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Abstract: Non-Destructive Testing (NDT) is one of the inspection techniques used in industrial tool
inspection for quality and safety control. It is performed mainly using X-ray Computed Tomogra-
phy (CT) to scan the internal structure of the tools and detect the potential defects. In this paper,
we propose a new toolbox called the CT-Based Integrity Monitoring System (CTIMS-Toolbox) for
automated inspection of CT images and volumes. It contains three main modules: first, the database
management module, which handles the database and reads/writes queries to retrieve or save the CT
data; second, the pre-processing module for registration and background subtraction; third, the defect
inspection module to detect all the potential defects (missing parts, damaged screws, etc.) based on
a hybrid system composed of computer vision and deep learning techniques. This paper explores
the different features of the CTIMS-Toolbox, exposes the performance of its modules, compares its
features to some existing CT inspection toolboxes, and provides some examples of the obtained
results.

Keywords: computerized tomography (CT); defect inspection; computer vision; image processing;
deep learning; toolbox; image classification

1. Introduction

Electrical energy is one of the major pillars of the global economy. It can be gen-
erated using different resources such as fossil fuels (coal, natural gas, and petroleum),
nuclear energy, and renewable energy sources. For instance, in Canada, the shares of the
different power resources are split as follows: hydro at 60%, nuclear at 15%, coal at 7%,
gas/oil/others at 11%, and non-hydro renewables at 7% [1]. As Canada is the world’s
second largest producer of uranium [2] and due to the significant share of nuclear power in
the national production, more support is focused on the design as next-generation nuclear
energy systems improve its efficiency, such as the CANDU reactor [3]. However, nuclear-
based energy is costly due to the high operation cost and extended reactor shutdown
durations. These outages are usually caused by periodic maintenance, fault conditions, etc.
For instance, the nuclear vault has to stay shut down till all entered objects are manually
checked and identified as complete. Therefore, it is important to reduce the maintenance-
related outage cost (USD 35 per second USD 3M per outage) by accelerating the tools’
inspection. Different Non-Destructive Testing (NDT) methods have been proposed in
the literature to perform tool inspection based on different scanning technologies [4,5]:
thermography imaging, radiography techniques, ultrasonic probes, etc. Computerized
Tomography (CT) imaging is one of the emerging NDT technologies that has been used in
different applications: quality control [6,7], quantitative material analysis [8,9], medicine
[10,11], and geosciences [12]. One of the main challenges in CT-based inspection is the
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presence of artifacts and the limited-angle computed tomography, which reduces the
CT data quality. Different research works have focused on improving the CT data qual-
ity by improving the scanner configuration, such as the newly optimized reconstruction
algorithm [13–15]. The existing CT-based defect inspection methods can be classified into
two main categories: image-processing-based techniques and deep learning methods. The
first category uses signal and image processing techniques to extract the defect’s relevant
features or pattern. For instance, this kind of defect inspection is performed using near-net-
shape production techniques [16] and the kriging model with statistical models to compute
the shape deviation errors [17,18]. The second category uses deep computer vision models
trained on a labeled dataset, taking advantage of the rapid progress of this field [19–21].
For instance, some approaches use local binary patterns [22], Class-balanced Hierarchical
Refinement (CHR) [23], Convolutional Neural Networks (CNNs) [24], and spatial attention
bilinear CNNs [25]. However, the performance of the proposed deep learning models
depends on the quality and size of the training dataset. At the commercialization level,
there exists some X-ray CT-based software for quality control in industrial applications
using CT technology such as [26–28]. In addition, there are some other hardware–software
solutions for automated industrial processes, such as the Carl Zeiss AG [29] and VisiConsult
X-ray Systems [30].

In this paper, a new CTIMS-Toolbox is proposed for X-ray Computed Tomography
(CT) data inspection. It integrates computer vision techniques and state-of-the-art Artificial
Intelligence (AI) models for better external/internal tool integrity. In addition, it uses an
automation flowchart to perform the auto-inspection using the integrated techniques with
less intervention from the user. The proposed hybrid framework focuses mainly on X-ray-
based inspection to detect the structural differences between two input X-ray CT volumes
or images. The efficiency of the proposed framework is demonstrated using X-ray data of
metallic tools used in nuclear power plants. In addition, the proposed CTIMS-Toolbox can
be used for any other non-destructive testing or inspection application based on X-ray data.
For instance, it can be used for inspection of aircraft engines, gas and oil industry pipelines,
cavity detection in dental diagnosis, etc.

