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Abstract: Cloud computing has revolutionized the modes of computing. With huge success and
diverse benefits, the paradigm faces several challenges as well. Power consumption, dynamic
resource scaling, and over- and under-provisioning issues are challenges for the cloud computing
paradigm. The research has been carried out in cloud computing for resource utilization prediction
to overcome over- and under-provisioning issues. Over-provisioning of resources consumes more
energy and leads to high costs. However, under-provisioning induces Service Level Agreement (SLA)
violation and Quality of Service (QoS) degradation. Most of the existing mechanisms focus on single
resource utilization prediction, such as memory, CPU, storage, network, or servers allocated to cloud
applications but overlook the correlation among resources. This research focuses on multi-resource
utilization prediction using Functional Link Neural Network (FLNN) with hybrid Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO). The proposed technique is evaluated on Google cluster
traces data. Experimental results show that the proposed model yields better accuracy as compared
to traditional techniques.

Keywords: cloud computing; resource utilization; forecasting; neural networks; GA; PSO

1. Introduction

Cloud computing provides customizable platform that allows applications to ac-
quire appropriate resources before execution of required applications on Virtual Machines
(VMs) [1]. Cloud service providers typically use a pay-as-you-go pricing model that can
lead to cost reduction and flexibility for cloud users. The broad range of developments
in cloud computing technology has resulted in significant increase in cloud users and the
development of applications in cloud environments to access different services of cloud
computing [2]. Several scientific applications use services of cloud computing that result in
varied utilization of cloud resources [3,4]. Consequently, it is necessary to manage resources
efficiently to handle the fluctuating demand of users. Efficient resources management in
cloud computing environment can contribute to optimizing the usage of resources, reduc-
ing cost, and improving performance. To achieve efficient resource management, resource
utilization prediction is used.

The use of machine learning techniques in research has received more attention in
recent years. Neural networks are one of the most widely used methods in machine learn-
ing. The key advantage of using neural networks is the ability of accurate decisions. Many
applications, including electric flow forecasting, river flow forecasting, etc., use neural
networks [5]. Keeping these reasons in view, this article uses neural networks for cloud
resource utilization prediction. The key issue in implementing neural networks is training

Appl. Sci. 2022, 12, 2160. https://doi.org/10.3390/app12042160 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12042160
https://doi.org/10.3390/app12042160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7750-8959
https://orcid.org/0000-0002-7169-8683
https://orcid.org/0000-0001-6794-3677
https://doi.org/10.3390/app12042160
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12042160?type=check_update&version=2


Appl. Sci. 2022, 12, 2160 2 of 15

the network weights. Training the weights of the network is a complex optimization prob-
lem. Swarm and evolutionary algorithms are extensively used for such problems. The use
of these techniques is preferred over the traditional mathematical methods [5]. To achieve
this goal the proposed model uses hybrid Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) (GA-PSO) that takes the advantage of the strengths of both algorithms.
Hybrid versions of these algorithms have been used in a variety of domains and impressive
results are achieved. The applications include antenna array pattern synthesis [6], mining
association rules [7], forecasting electricity demand [8], scheduling resources in cloud
computing [9], and process planning [10]. Authors in [11] have proved with the simulation
that the hybrid version overcomes the disadvantages of the individual algorithms.

Resource utilization prediction is studied extensively and rich literature is
available [1,4,12–14]. Resource prediction models are influenced by some parameters,
such as accuracy, time and memory complexities of the model, handling multiple resources,
etc. Accuracy of the resource utilization prediction is a challenge due to multiple types
of metrics, e.g., CPU and memory usage, disk I/O, network throughput, etc. There may
be some implicit relationships, such as the relationship between CPU and memory usage,
and the relationship between disk I/O and memory. It is difficult to find and predict
the relationship for each type of resource. In this way, the prediction results will not be
suitable for practical use. To solve this problem, the auto-scaler based on cloud resource
prediction must have the ability to handle different indicators at the same time to make
precise scaling decisions.

