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Abstract: Compared with the traditional few-shot task, the few-shot none-of-the-above (NOTA)
relation classification focuses on the realistic scenario of few-shot learning, in which a test instance
might not belong to any of the target categories. This undoubtedly increases the task’s difficulty
because given only a few support samples, this cannot represent the distribution of NOTA cate-
gories in space. The model needs to make full use of the syntactic information and word meaning
information learned in the pre-training stage to distinguish the NOTA category and the support
sample category in the embedding space. However, previous fine-tuning methods mainly focus
on optimizing the extra classifiers (on top of pre-trained language models (PLMs)) and neglect
the connection between pre-training objectives and downstream tasks. In this paper, we propose
the commonsense knowledge-aware prompt tuning (CKPT) method for a few-shot NOTA relation
classification task. First, a simple and effective prompt-learning method is developed by constructing
relation-oriented templates, which can further stimulate the rich knowledge distributed in PLMs
to better serve downstream tasks. Second, external knowledge is incorporated into the model by
a label-extension operation, which forms knowledgeable prompt tuning to improve and stabilize
prompt tuning. Third, to distinguish the NOTA pairs and positive pairs in embedding space more
accurately, a learned scoring strategy is proposed, which introduces a learned threshold classification
function and improves the loss function by adding a new term focused on NOTA identification.
Experiments on two widely used benchmarks (FewRel 2.0 and Few-shot TACRED) show that our
method is a simple and effective framework, and a new state of the art is established in the few-shot
classification field.

Keywords: commonsense knowledge-aware prompt tuning; few-shot none-of-the-above relation
classification; pre-trained language models; scoring strategy

1. Introduction

In recent years, few-shot none-of-the-above relation classification has received widespread
attention due to the fact that it is more in line with real-world applications. In the original
N-way K-shot relation classification, all queries are assumed to be in the given relations
set. However, the vast majority of sentences do not express specific relations or relations
that are in the given set, which should also be taken into consideration. This calls for
the none-of-the-above (NOTA) relation, which indicates that the query instance does not
express any of the given relations. As shown in Figure 1, the relation between two entities
contained in the query instance does not belong to category A, B, or C. The model needs to
recognize that there is no relationship between the two entities, so we choose D. It is very
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difficult to classify the query by calculating the similarity of the query and support samples,
especially for selecting the threshold that distinguishes the NOTA class from others.

Robbie and Chambers 

collaborated to create the song 

“better man”.

Ernst Haefliger was born in 

Davos on July 6, 1919.

“My Shining Hour”is a 

song composed by Arlen.

A.Composer

B.Cooperation

C.Born in

Support set

D.None-of-the-above (qurey instance not belong to any of relation above mentioned)

Harold  participated in the release of 

the song “STAY”.

Query instance×

×

×

√

Figure 1. An example for a 3-way 1-shot scenario on few-shot NOTA relation classification. Calculate
the similarity between query and each support sample. If the highest similarity value is greater than
the NOTA category threshold, the query relation is the same with the support instance, which is most
similar to the query instance; otherwise, the query relation is NOTA.

A lot of works have been devoted to identifying the NOTA relation. Han et al. [1] pro-
posed a model named BERT-PAIR based on the sequence classification model in BERT [2],
which treated NOTA the same as other relations and optimized the model with the cross-
entropy loss. Ofer et al. [3] proposed a novel classification scheme in which the NOTA
category threshold was represented as learned vectors in the embedding space. Nev-
ertheless, there are still several non-trivial challenges for the few-shot NOTA relation
classification. On the one hand, previous fine-tuning methods require adding extra classi-
fiers on top of pre-trained language models (PLMs) and further training the models under
classification objectives, which do not take full advantage of the knowledge learned during
the pre-trained phase, especially when there is a NOTA relation between entities. On the
other hand, the distances of negative pairs in the embedding space are loose. The score
values of negative pairs after the softmax function are very small, which causes the model
to learn about negative pairs insufficiently.

