRef]

6. Sahoo, J.P.; Prakash, A.J.; Pławiak, P.; Samantray, S. Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional
Neural Network. Sensors 2022, 22, 706. [CrossRef]

7. Li, R.; Liu, Z.; Tan, J. A survey on 3D hand pose estimation: Cameras, methods, and datasets. Pattern Recognit. 2019, 93, 251–272.
[CrossRef]

8. Oudah, M.; Al-Naji, A.; Chahl, J. Hand gesture recognition based on computer vision: A review of techniques. J. Imaging 2020,
6, 73. [CrossRef]

9. Tran, D.S.; Ho, N.H.; Yang, H.J.; Baek, E.T.; Kim, S.H.; Lee, G. Real-time hand gesture spotting and recognition using RGB-D
camera and 3D convolutional neural network. Appl. Sci. 2020, 10, 722. [CrossRef]

10. Mujahid, A.; Awan, M.J.; Yasin, A.; Mohammed, M.A.; Damaševičius, R.; Maskeliūnas, R.; Abdulkareem, K.H. Real-Time Hand
Gesture Recognition Based on Deep Learning YOLOv3 Model. Appl. Sci. 2021, 11, 4164. [CrossRef]

11. Alam, M.S.; Kwon, K.C.; Kim, N. Implementation of a Character Recognition System Based on Finger-Joint Tracking Using a
Depth Camera. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 229–241. [CrossRef]

12. Chen, M.; AlRegib, G.; Juang, B.H. Air-writing recognition—Part I: Modeling and recognition of characters, words, and connecting
motions. IEEE Trans. Hum.-Mach. Syst. 2015, 46, 403–413. [CrossRef]

13. Shin, J.; Matsuoka, A.; Hasan, M.; Mehedi, A.; Srizon, A.Y. American Sign Language Alphabet Recognition by Extracting Feature
from Hand Pose Estimation. Sensors 2021, 21, 5856. [CrossRef]

14. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv 2014, arXiv:1406.2199.
15. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal segment networks: Towards good practices for

deep action recognition. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; pp. 20–36.

16. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

17. Lin, J.; Gan, C.; Han, S. Tsm: Temporal shift module for efficient video understanding. In Proceedings of the 2019 IEEE
International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 7083–7093.

18. Liu, Z.; Luo, D.; Wang, Y.; Wang, L.; Tai, Y.; Wang, C.; Li, J.; Huang, F.; Lu, T. Teinet: Towards an efficient architecture for video
recognition. In Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–8 February 2020;
Volume 34, pp. 11669–11676.

19. Li, Y.; Lan, C.; Xing, J.; Zeng, W.; Yuan, C.; Liu, J. Online human action detection using joint classification-regression recurrent
neural networks. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14
October 2016; pp. 203–220.

20. Si, C.; Chen, W.; Wang, W.; Wang, L.; Tan, T. An attention enhanced graph convolutional lstm network for skeleton-based action
recognition. In Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 1227–1236.

21. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31th Conference on Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017; pp. 5998–6008.

22. Li, Y.; Wu, C.Y.; Fan, H.; Mangalam, K.; Xiong, B.; Malik, J.; Feichtenhofer, C. Improved Multiscale Vision Transformers for
Classification and Detection. arXiv 2021, arXiv:2112.01526.

23. Li, Y.; Yao, T.; Pan, Y.; Mei, T. Contextual transformer networks for visual recognition. arXiv 2021, arXiv:2107.12292.
24. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

http://doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.3390/app11199290
http://dx.doi.org/10.1016/j.asoc.2021.107101
http://dx.doi.org/10.1016/j.eswa.2020.114177
http://dx.doi.org/10.3390/s22030706
http://dx.doi.org/10.1016/j.patcog.2019.04.026
http://dx.doi.org/10.3390/jimaging6080073
http://dx.doi.org/10.3390/app10020722
http://dx.doi.org/10.3390/app11094164
http://dx.doi.org/10.1109/THMS.2021.3066854
http://dx.doi.org/10.1109/THMS.2015.2492598
http://dx.doi.org/10.3390/s21175856

Appl. Sci. 2022, 12, 2041 15 of 15

25. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6299–6308.

26. Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. Slowfast networks for video recognition. In Proceedings of the 2019 IEEE International
Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6202–6211.

27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

28. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

29. Lin, Z.; Feng, M.; Santos, C.N.d.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A structured self-attentive sentence embedding. arXiv
2017, arXiv:1703.03130.

30. Paulus, R.; Xiong, C.; Socher, R. A deep reinforced model for abstractive summarization. arXiv 2017, arXiv:1705.04304.
31. Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. Vivit: A video vision transformer. arXiv 2021,

arXiv:2103.15691.
32. Girdhar, R.; Carreira, J.; Doersch, C.; Zisserman, A. Video action transformer network. In Proceedings of the 2019 IEEE Conference

on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 244–253.
33. Mazzia, V.; Angarano, S.; Salvetti, F.; Angelini, F.; Chiaberge, M. Action Transformer: A Self-Attention Model for Short-Time

Human Action Recognition. arXiv 2021, arXiv:2107.00606.
34. Neimark, D.; Bar, O.; Zohar, M.; Asselmann, D. Video transformer network. arXiv 2021, arXiv:2102.00719.
35. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In

Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.
36. Wang, Y.; Xu, Z.; Wang, X.; Shen, C.; Cheng, B.; Shen, H.; Xia, H. End-to-end video instance segmentation with transformers. In

Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 8741–8750.

37. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150.
38. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
39. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of the

34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1243–1252.
40. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
42. Molchanov, P.; Yang, X.; Gupta, S.; Kim, K.; Tyree, S.; Kautz, J. Online detection and classification of dynamic hand gestures

with recurrent 3d convolutional neural network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4207–4215.

43. Zhang, Y.; Cao, C.; Cheng, J.; Lu, H. Egogesture: A new dataset and benchmark for egocentric hand gesture recognition. IEEE
Trans. Multimed. 2018, 20, 1038–1050. [CrossRef]

44. Cao, C.; Zhang, Y.; Wu, Y.; Lu, H.; Cheng, J. Egocentric gesture recognition using recurrent 3d convolutional neural networks
with spatiotemporal transformer modules. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 3763–3771.

45. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 2818–2826.

http://dx.doi.org/10.1109/TMM.2018.2808769

	Introduction
	Related Work
	Convolution-Based Methods
	Attention-Based Methods

	Proposed Method
	Content-Adaptive Sampler
	Attention-Based Encoder
	Loss Function

	Experiment and Results
	Datasets
	Evaluation Metrics
	Experimental Setting
	Results and Discussion

	Conclusions
	References

