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Abstract: Fault diagnosis in high-speed machining centers (HSM) is critical in manufacturing systems,
since early detection saves a substantial amount of time and money. It is known that 42% of failures in
these centers occur in rotatory machineries, such as spindles, in which, the bearings are fundamental
elements for effective operation. Nowadays, there are several machine- and deep-learning methods
to diagnose the faults. To improve the performance of those traditional machine-learning tools, a
deep-learning network that works on raw signals, which do not require previous analysis, has been
proposed. The 1D Convolutional Neural Network (CNN) proposed model showed great capacity of
adapting to three types of configurations and three different databases, despite a training set with a
smaller number of categories. The network still detected faults at early damage stages. Additionally,
the low computational cost shows the Deep-Learning Neural Network’s (DLNN) suitability for
real-time applications in industry. The proposed structure reached a precision of 99%; real-time
processing was around 8 ms per signal, and standard deviation of repeatability was 0.25%.

Keywords: deep learning; fault diagnosis; rotating machines; convolutional neural network

1. Introduction

Industry 4.0 has transformed the company environment, from a wide variety of sensors
and control systems, to the development of new maintenance strategies. One of the most
popular maintenance strategies is based on decision making, which seeks to optimize
performance times by detecting, replacing or repairing machine components before severe
and costly problems [1]. By way of illustration, the main components of rotating machines
are the bearings, and most failures in industrial machinery occur due to their malfunction.
So, if the quality of the bearings is guaranteed, the safety and economic operation can be
guaranteed as well [2].

Bearings are the main non-linear components of rotating machines, whose malfunc-
tioning severely affects system operation. Therefore, several monitoring and preventive
maintenance strategies have been proposed to guarantee the efficient operation of bearings.
In many applications, such as turbines, aircraft engines and others, minor faults can cause
dangerous and expensive side effects [3].

Bearing diagnostics and diagnostics of rotational equipment have been widely used
for several decades owing to the availability of data monitoring systems. Bearing diagnostic
systems based on Deep-Learning (DL) networks have yielded promising results [4]. In
particular, Deep Neural Networks (DNN), including, perceptron multi-layer networks,
auto-encoder networks and Convolutional Neural Networks (CNN), have reached high
levels of accuracy, robustness and reliability [5,6].

Technological advances have led to a rapid evolution of autonomous and highly effec-
tive manufacturing systems. Maintenance is an essential machine process. The acquisition
and installation costs represent less than half the cost during the lifetime of a machine. On
the contrary, the maintenance value is between 15% and 40% of the total value. Several
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technological solutions have been proposed, but industries have refused to implement
them, since they demand complex data analysis and elaborated result interpretation [7].
However, a few industry applications, such as the early detection and accurate diagnosis
of bearing failures in Computer Numerical Control (CNC) rotatory, save both human
and financial resources. On this basis, it seems that intelligent systems for detection and
diagnosis of faults are necessary [8].

Computational tools, such as Neural Networks (NN), support vector machines and
logistic regression have limitations owing to nature, size and diversity of data [9]. In
comparison, Deep-Learning Neural Networks (DLNNs) are new tools with great power
of representation. DLNNs identify relevant data information without pre-processing,
transformation or domain mapping through complex non-linear functions. Some of the
most efficient DLNN models are: Deep Belief Network (DBN), DNN and CNN. In addition,
there are hybrid methods that combine the best features of traditional methods with DL
networks to increase performance and efficiency. When comparing the three types of
networks, it has been identified that DNN and DBN are used to extract typical features,
while CNN identifies very distinguishing and essential ones [10]. However, the CNN
algorithm is more complex and needs longer training periods [11,12].

The factors that determine the effectiveness of a diagnostic system are the extraction
of relevant information and selection of valuable information [8]. DLNNs have optimized
this process, but complex machining faults are still difficult to identify [12]. DLNNs
are capable of dealing with a large amount of information and monitoring the machine
condition. DLNNs have been successfully applied to computer vision, automatic voice
recognition, audio recognition and bioinformatics [13]. The most remarkable advances
of DLNN applications in the monitoring and diagnosis of bearing machinery failures are
summarized in Table 1.