In this article, we propose a new model for cloud resource utilization prediction using
the hybrid GA-PSO algorithm. The prediction method handles multiple resource indicators
simultaneously. This method combines the advantages of the two algorithms and proposes
a hybrid GA-PSO algorithm to solve the prediction problem. First, the hybrid model is used
to train the neural network, and then the neural network is used for resource utilization
prediction. The research contribution of the article can be summarized as follows. A state-
of-the-art literature review is presented that covers the analysis of different methods for
resource utilization prediction in cloud computing. A hybrid model is proposed that uses
GA-PSO to train the network to improve prediction accuracy. Comparative analysis of
the proposed model with traditional models is presented that leads to future research
directions for resource utilization prediction. The article consists of the following sections.
Related work is discussed in Section 2 with a brief description of the recent literature
related to the proposed work. The proposed model is presented in Section 3 with details
including figures, algorithms, equations, and relevant discussion. Results and discussion
are presented in Section 4, followed by a conclusion in Section 5.

2. Literature Review

Multiple services, such as processing, storage, etc., can be accessed over the Internet
using a cloud computing paradigm. The Internet is becoming faster and it is easier to access
services of cloud computing. Effective resource management in cloud-based computing can
bring improvement in the usage of resources, applications performance, and reduce usage
costs. There exists strong literature on cloud resource utilization prediction techniques. This
section presents details of the related methods. Researchers in [1] proposed a regression
integration method for intelligent resource utilization prediction. The proposed method
integrates resource usage and function selection to improve utilization and performance.
The results show that the accuracy and execution time of the proposed model are improved
as compared to existing models. In addition to the better prediction, the technique reduces
failures and results in fault-tolerant scheduling. The scalability of virtualization technol-
ogy for cloud consumers means an excessive demand or fewer resources with respect to
time [4]. Depending on this, the efficient utilization of cloud services becomes even more
challenging. The model for cloud resource utilization is time-dependent and influenced
by cloud resource usage trends. The authors proposed a Learning Automata (LA) theory-
based cloud resource usage prediction algorithm. The algorithm uses prediction models
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to calculate weights for individual models [4]. The proposed algorithm is validated with
prediction of load of many VMs. The results show that the proposed method performs
better in comparison to other prediction algorithms. Determination of the exact number of
resources for cloud computing applications is a complex task. The methods for workload
prediction are based on a single model. Researchers in [13] proposed an adaptive method
for workload prediction. This method first classifies workloads into various classes and
automatically assigns different prediction models based on the characteristics of the work-
load. Experiments are performed to validate the proposed model. Automated resource
provisioning enables flexible services by adjusting available resources to meet service needs.
The accurate prediction plays significant role in reducing the power consumption and
ensuring QoS and SLA especially for those services that have rigorous QoS requirements in
terms of latency or response time. Authors in [14] proposed a new mechanism designed
to precisely predict the processing load of distributed servers and estimate the suitable
number of resources. The proposed algorithm targets optimization of service response
time, SLAs, while reducing over-provisioning of resources to reduce energy consumption
and costs. Experimental results show that the proposed model has better accuracy than
the other compared models. Host load prediction is important for the improvement of
resource allocation and utilization in cloud computing environments. Since the amount of
global variance is more than the variance in the grid, its prediction with a certain amount of
accuracy remains a challenge in cloud-based systems. In reference [15], the authors applied
a concise adaptive and powerful model called Long Short Term Memory (LSTM) that can
predict the average load in advance in consecutive future intervals. Two real workloads are
used for the evaluation of performance. The experimental results show that the proposed
algorithm is more accurate on both datasets as compared to other models. Despite many
benefits of cloud computing, the paradigm also faces some challenges. The key issues of
cloud computing consist of dynamic resource expansion and power consumption. Inef-
ficient resource provisioning leads to inefficient cloud systems and expensive workload
forecasting. A workload prediction model using neural networks and an adaptive differ-
ential evolution algorithm is proposed in [16]. The administrators can find the potential
problems in the resource reservation plan and change the plan accordingly. The proposed
algorithm makes the decision based on over-provisioning or under-provisioning of the
resources. The extracted knowledge during the process is used to analyze the characteristics
of resource utilization. Experimental result shows that the proposed prediction of the model