This paper is organized as follows. In Section 2, a general overview of the toolbox
framework features and flowchart are given. Section 3 presents the data management
module and describes how the CT data and inspection results are managed using a SQL
database. Section 4 exposes the integrated pre-processing module and presents the inte-
grated background subtraction and registration functions and their performances. Section 5
presents the defect inspection module containing the defect prediction, localization, and
characterization. An example of the obtained inspection results is given in this section.
Finally, concluding remarks and future works are summarized in Section 6.

2. CTIMS-Toolbox Framework

The proposed toolbox is a CT scan inspection software integrating data management,
data pre-processing, and defect inspection modules. This toolbox obtains X-ray CT scans
of an object before and after its use in the vault maintenance. Then, it detects the defects
and localizes their positions/locations within this object. Figure 1 shows the framework of
X-ray based tool inspection.

The proposed Toolbox GUI contains three main modules:

• Data management module: prepares the raw data coming from the scanner in a SQL database;
• Data pre-processing module: pre-processes and prepares the input CT data (2D im-

ages/3D volume) for the inspection step. This module applies two main pre-processing
functions: background subtraction and registration;

• Defect inspection module: performs an automated defect inspection based on different
computer vision and deep-learning-based inspection algorithms: defect classification,
defect localization, and defect characterization.
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Figure 1. The framework of the CT data inspection using the proposed CTIMS-Toolbox.

These modules are integrated within the Toolbox user interface using the PyQT Library
(see Figure 2).

Thanks to its automated framework, the CTIMS-Toolbox performs the defect inspec-
tion with minimal user interactions. This automated framework manages the data exchange
between the modules and their interaction with the user, as shown in the following Figure 3.

Figure 2. The user interface of the proposed CTIMS-Toolbox.

The different modules of the CTIMS-Toolbox are explained in detail in the following
sections.
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Figure 3. The general flowchart of the CTIMS-Toolbox.

3. Database Management

The data management module is responsible for handling all required data operations
through a custom-built API: data storage and data retrieval. In addition, it manages the
needed operations of the different modules of the Toolbox: retrieve customized queries for
data pre-processing or data inspection modules, store the pre-processed data, and store
the inspection results and the deep learning model. Figure 4 explores the data flow and
the user interaction. The deployed database was built using a basic data table structure to
store the data vectors: images’ and volumes’ directories, data types, deep learning model
configuration parameters, and their respective trained version.

Figure 4. The database management flowchart.
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In order to manage the data flow through the different modules of the toolbox, the
data management system was implemented in a highly centralized manner to organize and
manage data storage and usage. This database structure was implemented using MySQL
8.0 [31]. It is important to note that the MySQL server needs to be installed separately. The
created SQL server was configured using the following steps:

• Create a user account using the default username and password;
• Set the server configuration to connect to port 3306 (default port).

The database management systems save the corresponding data in a dedicated folder
structure for the tools, scans, and models as follows:

Tool: represents the scanned tool defined by: tool name, CAD files, and metadata
describing its properties such as material, volume, etc. In addition, the tool folder contains
the scan data as defined in the next element. An example of the tool folder structure is
shown in Figure 5a.

Scan: Each scan folder contains the data collected from the X-ray scanner. A scan is
defined by: collected projection images, reconstructed volume, and relevant metadata such
as image/volume size, scanner configuration, etc.

Figure 5. Example of a folder structure: (a) input tool named train_tool; (b) output results’ structure.

Inspection object: manages the outputs on the inspection module such as the trained
deep learning model version, training configuration parameters, and performance results.
An example of the inspection object is shown in Figure 5b.

3.1. SQL Tables’ Structure or Flowchart

The module creates a new database structure considering the core relationship between
the tool and its respective connected data (scan). It provides an all-encompassing, flexible,
and adaptive knowledge-base that efficiently manages the data queries: load, store, and
update. The database is designed based on the following table structure:

• Tool table: describes the tool data, including optional CAD data, stored CAD volume,
and object labels;

• Scan table: describes the scan data within a tool and includes all the metadata regard-
ing the particular scan;

• Relate tool scan table: relates the tool with its respective scan data and the locations of
the relevant directories;

• Model table: contains all trained models of the deep-learning-based inspection algorithms;
• Relate model version table: stores the trained models and tracks their versions with

further training using new data.

The relation between all tables is shown in Figure 6.
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Figure 6. Database tables’ structure diagram.