Several bearing failures arise from spindle rotation speed. Furthermore, rotation speed
does not only cause machinery failure, but it also generates noise. Noise pollution signifi-
cantly alters human mood (e.g., stress, anxiety and loss of attention) and body functioning
(e.g., heart and breathing rates, and blinks), which in turn affects work performance and
life quality of nearby inhabitants [14,15]. As machinery failure and noise related to rotation
speed are generated by vibration, the accurate and prompt detection of vibration signals
can lead to a reduction of both of them, including their side effects.

Table 1. Application of DNN model in fault detection.

Device to Be Verified Input Signal Processing Analysis Domain DNN Accuracy Ref.

Bearings STFT Frequency domain LAMSTAR
network 98% [9]

Air compressor Audio signals WPE transform Time-frequency Auto-encoder
network (AEN) 97.22% [16]

Bearings of a rotatory
machine Six bearing states FFT Frequency AEN 95.5% [17]

Gear
FFT Time-frequency AEN activated by

a ReLU function
97.27% [18]EEMD 99.85%

Vibration signals Two layers of the net
for noise reduction DAE 98.86% [19]

Bearings WPE transform Time-frequency CNN 98.83% [20]

Buildings Vibration signals 1D-CNN 99.79% [21]

When a specific feature extraction method is applied, the repeatability of selected
features must be somehow guaranteed, since the classifier in use searches for singularities
to identify patterns of interest. As the nature of vibration signals depends highly on
rotation speed, which constantly changes in accordance with machinery operation, feature
repeatability is not necessary. Therefore, the extraction and selection of relevant and
valuable information from raw signals seems to be feasible in moving toward an efficient
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detection system, regardless of vibration level. As well as the importance of extracting all
that information in a short time, it is also important to be able to apply it in real time.

In light of the above evidence, a method based on DL (specifically, 1D-CNN) to identify
spindle anomalies via vibration signals is proposed in this paper. In the Methods section, the
1D-CNN implementation is described according to three steps: (1) design in line with signal
length, number of layers and quantity and size of filters per layer, (2) configuration based
on hyper parameters and (3) training and validation to achieve the highest performance.
In the Results section, the CNN performance based on three databases is reported on the
basis of three evaluation conditions: (1) increasing the number of iterations, (2) varying the
number of classes and (3) eliminating the most identifiable classes. Databases used in the
present work were (1) the standard reference provided by Case Western Reserve University
(CWRU) [22], (2) the bearing failure dataset provided by [23] and (3) the dataset generated
by the National Science Foundation (NSF) for Intelligent Maintenance Systems (IMS) [24].
In the Discussion section, the 1D-CNN performance to identify spindle anomalies based on
vibration signals is evaluated in comparison with other computational methodologies. In
addition, scientific contribution and future work are specified. To conclude the paper, a
Conclusions section is provided. Finally, the main contribution of the 1D-CNN network
has been to detect faults at early damage stages. Additionally, by eliminating the easiest
identifiable classes, 1D-CNN yields the highest accuracy in classifying more diffuse classes.
Furthermore, the low computational cost shows the network’s suitability for real-time
applications in industry, at around 8 ms per signal.

2. Materials and Methods
2.1. Databases

To evaluate the method based on 1D-CNN proposed in this paper, three databases
were used: (1) the standard reference provided by CWRU, (2) the bearing failure dataset
provided by T-Y Wu and (3) the dataset generated by the NSF for IMS. Experimental setup
and test conditions for each of the three databases are described below. In Table 2, the main
characteristics of the three databases are outlined.

Table 2. Databases to evaluate the proposed method based on 1D-CNN.