is accurate than the compared methods. One of the key functions of cloud computing is
scalability, achieved through appropriate resources scheduling. An important question
is whether a resource reservation plan can be defined and used for resource scheduling
effectively. The plan can allocate new resources while reserving enough available resources.
A resource utilization prediction technique based on neural networks and self-adaptive
differential evolution technique is proposed [17]. The proposed technique is capable of
selecting the best suitable crossover and mutations. The proposed algorithm is evaluated
on benchmark datasets and comparative results are presented. Cloud computing faces
a few challenges, including dynamic resource expansion and power consumption. Such
transactions make cloud systems fragile and expensive. Researchers in [18] proposed an
algorithm to solve the problem of workload prediction in cloud data centers. The workload
prediction model was developed using LSTM network. The experimental results show that
the proposed method achieves better prediction accuracy as compared to other compared
models. In addition, to develop models based on different attributes of the workload, the
majority of clouds use only user-defined resource usage thresholds to provide automatic
scaling capabilities. Few jobs can process multiple indicators simultaneously to predict
resource forecasts. Authors in [19] proposed a new cloud-active automatic scaling system
prediction model that combines multiple mechanisms. Correlation between different met-
rics is evaluated to select suitable inputs. A fuzzification technique is proposed to reduce
the fluctuation of monitoring data. The prediction model is based on LSTM. Google trace
data are used to evaluate the proposed model. Existing cloud resource scheduling meth-
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ods mainly focus to bring improvement in resource utilization and power consumption
by enhancing traditional heuristic algorithms. The occurrence of peak loads may cause
scheduling errors, that may affect the energy efficiency of the scheduling algorithm. The
peak loads can produce scheduling errors because no predictive model is able to predict
the forthcoming resource usage of the data center by observing the data assembled by the
model at the first stage. The effective scheduling algorithms offer a perfect solution to
very complex problems while supplying the QoS as well as preventing SLA violations. To
solve these problems an algorithm is presented in [20]. The proposed scheduling mecha-
nism is responsible for resource scheduling while minimizing the consumption of energy
and guaranteeing QoS. An algorithm predicting the completion time is proposed in [21].
MapReduce packages in cloud computing can personalize the resources allocation and
finish the MapReduce jobs in a limited amount of time. Modern systems need cloud users
to estimate the number of resources required to run tasks in the cloud. The proposed frame-
work uses scale-out strategy to obtain accurate prediction of the completion time of the
jobs. The regression-based performance model can predict and evaluate the execution time
of five well-known MapReduce benchmark applications in a private cloud environment.
To capture the variability in cloud workloads, an algorithm based on gradient descent
and Levenberg–Marquardt (LM) adaptation techniques is proposed in [22]. The authors
proposed a sparse framework to adapt the online resource utilization prediction model.
The framework uses the concept of sparse networks. Different models are used to introduce
sparsity. To achieve the desired level of sparsity, the proposed algorithm eliminates and
retrains different parameters. The proposed framework is capable of fast online adaptation
of resource utilization prediction models. The algorithm is validated on benchmark datasets
in terms of accuracy. To address the issues of excessive power consumption, imbalanced
load, and inefficient resource utilization, an efficient resource management algorithm is
presented in [23]. The algorithm targets better resource utilization and load management
to improve performance. The algorithm uses online resource prediction for each VM to
reduce SLA violations and performance degradation. To achieve the desired goals VM
placement and migration policies are used. Experiments on different workloads are per-
formed to validate the performance of the proposed algorithm. Another algorithm [24]
targets multi-variate resources utilization prediction in cloud data centers. The resources
include CPU, memory, and network bandwidth. The algorithm uses a Convolutional
Neural Network (CNN) and LSTM models for resource utilization prediction. Initially,
the vector autoregression method is used to filter the linear interdependencies between
the multi-variate data. In the next step, CNN and LSTM are used for prediction. The
proposed model is evaluated with experimental results and comparative results in terms
of accuracy are presented. VMs consolidation in cloud environments leads to resource
wastage due to instability and high variability of resource utilization. To solve the issue,
authors in [25] proposed a resource utilization prediction algorithm using support vector
regression technique. The proposed method is best suitable for multi-attributes resources,
particularly non-linear workloads. The algorithm is validated with experiments on real
workloads and comparative results are presented. Despite many solutions in literature,
resource utilization prediction of multi-variate resources still needs sophisticated solutions
with improved accuracy and less execution time.