3.2. Incremental Model Training

During the deep learning model training phase, the needed data are loaded from
the database forming the training set. The training set contains scans selected depending
on the model type, the required classes/labels, and the respective tool of interest. Once
the training phase is finished, the trained model is saved back to the database with its
training parameters and performance results. However, if the trained model did not
achieve better/acceptable performance, it will be trained again on a different set of data
from the DB if available. This process keeps running till a new, better performance is
achieved. The data management module keeps track of all versions of every trained
model, including the parameters and performance results. Figure 7 shows the integrated
incremental training flowchart.
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Figure 7. Flowchart of incremental model training.

3.3. Data Management Cycle

The data are usually loaded for visualization and inspection. Then, the outcome/outputs
/results of the data usage are always stored back into the database in a closed loop to ensure
the traceability of the dataset flow. Figure 8 shows the data flow cycle in the proposed
toolbox.

Figure 8. The data flow cycle from loading to applying inspection, till the storage of the results.

3.4. Limitations

The primary purpose of database management is to control the storage, organization,
and loading of the data and algorithms. However, this does not yet address the recent data
warehousing and big-data-type structures. Therefore, some limitations encountered are
discussed below:

1. Stored data files managed by the database tables, such as images, volumes, DNN
models, etc., are saved locally in separate locations and not in the database. Therefore,
the operation can be better handled using cloud services such as Amazon AWS and
Azure cloud computing [32–34];
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2. The automatically generated metadata from the new imported tools or scans are
highly dependent on the fact that the user can carefully check the metadata and
update this in case of an error.

4. Data Pre-Processing

CT data pre-processing is a critical step in CT inspection as it represents the initial
operation to perform on the raw data collected from the CT scanner. This step prepares
the 2D or 3D CT data for the next step, such as data storage or CT inspection. Thus,
pre-processing plays an essential role in the whole inspection process. While dealing with
3D datasets, some challenges need to be considered while collecting data to improve the
visualization and inspection algorithms. First is the image reconstruction, which converts
the collected projection images into a 3D volume of the scanned object tool [35]. The
reconstruction is performed using the FDK [36] reconstruction implementation. Second, the
background subtraction or removal removes the unwanted noisy background or indications
of the support materials, which are used to fix the tool during the scanning process. Third,
the image registration corrects the geometrical misalignment and aligns the different scans.
However, the registration becomes slow and inaccurate while registering big object tools
because of the large variation in the CT scan volume sizes and appearance variances [37].
As large tools might not be scanned at once, in this case, the tool is divided into different
parts to fit into the scanner. The scans of different tool sections are individually inspected
for defects or combined to generate the whole tool scan. It is worth mentioning that data
denoising is not included in the pre-processing because of the introduced smoothing by the
registration. In addition, it is crucial to keep as much as possible all features/details of the
scanned tool to improve the inspection accuracy. Therefore, the denoising/filtering step is
performed at the level of inspection by refining the created mask using an erosion filter .
The CT data need special treatment and preparation to handle all the previous challenges
related to the raw data collected from the CT scanner. The data pre-processing module of
the proposed toolbox integrates two main pre-processing functions: background removal
and registration.

These two functions play a key role in cleaning the raw CT data and making the
data standardized for every scan. It takes two volume data as the input and returns the
background cleaned and correctly oriented volumes ready to be used for further analysis.
Figure 9 shows the general workflow of the pre-processing module. The pre-processed
data are stored in the database for future use in fault/defect inspection. More details about
these two modules are presented in the following sections.

Figure 9. The general workflow of the pre-processing module.

4.1. Background Subtraction

The background subtraction function removes the unwanted background or regions
of the input data by using an imaging library in Python called DIPY [38]. The DIPY library
function uses the median filter smoothening of the volume data and then an automatic
histogram Otsu thresholding to generate the binary mask of the tool volume from the CT
volume. It takes the following parameters:

• input_volume: 3D array of the volume data;
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• median_radius: int value representing the radius (in voxels) of the median filter. The
value was taken as zero here;

• numpass: int value indicating the number of passes of the median filter. Here, the
value was set to one;

• Autocrop: Boolean value indicating if the input volume should be cropped using a
bounding box. “False” was set in this case;

• Dilate: indicates the number of iterations for binary dilation. The default value “None”
was kept as a parameter.

Then, the binary mask volume is used as a reference to extract only the tool data from
the CT data. In this work, two different background subtractions were developed. The
binary mask is overlayed over the input volume, and then the following are performed:

• Method 1 (outer-background subtraction): removes only the outer background to
avoid removing critical ROIs from hollow object tools. The outer boundary pixels
of the tool in the scanned volume are identified, and all pixels that fall outside the
boundary pixels are removed. This methods is suitable for hollow tools;

• Method 2 (full-background subtraction): removes noisy data from both the inner and
outer parts of the tools. All the pixels that are not overlapping with the binary mask
are removed from the input volume. This methods is suitable for dense tools with
small empty spaces.