Database Load Rotation Speed
[RPM]

Sampling Frequency
[kHz] Bearing Failures Machinery

Defect Failure Level

CWRU 0–3 HP 1720–1797 12 and 48

Electro-erosion
process IR

Moderate

Severe

Electric discharge
machining

OR
Moderate

Severe

RE
Moderate

Severe

T-Y Wu 300–750 6400

IR
Moderate

Severe

OR
Moderate

Severe

RE
Moderate

Severe

NSF-IMS 6000 lbs 2000 20

Failure arising
after service life

of more than
100 million
revolutions

IR
Moderate

Severe

OR
Moderate

Severe

RE
Moderate

Severe
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2.1.1. CWRU Bearing Signals

Bearing databases provided by the CWRU have become the standard reference for
validating new fault diagnostic methods based on vibration signals. It consists of a two-HP
motor, a torque transducer and a dynamometer. Data have been recorded using loads from
0 to 3 HP in the motor, motor speeds from 1720 to 1797 RPM and two sampling frequencies:
12 and 48 KHz. Bearing failures have been produced by an electro-erosion process or
electric discharge machining (EDM) [22].

The machinery comprised three different defects: (1) failure in the inner race (Inner
Race—IR), (2) failure in the outer race (Outer Race—OR) and (3) failure in the rolling
element (Rolling Element—RE). The motor had two bearings: one at the end of the motor
and the other at the fan. Each bearing had 4 degrees of severity for each fault, and the
damage level corresponded to the diameter of the fault: 7, 14, 21 and 28 mm.

2.1.2. Bearing Signals Provided by T-Y Wu

The test bench consisted of an electric motor with the corresponding controller. The
motor was coupled to the shaft with two bearings and an encoder. The accelerometer was
connected to an acquisition card of National Instruments (NI) 9234, the rotary encoder was
connected to the NI 9402, the module and motor speed control circuit was connected to the
NI 9172 card [23].

Data were recorded with a sampling frequency at 6400 Hz. Each test had four velocity
profiles, ranging from 300 to 750 RPM, and the duration of each recording was five seconds.
The bearing faults were produced with the EDM technique, and the defects generated were
IR, OR and RE. Each fault signal had two levels of damage: light (0.4 mm × 0.3 mm) and
severe (0.8 mm × 0.3 mm), generating six fault categories and one of normal status.

2.1.3. NSF-IMS Bearing Signals

Data were generated by the NSF-I/UCRC for IMS. Such testing bank for fault diagnosis
took into account a whole range of bearings’ useful life. All the bearing faults occurred
after their service life, which had exceeded 100 million revolutions. The bank consisted of
an AC motor, eight ICP accelerometers PCB 353B33, four double row bearings Rexnord
ZA-2115 and one acquisition card NI DAQ Card 6062E. Rotation speed and radial load were
kept constant at 2000 RPM and 6000 lbs, respectively. Sampling frequency was 20 kHz [24].
Test experiments were undertaken until a failure occurred, and the available recordings
were 10 min in duration. The four bearings were exactly the same. Note that IMS provides
three databases, but only the first pair was considered in the present work. The third
database had the same fault conditions as the second one.

2.2. Data Organization

To increase the number of 1D-CNN input data, segmentation was applied according
to [25,26]. For that purpose, rotation speed (RPM) was firstly converted into revolutions per
second (rps) by using Equation (1). Afterward, segment length (td) was estimated, consider-
ing the number of revolutions of interest (# revol) and previously calculated revolutions per
second (Equation (2)).

rps =
RPM

60
(1)

td =
# revol

rps
(2)

Once the segments were obtained, they were organized into seven categories in
accordance with a column entitled “Failure Level” in Table 2, due to the compatibility
among datasets; in other words, the machine had to have had three machinery defects
and two failure levels in order to test the network’s robustness. Those categories were:
(1) moderate and (2) severe IR failure, (3) moderate and (4) severe OR failure, (5) moderate
and (6) severe RE failure and (7) no failure. As each category was different in size (see
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Figure 1), the overlapping at 12.5% or 25% (depending on category size) was applied
in order to balance all the categories [27,28]. Lastly, each database was divided into
two sets: training (80% of data) and testing (20% of data) [29]. Training datasets were
subdivided further into two parts: training (75% of data) and validation (25% of data). Data
organization is depicted in Figure 1.
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Figure 1. Data organization: 80% of data were used to train 1D-CNN and 20% were used to test it.
From training data, 75% were used to train the network, while 25% were used to validate it.

Having organized and balanced the three databases, CWRU, NSF-IMS and T-Y Wu
databases were, respectively, used to (1) determine configuration parameters, (2) train a
model and (3) generalize such a model.