3. Models and Methods

The proposed algorithm is based on hybrid GA-PSO model [9]. The hybrid model
integrates single predictive models, which leads to overcome the limitations of the predic-
tive model in terms of cost and complexity of the final model. The main goal is to select
and appropriately combine a set of prediction techniques to improve the accuracy of the
final forecast. By combining the advantages of each predictive model and minimizing its
disadvantages, accuracy can be improved. This section presents details of the different
components of the proposed algorithm.
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3.1. Neural Networks

Neural networks inspired by biological brains are one of the most versatile and
prominent machine learning approaches. Neural networks have been widely applied
in various domains including regression, clustering, classification, prediction, pattern
recognition, learning, and robotics [5]. Standard feedforward neural network consists of
the input layer, one or more hidden layers, and an output layer. In principle, a neuron is
a strategic signal processing unit that reads numerous signals as input and then uses the
activation function (such as sigmoid) to generate a signal as an output. A sensory route
for a network to detect the environment is formed by reading the normalized signal into
the input layer. For instance, in the CPU utilization prediction problem, this signal refers
to the host CPU demand from previous time steps. This signal is first sent forward via
weighted connections through the interconnected layers of neurons. As soon as the signal
is propagated through the network, the network then generates an output signal through
the final output layer. The output signal correlates to the CPU demand in the future time
steps. Several examples in the literature show the effective use of neural networks to solve
problems like CPU utilization prediction. It is noteworthy to mention that one of the most
challenging tasks in the implementation of neural networks is training the network weights.
Training network weights, such that the network could generate a highly accurate output
for any given input is a complicated optimization problem, and, therefore, involves the
potential use of swarm and optimization algorithms. Functional Link Neural Network
(FLNN) is a class of neural networks that utilize higher combinations of inputs. Many
applications used FLNN including classification and prediction [26]. The neuron input
signal can be expressed as shown in Equation (1).

vj =
n

∑
i=1

wi,jai (1)

where ith layer is preceding to jth layer containing N neurons, vj denotes the input at jth
layer, ai is the output in the ith layer, wi,j represents the weights assigned to each output
signal when passed to every neuron in the layer. The output value of every neuron always
lies in the range between [0, 1], and it is calculated by using the activation function. The
activation function (such as sigmoid) is expressed as shown in Equation (2).

ai =
1

1 + exp(−vi)
(2)

3.2. Genetic Algorithm

GA is the optimization algorithm typically used in complex and large systems, for
the determination of values close to the global optimal value. Therefore, GA is suitable
algorithm for training neural networks. A classical GA, inspired by natural selection, is
a population-based search algorithm based on the idea of survival of the fittest. The new
populations are generated by iteratively applying the genetic operators to existing individ-
uals of the population. The core elements of GA are the representation of chromosomes,
selection, mutation, crossover, and evaluation of fitness function.

GA plays the role of training the network. Here, the bias of network with a chromo-
some that may be taken as real value vector and weighs are encoded by employing an
encoder component. On the other hand, there is also a decoder that performs the reverse
job of decoding chromosomes in form of bias of network and weighs. As GA function
needs fitness function, so the Mean Absolute Error (MAE) is calculated taking the errors in
training data into account as shown in Equation (3). In Equation (4), the fitness function is
calculated. Algorithm 1 shows GA processes in the training model.

MAE =
1
N

N

∑
i=0

(yp
i − ya

i ) (3)
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f itness =
1

MAE
(4)

Algorithm 1: Genetic algorithm
Input : p size of population

pc crossover probability
pm mutation probability
genmax max number of generations