Figure 10 shows an illustration of the two background subtraction methods. The input
image has dark regions around and also inside the tool. First, the mask image is generated,
then the background pixels are identified and removed. After removing those backgrounds,
the top image is cleaned from both the inner and outer parts, and the lower image shows
the output when only the outer noisy background is removed.

Figure 10. Illustration of the 3D background subtraction.

4.2. Registration

The registration function aligns the input image/volume according to the reference
image/volume. This function was also developed using the DIPY library. The library
function performs the translation, scaling, rotation, and affine translation operations to
register 2D images or 3D volumes. There are a few parameters we need to set to register
image or volume data using the DIPY library function:

• Reference_data: the image or volume data, according to which the input data will be
registered;

• Input_data: the image or volume to be registered;
• Nbins: a value indicating the number of bins to compute the intensity histogram. The

default value of 32 was used in this case;
• sampling_proportion: a value between zero and one, indicating the sampling ratio. A

“None” value was used here to specify full sampling;
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• level_iters: a sequence of numbers indicating the number of iteration per resolution.
Three resolutions with [1000, 100, 100] iterations for 2D images and [10000, 1000, 100]
iterations for 3D volumes were specified in this case;

• Sigmas: a sequence of floats indicating the custom smoothing parameters. The default
value of [3, 1, 0] was used;

• Factors: sequence of floats indicating the custom scale factors. The default value of
[4, 2, 1] was used.

However, this library function alone cannot perform registration correctly. Therefore,
an additional feature was developed to improve the DIPY library and fit our input CT
data. In the proposed Toolbox, a new improvement denoted DIPY+ was implemented to
improve the registration function so that it fit our real CT dataset based on the following
features:

1. Propose a new metric to access the registration performance to estimate the rotational
angle between the scaled-down input and reference images/volumes;

2. Improve the quality reduction and execution time by performing a single transforma-
tion using the estimated rotational angle and transformation factors, applied once to
the original-sized images/volume instead of multiple small rotation steps using the
default DIPY library.

Figure 11 shows an example of the 2D image registration of the input image according
to the reference image. Similarly, Figure 12 shows an example of a tilted volume registered
according to the reference volume.

Figure 11. Example of 2D image registration.

Figure 12. Example of 3D volume registration.

4.3. Performance Analysis

Table 1 shows the performance of the different functions of the pre-processing data
module on real CT datasets provided by our collaborators. There were four different
combinations of methods with which we compared the results, as shown in Table 1.
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Table 1. Performance analysis of the pre-processing module.

Dataset Background
Subtraction Registration PSNR

(dB)
Execution
Time (s)

Real CT data
Outer-

background
removal

DIPY 25.77 357
6 min

Volume size

DIPY+ 37.71 1112
∼18.5 min

113× 166× 113 Full-background
removal

DIPY 24.62 341
∼5.7 min

DIPY+ 35.13 1095
∼18.3 min

The Peak Signal-to-Noise Ratio (PSNR) value was used to measure the performance.
The obtained results showed that Method 1 and DIPY+ was the best combination to
achieve a higher PSNR. In addition, with Method 2 (full-background subtraction with
complete inner and outer noise removal), the lower density internal components of the
tool were sometimes removed with noise. Thus, this method cannot be used for hollow
tools with small internal components. It is worth mentioning that the DIPY library’s
efficiency significantly decreased while dealing with the big rotational difference between
the reference and input data.

Figure 13 shows an example of the introduced surface-level distortion due to the
registration and the reduction in the volume resolution. It also demonstrates that the
proposed DIPY+ performed better than the standard DIPY registration. Therefore, the
proposed DIPY+ enhanced registration algorithm can solve the distortions related to the
big volume size. However, this cannot be guaranteed for a huge volume size (greater than
1000× 1000× 1000), which needs to be processed in sub-volumes.

Figure 13. Example of quality reduction due to registration. With outer-background subtraction and
using DIPY+ (top) and using DIPY (bottom).