2.3. 1D-CNN: Design and Configuration

The present model was inspired by applications of 1D-CNN in human pattern recog-
nition and fault diagnosis systems [30,31]. This model, however, has fewer layers to reduce
training time, and it only requires a single raw input (vibration signal).

The design process is presented in Figure 2 and was as follows. Firstly, the following
parameters were adjusted: number of layers, quantity and size of filters for each layer,
and training and optimization algorithms. Hyper parameters for the network were also
adjusted. These were: number of signals per category, signal length, ratio training/testing,
learning rate, learning training cycles (epochs) and training lot size (batch size). The
recommended values are detailed in Table 3. Secondly, CNN structure was created as
shown in Table 4. By determining the number of layers of the network model, it is possible
to select both the quantity and dimensions of the filters of each convolutional layer. Table 5
presents the performance of each of the configurations that have been selected by adjusting
a few options reported in the literature; in this case, the network structure in bold fonts was
the best option. The internal structure and configuration of the Kernels filters are shown in
Figure 3.

For data mining, the network applies algorithms to automatically identify and select
the most significant features from raw data. For this purpose, the convolution operation
(Convolutive Layer) is applied to the input data, resulting in a vector with greater length
and whose maximum clustering criterion (Max-Pooling Layer) is applied to extract the
most representative features. The same procedure is repeated four times, but as can be
seen in Table 4, the number of Kernels is increased for each Convolutive plus Max-Pooling
set. This variation is performed to generate feature maps with the capacity to represent
adequately the non-linearity of the signals. Figure 4 sequentially shows the generation of
the first three values of a feature map by using a filter with a length of three samples and a
sliding pass of one sample (stride). This operation is applied to each convolutional layer.
The parameters that are regulated for this operation are the quantity and size of the filters
(u), and the sliding factor of the window (stride).
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Analysis
Case Batch_Size Seq_Len Learning_Rate Epochs n_Classes n_Channels Flatten

2 RPM 100 1200 0.001 50 7 1 75 × 144
5 RPM 100 3000 0.001 50 7 1 188 × 144

10 RPM 100 6000 0.001 50 7 1 375 × 144
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Table 4. 1D-CNN structure.

Layer Type Filters Size Stride Filters Number
(Kernels) Padding

1 Convolutive 1 64 1 18 ‘same’
2 Max-Pooling 1 2 2 18 ‘same’
3 Convolutive 2 2 1 36 ‘same’
4 Max-Pooling 2 2 2 36 ‘same’
5 Convolutive 3 2 1 72 ‘same’
6 Max-Pooling 3 2 2 72 ‘same’
7 Convolutive 4 2 1 144 ‘same’
8 Max-Pooling 4 2 2 144 ‘same’
9 Fully-Connected 100 neurons

10 Softmax 7 classes

Table 5. Filter structure of the network.

Convolution
Layers Network Structure Accuracy Maximum

Accuracy
Standard
Deviation Training Time Testing Time

[# of layers] [# of Filters] [Filter Size] [%] [%] [%] [s] [s]

4

(144, 18, 18, 18) (2, 2, 2, 2) 95.45 96.26 0.7600 371.0 0.6020
(144, 18, 18, 18) (8, 2, 2, 2) 98.23 99.41 1.5742 327.91 0.5409
(18, 36, 72, 144) (2, 2, 2, 2) 96.79 98.63 3.0700 172.66 0.3546
(18, 36, 72, 144) (64, 2, 2, 2) 99.21 99.6 0.4972 180.19 0.4022
(144, 72, 36, 18) (2, 2, 2, 2) 96.47 98.04 1.3600 473.95 0.7469
(144, 72, 36, 18) (8, 2, 2, 2) 97.29 98.82 1.7062 415.04 0.7086
(16, 32, 64, 64) (2, 2, 2, 2) 94.95 97.84 2.5700 132.18 0.2925
(16, 32, 64, 64) (64, 2, 2, 2) 99.02 99.6 0.7286 144.09 0.3401
(64, 32, 16, 16) (2, 2, 2, 2) 95.46 98.82 3.1800 209.46 0.3581
(64, 32, 16, 16) (16, 2, 2, 2) 98.19 99.02 1.0128 185.94 0.3356
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The size of each feature vector is obtained by Equation (3). The configuration of the
network requires only the calculation of map length of the last convolutional layer, since it
is the input vector of the fully connected layer:

f lattenvector =
(∑N

i=1 # f ilteri)
(

signals
cat

)
(# f ilterN)(epochs)