Output : best chromosome
initialize population p=E1, . . . ., Epθ

, each entity is a d-dimension vector
Ei = (ei1, . . . ., eid)

gen=1
while (gen ≤ genmax) do

calculate fitness with equation 4
best chromosome Ebest= fittest chromosome
selection (according to the fitness function)
crossover (according to crossover probability)
mutation (according to mutation probability)

end
return best chromosome

3.3. Particle Swarm Optimization

PSO is a well-known optimization algorithm that belongs to the swarm intelligence
category. Several examples are available in the literature where neural networks are suc-
cessfully trained using PSO. This algorithm essentially consists of numerous particles
that float through the problem space analyzing the possible solutions and progressing
to the best ones. The initialization of the algorithm is performed by generating N par-
ticles with arbitrary positions xi moving with the velocities vi. Any ith particle’s ve-
locity vector can be denoted by vi = (vi1, vi2, vi3, . . . , vin) and the position vector xi =
(xi1, xi2, xi3, . . . , xin) in N-dimensional space. Every particle maintains a record of the best-
found positions/solution in the problem space called personal best denoted by pbesti, as
well as the best position found by all particles in the neighborhood represented by gbesti. Let
pbesti = (xpbest

i1 , xpbest
i2 , xpbest

i3 , . . . , xpbest
in ), and gbest = (xgbest

1 , xgbest
2 , xgbest

3 , . . . , xgbest
n ) are, re-

spectively, the best position of a particle i and the global best positions found by the
particles. At every iteration k, every particle relocates itself to a new position depending
on its previous location and velocity. On the contrary, the typical evolutionary algorithms
evaluate the new solutions by using the operator’s mutation and crossover. The fitness is
determined via objective functions, and eventually, this fitness evaluates which positions
are the best possible solutions. Every particle position is updated depending on the best
personal position of its own, as well as of its neighborhood. After (predefined) numbers of
calculation steps, the particles should be converging toward the best solution/position by
using equations of motion as shown in Equation (5).

vk+1
i = wvk

i + c1r1(pbestk
i − xk

i ) + c2r2(gbestk
i − pk

i ) (5)

In Equation (5), vk
i represents the velocity of the dimension d of the particle i in time t.

Equation (6) is used to update the position of a particle. In Equation (6), pk
i refers to the position

of particle i at time t in dth dimension and vk+1
i is the velocity calculated in Equation (5) [27].

Algorithm 2 shows the steps of PSO.

pk+1
i = pk

i + vk+1
i (6)
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Algorithm 2: Particle Swarm Optimization
Input : initial population
Output : best particles
P=population size
p=ith particle in P
calculate fitness of p according to Equation (4)
calculate velocity of p according to Equation (5)
gbest=global best position
pbest=particles’ best position
for each particle p in P do

linitialize Xt
ij randomly

initialize velocity v randomly
evaluate pi

update pbest and gbest
end
return best particle

3.4. Proposed Algorithm

The proposed resource utilization prediction algorithm is trained with hybrid GA-PSO
for better resource management. Due to the huge size of user applications and large number
of resources, resource management becomes a challenge. The accuracy of the resource
prediction model strongly influences resource utilization and other factors related to cloud
performance. The prediction model should have the ability to handle multiple resources.
GA-PSO algorithms are used to combine the two training models to help the effective
management of cloud resources. Literature shows that increasing the number of iteration
of GA-based algorithms leads to improved solutions in comparison to other algorithms.
However, large number of iterations leads to more execution time for convergence to best
solutions. On the other hand, PSO yields solutions in less time as compared to other
algorithms. However, PSO suffers from the problem of fast convergence and local optima.
The proposed algorithm takes advantage of the strength of both GA and PSO to produce
better results. The hybrid model uses diversity and fast convergence to optimal solutions
and reaches the best solution comparatively faster than other algorithms. Hybrid GA-
PSO based algorithm consists of attributes of both GA and PSO. The flow of the GA-PSO
algorithm is shown in Figure 1. The procedure starts by generating a random population
and applying GA to the initial population. After the procedure reaches half of the number
of iterations, the procedure stops and the generated solutions are passed to PSO where local
and global variables are calculated and variables are updated accordingly. The procedure
stops when the maximum number of iterations reaches. The initialization in the hybrid
GA-PSO algorithm is set up by certain number of iterations. In the first iteration, the
solution is started randomly. A series of new solutions are generated at the end of the first
iteration. These solutions are used in a recursive way to form a series of new solutions. In a
standard GA, the population is represented as a set of chromosomes. Each chromosome
consists of genes. In GA, the evolution of chromosomes occurs via crossover and mutation
operators and the selection of offspring for the next generations. Roulette wheel selection
is used in the proposed algorithm. The selection procedure uses spinning a wheel based on
the fitness value of each chromosome. For crossover clustered crossover operator is used.
In this procedure breaking points in each chromosome are selected and new chromosomes
are generated by mixing the selected points. For mutation operator swap mutation is used
where a pair of genes is selected and genes at both points are swapped. The remaining
iterations are performed with PSO taking the population generated with GA. The position
and velocity of the particles in the previous iteration are used to create new particles. The
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position and velocity are changed on the basis of pbest and gbest parameters calculated
at each iteration. These values change continuously with every iteration. In the first
iteration, pbest is equal to solutions produced by GA. The gbest solution is the one with the
lowest fitness value. In addition, a fitness-value based comparison is carried out between
the previously created particles and newly created particles at each iteration. The pbest
contains the particle having the best fitness value. At each iteration, the gbest stores the
best particle among the entire generation by comparing the fitness value with the best
value. This comparison at every step guarantees that all particles are marching towards
the best solution to reach an optimal solution. Fitness is calculated in both cases with
MAE. Algorithm 3 illustrates the implementation of the hybrid GA-PSO algorithm whereas
Figure 2 shows the flow of the hybrid model in training the network.