4.4. Limitations

The main limitations of the pre-processing module are presented as follows:

• Resizing the image or volume is required to meet the computational resources: mem-
ory and GPU speed. However, some small defects will become undetectable after
scaling down the original volume;

• Registration will further affect the defects’ detection by smoothing the image/volume.
This will introduce fake surface defects’ detection, of which we need to be aware.
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5. Defect Inspection

Defect or fault inspection is performed in a hybrid framework integrating all the
computer vision and deep-learning-based algorithms. Therefore, the final decision is
derived from different detection phases (prediction, localization, and characterization)
depending on the type of data and the availability of annotations. Figure 14 presents the
defect inspection flowchart with the user and system interaction.

Figure 14. The full inspection flowchart in the CTIMS-Toolbox.

The main components of the defect inspections are presented in the following sections.

5.1. Defect Classification

Defect prediction is the first step of the inspection where the scan is classified as
defective or defect-free. Image classification research and applications are growing rapidly
due to advances in Machine Learning (ML) and deep learning. In recent decades, many
classification models, techniques, and frameworks have been presented. Some works
focused on developing new frameworks to reduce spatial redundancy in image classifi-
cation tasks, saving computational cost, memory footprint, and power consumption [39].
Wickramanayake et al. [40] introduced a framework, BetteR Accuracy from Concept-based
Explanation (BRACE), to recognize candidate samples obtained from image repositories
for data augmentation. Other works proposed new model architectures to deal with model
scalability with high-resolution features such as the Global Filter Network (GFNet) [41].
Carter et al. [42] proposed a batched gradient SIS to find sufficient salient supporting input
features/subsets in complex datasets. Some other works focused on missing labels and in-
complete annotation, such as Hu et al. [43], who proposed a novel method named “one-bit
supervision” for data annotation in image classification tasks with incomplete annotations.
In the defect prediction/classification function, different state-of-the-art deep learning
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architectures are used as a backbone to perform binary classification of 2D images/3D
volumes. Figure 15 shows the general framework of the architecture of defect prediction.

Figure 15. Example of the general framework of Convolutional-Neural-Network (CNN)-based binary
classification.

The input image needs some preparations and pre-processing such as resizing and
data augmentation such as random rotation, horizontal and vertical flip, and color jitter.
Figure 16 shows an illustration of the classification framework.

Figure 16. The classification framework with data augmentation.

For instance, the classification framework uses the Resnet18-based model for binary
classification. The performance of the trained model, for 200 epochs using real CT dataset,
is shown in Figure 17.

Figure 17. Example of the training/validation loss and accuracy of the ResNET18 classification
model.
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On that note, during the data preparation, it was ensured that the class distribution
of the dataset had a balanced number of images. Our contribution brings into light the
application of existing deep learning architectures such as Resnet18 on industrial CT scans
for image classification.

5.2. Defect Localization

The defect localization uses the image processing algorithm to localize the defect
based on the residual image between the faulty image and the reference image (defect-free
image). It is worth mentioning that the object might be noisy, tilted, or shifted. Thus, it
is crucial to pre-process the images to ensure that the reference image has the maximum
similarity to the faulty image. For 2D images, the defect localization is based on the
analysis of the residual image and noise refinement to cancel the noise and neglect the
non-relevant fault. The localization algorithm and flowcharts are presented in Figure 18
and Algorithm 1 respectively.

Figure 18. The DSP-based defect localization flowchart.

For a 3D volume, this same algorithm is extended to defect localization by applying it
on every single slice of the volume. The output defect slices are concatenated, forming the
final output 3D defect volume.

The defect volume is further processed to categorize its defect by size based on binary
erosion [44]. An example of the obtained results is shown in Figure 19.
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Figure 19. Example of defect categorization.

Algorithm 1: The DSP-based defect localization algorithm

1 Input: y0: 2D image before the use of the tool
2 y1: 2D image after the use of the tool
3 Amin: minimal detectable defect area

4 Output: y2: 2D image with fault detection bounding boxes
5 Ω: set faulty pixels
6 ———————————————————————–
7 � Registration of the images y0 and y1

8 yr
0, yr

1 = registration(y0, y1)

9 � Background subtraction
10 ys

0 = subtract_background(yr
0)

11 ys
1 = subtract_background(yr

1)

12 � Compute the residual mask
13 mask = create_mask(ys

0, ys
1)

14 � Fault detection
15 Ω = ∅ Initialize the fault set for all area A in the mask do
16 if A ≥ Amin then

17 Ω = Ω ∪ {A}

18 end

19 � Show detected faults Ω
20 y2 = Bounding_box(y1, Ω)

5.3. Fault Characterization

The defect characterization localizes the defect and recognizes its characteristics: type,
location, and name of the defect (missing parts, broken parts):

• Defect location;
• Defect type: missing component, broken component;
• Name of the defective component;
• Additional statistics: defective volume ratio.