(3)

where flattenvector represents the size of the feature map, #filter indicates the number of
filters of the convolutional layer, radio signals/cat indicates the amount of data by category,
N represents the number of convolutional layers, and epochs is the number of training
cycles. During each training cycle, new feature maps are generated and updated until the
number of cycles that have been selected is completed. Two parameters are monitored
in each iteration: the value of the loss function and the accuracy yielded by the network.
The loss function of the 1D-CNN model is the crossed entropy between the probability
distribution estimated by the Softmax layer and the probability distribution of the target
class. The optimal learning parameters for the current model, in order to minimize the
negative effect of random initialization of the weights and calculate the loss function, are
calculated with the ADAM optimization stochastic algorithm in order to achieve greater
efficiency during the training process.

For classification purposes, feature maps are used during the training for successive
comparisons between the input signal and each map. At each comparison, each feature
vector sweeps from the beginning to the end of the signal by means of a sliding window.
The results of each comparison are kept as a vector. Each feature is a probability that the
processed signal segment belongs to one of the bearing states.

For implementation, TensorFlow library for Python Deep Learning processing was
used. The algorithm is illustrated in Figure 5. This consisted of importing libraries, entering
training and testing data, and normalizing the signals before performing an internal random
separation of the training set.
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3. Results

The proposed 1D-CNN was evaluated in line with three parameters: (1) accuracy
percentage, (2) confusion matrix and (3) t-distribution Stochastic Neighbor Embedding
(t-SNE) algorithms. t-SNE refers to a 2D representation of the fully connected layer that
allows for visual analysis of the classification performed by the network, using both the
validation and testing sets.

The configuration-training-testing cycle described in previous section was run three
times by (1) increasing the number of iterations, (2) varying the number of classes and
(3) eliminating the most identifiable classes, so as to evaluate accuracy, generalization and
versatility of 1D-CNN to identify spindle bearing failures. Results of the three evaluations
are presented below.

3.1. Number of Iterations and Accuracy

The training performance after 2000 iterations was presented in Figure 6. As can be
seen from the figure, moderate and severe RE failures were still misclassified. In addition,
a comparison among different numbers of training cycles and learning rates was shown in
Figure 7. As can be seen, the performance was not greatly modified by the number of training
cycles, but the computing time was. It is shown that 50 epochs and a learning rate of 0.001 allows
the network to achieve the highest performance for different numbers of classes.

In Figure 8, 1D-CNN training process is sequentially presented. From the figure,
under- and over-fitting can be identified. For example, features are undistinguishable per
class at iteration 10, but they are completely grouped at iteration 2000.
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3.2. Number of Classes and Generalization

Table 6 shows 1D-CNN performance at different number of classes. In Table 6, it
can be seen that the lowest accuracy (50%) is reached using four classes. In comparison,
80% accuracy is achieved using six classes. Four and five categories were selected for
the training process because, in real applications, a huge number of unknown signals per
second are obtained, and network performance needs to be at least acceptable under these
training conditions.

Table 6. 1D-CNN performance using different number of classes.

Training
Categories

Training
Cycles Learning Rate Training/Testing

Relation

Training Time Processing
Time Accuracy Standard

Deviation

[# of Classes] [# of Epochs] [s] [s] [%] [%]