Algorithm 3: Hybrid GA-PSO algorithm
Input : network weights
Output : best solutions
pc crossover probability
pm mutation probability
itermax max number of iterations
initialize population p=E1, . . . ., Epθ

, each entity is a d-dimension vector
Ei = (ei1, . . . ., eid)

iter=1
while (iter ≤ itermax/2) do

calculate fitness with equation 4
best chromosome Ebest= fittest chromosome
selection (according to the fitness function)
crossover (according to crossover probability)
mutation (according to mutation probability)
select best chromosome (chromosomei)

end
set particle p=(chromosomei)
calculate fitness of p according to Eq. 4
calculate velocity of p according to Eq.5
gbest=global best position
pbest=particles’ best position
while not reach itermax do

linitialize Xt
ij randomly

initialize velocity v randomly
evaluate pi

update pbest and gbest
end
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Figure 1. Illustration of the flow of GA-PSO algorithm.

Figure 2. Illustration of the flow of the hybrid model in network training.

Figure 3 shows the predictive system of resources for the cloud [12]. The system
consists of four modules, i.e., manager, preprocessor, trainer, and predictor. The Manager
module is responsible for collecting the monitoring data regarding resources. The collected
data are stored in a repository. A database is used to store the latest monitoring data of
resources. The monitoring data stored in the database are created as historical monitoring
data and time series. The preprocessor module creates these forms of monitoring data. The
time-series data in raw form are transformed into supervised data by the preprocessor
module to adjust the input by the neural network. A variety of mechanisms are available
to be deployed that act to process the data regarding cloud workload. These include the
normalized data, averaging data in the long run, grouping into multivariate time-series, and
sliding window. After processing in preprocessor module, the data in output as historical
resources data are fed into database collector. This historical resources data creates a model
for predictions that are completed in the trainer module. For predicting the utilization of
resources, the data are given to predictors. The proposed methodology includes a learning
method added in the trainer module that uses FLNN. The GA-PSO mechanism trains the
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network one by one for increasing the speed of convergence and enhancing the accuracy of
forecasting. The designed learning mechanism is named FLGAPSONN. When the training
process is completed, the trained module predicts the utilization of resources in the future
which is done in the predictor module.

Figure 3. Architecture of the predictive systems.

4. Results and Discussion

This section presents details of the evaluation of the proposed hybrid model. The eval-
uation is carried out with publicly available Google cluster workload traces dataset [12,28].
Each job in the dataset consists of multiple concurrent tasks that run on different machines.
The dataset consists of parameters such as CPU utilization, memory consumption, disk
utilization, etc. According to the previous studies [12,28], less than 2% of the jobs take
longer than one day. As used in previous experiments, a long-running job (ID 1617658948)
consisting of 60,171 tasks was selected for evaluation. The job covers a 20 day period. The
data of the first 15 days are used for training and the remaining data are used for testing.
The evaluation consists of multivariate input where both CPU and memory are considered
and univariate input where CPU or memory are considered. To evaluate the performance
of the proposed hybrid GA-PSO model, we compared the results with traditional FLNN,
FLGANN, and FLPSONN. The compared models consist of one input layer and one output
layer with Exponential Linear Unit (ELU) as activation function.