The defect characterization uses a labeled 3D volume of the tool to recognize and
characterize the different defective components. The flowchart of the defect characterization
is shown in Figure 20.
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5.4. Limitations

The strength of the inspection module encompasses different factors and advanced
features that can be summarized in two main points: First, build an automated full-
inspection framework based on the combination of image processing and the deep learning
technique contributing to the final inspection report and improving its accuracy. Second, use
the inspection result, after expert validation, for further training of the learning models. This
will build more generalizable and adaptive learning models with stable and trustworthy
outcomes. However, there are still some limitations to be investigated in the future, such as:

• The module performance is highly dependent on the reprocessing module. Therefore,
the obtained result becomes better with a good preparation and processing step:
background subtraction and registration;

• The parameters of the defect detection algorithm are tuned to an optimal value for
the data used. This parameter might slightly affect the performance when using new
data.

Figure 20. The defect characterization flowchart.

6. Comparison to Some Existing Inspection Toolboxes

In terms of industrial applications, there exist some X-ray-CT-based software solutions
on the market for CT visualization and inspection such as [26–28]. In addition, other products
use hardware–software solutions for automated industrial processes such as the Carl Zeiss
AG [29], the robotic inspection arm of VisiConsult X-ray Systems [30], CT inspection with
automated tool-loading robotic arms [45], and robotic U-shaped inspection arms [46]. Table 2
shows a detailed comparison of the existing CT inspection systems and algorithms.
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Table 2. Comparison of existing CT inspection algorithms and systems.

System
Defect

Localization Commercialized Remarks

DSP DNN

DIRA-GREEN [45] X
DIRA-GREEN

( accessed on 17 February 2022)
+ automated system
− only for small-sized tools

Automated Defect
Recognition (ADR) [16] X

qualinet
( accessed on 17 February 2022)

+ different defect location images are used
as the “golden” image to compare with
− only valid for one unique tool
of known shape and defect locations

RoboTom [46] ? ? RaySCAN
( accessed on 17 February 2022)

+ inspect large assembly joints
− focuses on porosity in weld defects

ADR X-ray inspection [30] ? ? XRHRobotStar
( accessed on 17 February 2022)

+ small and medium parts’ inspection
+ Part recognition
− focuses on porosity in weld defects

CTIMS-Toolbox X X (not yet)
+ small and medium parts’ inspection
+ CT data annotation
− validated only for metallic materials

7. Conclusions and Future Work

This work explored a new computer-aided diagnosis toolbox, called CTIMS-Toolbox,
for X-ray CT data inspection. The CTIMS-Toolbox is based on a hybrid framework integrat-
ing computer vision and deep-learning-based algorithms. It contains three main modules:
the data management, pre-processing, and defect inspection modules. The toolbox allows
the input CT scan data to obtain an automated inspection report based on three detection
steps: prediction, localization, and characterization. It can incrementally learn from the
user experience to generate annotated data that are used to train the deep learning models
further and improve their performance. The latter helps build a valuable knowledge base
that can help accelerate the inspection operation and provide preventive insights about
the tool’s safety for future usage. However, the different CTIMS-Toolbox modules have
some limitations related to the database management, especially for a big data size, the
quality distortion after the pre-processing step, the long execution time, and the parameter
tuning for the inspection module. These limitations can be further improved as follows:
Data management: While the design of the database can certainly be restructured, there is
significant potential to completely redefine the database framework by using big-data-type
structures, such as graph-based databases [47,48] or columnar databases [49]

Preprocessing module: The integrated background subtraction and registration are
implemented and tested on scans of one tool’s data. In the future, when different tools
and scanning machines will come into use, we will work on the automation of the pre-
processing module by the adaptive parameter selection based on the input CT data. In
addition, we will optimize the implementation to reduce the execution time and storage
capacity.

Inspection module: We will focus on designing an adaptive selection of the inspection
algorithm’s parameters to fit all kinds of variability in X-ray CT data. Thus, we will use a
deep regression model to estimate the optimal input parameter based on the input data
features: noise level, resolution, contrast, etc.

Finally, the proposed CTIMS-Toolbox can inspect 2D and 3D CT data and generate
annotations based on the inspection results after validation by an expert. With a proper
configuration of the scanner parameters, beam energy, and detector resolution, the proposed
toolbox can be used for most materials such as metal, plastic, wood, etc.
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