4

50 0.001 80/20 118.35 0.4358 58.62 5.75

50 0.001 80/20 117.14 0.4183 61.42 2.59

50 0.001 80/20 118.77 0.4391 63.28 1.30

5
50 0.001 80/20 143.98 0.4109 71.93 3.26

50 0.001 80/20 140.34 0.4260 74.65 1.76

6

50 0.001 80/20 177.46 0.4153 85.51 0.75

50 0.001 80/20 172.85 0.4521 85.33 0.77

50 0.001 80/20 176.83 0.4389 85.29 0.38

The proposed 1D-CNN shows great generalization capability, since even when training
with only four failure categories (Figure 9), the network can classify unknown faults into
identifiable categories. For example, if the network is trained through the moderate IR
failures, it correctly classifies severe IR failures. This indicates that the network has the
ability to optimally learn different feature categories, as long as enough training data are
provided. In essence, ID-CNN is achieving classification and clustering simultaneously.
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3.3. Diffuse Classes and Specificity

To evaluate the system’s versatility is to classify the most diffuse classes. In Figure 10,
the confusion matrix shows that IR failures are the easiest class to identify. Similarly,
t-SNE algorithm indicates that severe and moderate IR failures are the easiest to identify.
Therefore, all these classes were eliminated from the training database. By using the rest of
the data, testing results are shown in Table 7.
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Table 7. 1D-CNN performance when only using classes that are difficult to classify.

Experiment Categories Training
Dataset

Testing
Dataset Training Time Testing Time Accuracy Standard

Deviation
[# of Classes] [# of Signals] [# of Signals] [s] [s] [%] [%]

1 5 1500 370 147.76 0.3363 99.01 0.5916
2 5 1500 370 148.71 0.3400 98.29 0.6788
3 4 1200 296 119.16 0.2830 99.54 0.1814
4 4 1200 296 121.84 0.3029 99.82 0.1543

4. Discussion

In the literature review, a clear trend since 2016 of using several feature extraction
techniques, such as Fast Fourier Transform, Wavelet Package Energy Transform and Em-
pirical Mode Decomposition (FFT, WPE and EMD), along with a classifier based on a
DNN, is identified. Two-dimensional CNNs have been one of the most commonly used
networks [32], but one-dimensional ones have not yet been applied to the same extent.
One of the first investigations undertaken is presented in [30], where an accuracy of 100%
is yielded with a processing time of 62 ms using a seven-layer model with the database
reported in [22], requiring around 20,000 signals. The second investigation reported in [31]
is a validated eight-layer model with around 20,000 data from the CWRU bearing database,
reaching an accuracy of 99.77% with a very high capacity of noise robustness. A similar
work is reported in [33], where a performance of 99.27% with 10,000 CWRU signals is
achieved. Additionally, a comparable study is described in [34,35], where the accuracy
rate is 100%, 99.76%, 99.77% and 99.57% with more than 177,000 CWRU signals, and 99%
with 3500 CWRU signals, respectively. The third investigation reported in [36] is a deep
auto-encoder method with fusing discriminant, where the IMS dataset is classified with an
accuracy rate of 98.3%. Similar research is proposed in [37], where a methodology based on
Deep Feature Learning for fault identification is applied. Each sample consists of 3000 data
points; where a multi-domain feature calculation is applied, the accuracy is 99.8%. Finally,
another method reported in [38] has above 99% accuracy rate using an optimized method
of stacked variational denoising auto-encoder. In comparison, the proposed model has

• a lower number of layers (four convolutional, one fully connected, one Softmax),
• a reduced processing time of 8 ms per signal,
• an acceptable training time (~14 min) and
• a maximum performance of 99.64% with a standard deviation of 0.25%,

requiring an acceptable dataset (1904 signals) to reach maximum performance with
three databases (see Table 8).
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Table 8. Comparison of the results obtained by the proposed model with other investigations.

Work Ref.

Network
Structure Database

Analysed

Database Size Accuracy Standard
Deviation

[# of Layers] [# of Signals] [%] [%]

1 [30] 7 CWRU 20,000 100 –

2 [31] 8 CWRU 20,000 99.77 0.66

3 [33] 7 CWRU 10,000 99.27 0.13

4 [34] 6 CWRU 177,000 99.57 0.15

5 Proposed model 6

Case I: CWRU 3570 99.52 0.119

Case II: T-Y Wu 4527 99.31 0.234

Case III: NSF-IMS 1904 99.64 0.493

The method of bearing failure diagnosis has been developed on the basis of feature
learning approach. That is, the -CNN is divided into two main procedures: (1) feature ex-
traction/selection that is undertaken by convolutional filters (Kernels) and (2) classification
based on Softmax layer. The proposed model for bearing failure detection uses fewer layers
and a different filter structure in comparison with similar networks. Furthermore, the net-
work reaches a maximum accuracy of over 99% with three bearing databases and has a low
average standard deviation (0.25%) for the multiple combinations and configurations in the
training process. Generalizability and repeatability are achievable by selecting appropriate
configuration parameters and structure.