Table 1 shows the comparative results of the proposed model with other models in
terms of MAE. The results are calculated with sliding window of size 5. The results show
that the hybrid GA-PSO model yields smaller values for both univariate and multivariate
input cases. For univariate CPU utilization prediction, the MAE of the proposed model
is 0.25 which is smaller than the 0.32, 0.29, and 0.36 produced by FLPSONN, FLGANN,
and FLNN models, respectively. In case of univariate memory consumption prediction, the
proposed model produced MAE of 0.018 which is smaller than the compared methods. In
case of multivariate CPU utilization prediction, the hybrid model produced MAE of 0.33
which is smaller than the compared methods. Similar results can be observed in case of
multivariate memory consumption prediction.
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Table 1. Comparative results of the proposed model with other models. The results are reported in
terms of MAE.

Input Model CPU Memory

Univariate

FLGAPSONN 0.25 0.018
FLGANN 0.29 0.021
FLPSONN 0.32 0.024

FLNN 0.36 0.027

Multiivariate

FLGAPSONN 0.33 0.026
FLGANN 0.41 0.033
FLPSONN 0.43 0.035

FLNN 0.47 0.039

Figures 4 and 5 show graph plots of univariate CPU and memory utilization prediction
for different models. The results include actual and predicted values. The results show that
the values produced by the hybrid models are closer to the actual values as compared to
other compared models. The results of multivariate CPU and memory utilization prediction
are shown in Figures 6 and 7, respectively. Like previous results, the hybrid model produced
closer results to the actual values.

Figure 4. Univariate CPU utilization prediction for different models.

Figure 5. Univariate memory utilization prediction for different models.
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Figure 6. Multiivariate CPU utilization prediction for different models.

Figure 7. Multiivariate memory utilization prediction for different models.

Percent improvement gain in terms of MAE of the proposed model over other com-
pared models is presented in Figures 8 and 9 for univariate and multivariate input cases,
respectively. In case of univariate CPU utilization, the proposed technique achieved per-
cent improvement gain of 21.87, 13.75, and 30.55 over FLPSONN, FLGANN, and FLNN,
respectively. In the case of memory utilization prediction, the percentage improvement
gain over the compared models is 25.0, 14.28, and 33.3. In the case of multivariate input, the
percentage improvement for CPU in terms of MAE over FLPSONN, FLGANN, and FLNN
is 23.25, 19.51, and 29.78, respectively. Improvement gain in memory over FLPSONN,
FLGANN, and FLNN for multivariate input is 25.71, 21.21, and 33.33, respectively.
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Figure 8. Percentage improvement gain of the proposed model over the other models on univariate
input case.

Figure 9. Percentage improvement gain of the proposed models over the other models on multiivari-
ate input case.

5. Conclusions

Predicting cloud resource utilization is an important issue to handle uncertainty
in cloud computing environments. In cloud computing, resources are allocated to user
applications accessible from anywhere over the Internet. To handle large number of
users, the resources need to be scaled dynamically for efficient utilization, reduced energy
consumption, and cost with better Quality of Service (QoS). The focus of this research
work is to explore the efficiency of neural networks to predict multi-resource utilization.
The proposed model uses hybrid GA-PSO to train network weights and uses FLNN for
prediction. The hybrid model is capable of training a network for accurate prediction
of multivariate resource utilization. The proposed model is validated with comparative
experimental results. The results show that the proposed hybrid model yields better
accuracy as compared to traditional techniques. It can also be concluded that due to
the possibility of rapid and excessive changes in resource utilization, the prediction of
multi-variate resource utilization is a challenging task.

The potential directions for future research can be to evaluate neural network predic-
tors further in other areas of cloud computing, such as predicting other resources such
as disk utilization, cost-effectiveness, network, and reduction in energy consumption for
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green computing. The proposed framework is evaluated with the Google trace dataset
for memory and CPU utilization. It would be constructive to endorse the proposed evo-
lutionary neural network approach further by working on other multi-variate resource
utilization datasets.
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