DLNN presents high computational efficiency and achieves high performance accu-
racy with raw input signals. DLNNs have the capability to extract and classify features in
a single structure, achieving a reliable diagnosis with low-cost computational processing
in comparison with traditional feature extraction methods (WPE, EMD, HHT, etc.) in
conjunction with typical classifiers.

In the analysis of the results, Case I refers to the database in [22] and is used to
determine configuration parameters and train the model. Case II refers to the database
in [24], and Case III refers to the database in [23]; both are used to test the performance,
robustness and to generalize the proposed network. The model was also evaluated using
Case II and III databases to determine configuration parameters and training process,
reaching similar results to those achieved in Case I. The databases were selected because
they combine different characteristics: shaft velocity, loads, severity level of failure and
sampling frequency. One relevant aspect is that in Case I and III, the failures were generated
using EDM method, while bearings of Case II ended their useful life naturally.

The robustness of the DL model has been tested from two points of view. First,
according to a combination of operating conditions, the options used were: Case I and II
with different constant shaft velocities (1720–2000 rpm) and Case III with variable velocities
(300–750 rpm), as in a real operation. The three databases had several constant loads
(0–3 hp), and three failure types (IR, OR and RE) were considered with two levels of
severity (light and severe). Additionally, in Case I and II, the failures were introduced
with EDM, but in Case III, the bearings ended their useful life naturally. The second point
concerned dataset variations. Those were obtained by randomly suppressing one or several
categories during training, showing that the network correctly learned from the most
significant features that characterized severe and moderate bearing failures. In addition,
the easiest identifiable bearing failures were discarded from the analysis in order to test
robustness, and performance accuracy was not affected significantly.

5. Conclusions

The proposed model showed a great capacity to adapt to three types of configurations
and three different databases, despite a training set with a smaller number of categories. The
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network still detected faults at early damage stages. Additionally, the low computational
cost demonstrate DLNN’s suitability for real-time applications in industry.

In conclusion, the proposed 1D-CNN showed the following advantages:

1. Higher accuracy was achieved by increasing the number of training iterations.
2. Regardless of the number classes, the 1D-CNN allowed for differentiation of classes

not even included as samples in the training stage.
3. By eliminating the easiest identifiable classes, 1D-CNN yielded the highest accuracy

in classifying more diffuse classes.
4. Reduced processing time of around 8 ms per signal, demonstrating the possibility of

real-time application.

As machinery failure and noise related to rotation speed are generated by vibration,
the accurate and prompt detection of vibration signals based on 1D-CNN can lead to an
identification of not only machinery failure, but also noise pollution. Additionally, noise
pollution significantly alters human mood (e.g., stress, anxiety and loss of attention) and
body functioning (e.g., heart and breathing rates, and blinks), which in turn affect work
performance and life quality of nearby inhabitants, especially in harmonic frequencies that
are not audible [39].

As future work, the developed model has been verified with vibration signals ob-
tained by accelerometers. However, the use of convolutional network can be extended
to using acoustic emission signals as system inputs. The proposed network model uses
the backpropagation algorithm for training, and the criterion used to stop the process is
the number of training cycles (epochs), so it is possible to implement a cross-validation
algorithm to increase efficiency by stopping the process when the desired maximum per-
formance is obtained. The processing speed and limited use of computational resources
for the operation of the 1D CNN network mean that the applicability of this method is not
only limited to the field of bearing fault detection, but can also be implemented in other
important fields, such as medicine. The operational characteristics of the developed model
meet the necessary requirements for applications that require real-time processing and
being implemented in embedded devices, such as Raspberry Pi, Beaglebone, etc.
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