To address the limitation of current few-shot methods, we propose a commonsense
knowledge-aware prompt tuning (CKPT) method for few-shot NOTA relation classification.
First, we follow the route of prompt-based prediction developed by the GPT series [4], and
introduce it into a few-shot NOTA relation classification. Prompt-based prediction treats
the downstream task as a (masked) language modeling problem, where the model directly
generates a textual response (referred to as a label word) to a given prompt defined by a
task specific template (see Figure 2). Compared with conventional fine-tuning methods,
prompt learning does not require extra neural layers and closes the objective formal gap
between pre-training and fine-tuning. Second, we use external commonsense knowledge to
generate a set of expanded label words for each original label, which are not only synonyms,
but also cover different granularities and perspectives. These expanded labels are more
comprehensive and unbiased expressions for original relation labels. For example, the
naive verbalizer none means that only predicting the word none is regarded as a NOTA
relation during inference, regardless of the predictions of other relevant words, such as
without and nor, which are also informative for NOTA relation. Third, we propose a NOTA
loss function to optimize the similarity score on recognizing the NOTA relation, which
improves the problem that the score values of negative pairs after the softmax function are
too small. When training our backbone, the NOTA loss function is added to the overall
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loss to encourage the model to accurately detect NOTA examples, in addition to accurately
performing the episode’s classification task.

[CLS]As we all know, London is  the biggest city in the UK...        In this sentence, the London is the [MASK] of the UK.[SEP]

[CLS]Washington is located in the United States...   In this sentence, the Washington is the [MASK] of the United States.[SEP]

Input

Input

Prompt

Prompt

Copy the entity
Copy the entity

Copy the entity Copy the entity

MLM

MLM

Support sample

Query sample

{

{

Predict

Predict

Figure 2. The illustration of prompt tuning for obtaining the vector (mask) prediction of the support
sample and query sample. MLM is the self-supervised masked language model of the BERT.

The main contributions of our paper can be summarized as follows: (1) We propose
a commonsense knowledge-aware prompt tuning model for the few-shot NOTA relation
classification that injects commonsense knowledge into prompt label construction. (2) We
design a learned scoring strategy on top of the embedding of our model, which can distin-
guish the NOTA pairs and positive pairs in embedding space more accurately. (3) Extensive
experiments on two few-shot benchmark datasets (FewRel 2.0 and Few-shot TACRED)
illustrate the effectiveness of our model in low resource NOTA relation settings.

2. Related Work
2.1. Few-Shot Relation Classification

The few-shot relation classification [5] task aims to classify the semantic relation under
a few annotated data [6] of domain relation classes. Han et al. [7] first proposed the FewRel
dataset for few-shot relation classification, and adopted some state-of-art few-shot methods
intended for computer vision, including meta networks [8], few-shot GNN [9], and neural
attentive meta-learning [10] to the FewRel dataset.

Meta-learning [11] is the science of systematically observing how different machine
learning approaches perform on a wide range of learning tasks, and then learning from
this experience, or meta-data, to learn new tasks much faster than would otherwise be
possible. Specifically, it samples few-shot classification tasks from training samples belong-
ing to the base classes and then optimizes the model to perform well. The meta-learning
based methods can be roughly categorized into two groups (memory-based methods and
optimization-based methods). Memory-based methods are based on the idea of training
a meta-learner with memory to learn novel concepts. Meta-LSTM [12] trained an LSTM-
based meta-learner to learn the exact optimization algorithm, as well as a mechanism for
updating the learner’s parameters by a handful of the sample set. Similarly, Meta-SGD [13]
trained a meta-learner that can produce learner’s initialization in just one step, on both
supervised learning and reinforcement learning. To improve the performance of the model
with less training data, MICK [14] aggregated cross-domain knowledge into models by
open-source task enrichment. The model aimed to classify query instances, and sought
basic knowledge about supporting examples to obtain a better example representation.
Wang et al. [15] proposed the CTEG model, which is trained by entity-guided attention
and is confusion-aware to decouple easily confused relations. Optimization-based meth-
ods follow the idea of differentiating an optimization process over support-set within the
meta-learning framework. Dong et al. [16] proposed a novel meta-information-guided
few-shot relation classification model (MAML) which utilizes semantic concepts of classes,
guiding meta-learning in both initialization and adaptation. To handle the uncertainty
of the prototype vectors, Qu et al. [17] used the stochastic gradient Langevin dynamics
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(SGLD), which parameterized the initial prior of the prototype vectors with a graph neural
network on the global relation graph.

Another branch in the few-shot [18] relation classification field is metric-learning-based
methods, which embed the samples into a metric space so that the samples can be classified
according to similarity to or distance between each other. Relation network [19] adapted
the convolutional neural network to extract the features of support and query samples, and
the relation classification scores were obtained by concatenating the vectors of support and
query samples into the relation network. To overcome the catastrophic forgetting problem,
Cai et al. [20] introduced a two-phase prototypical network, which adapted prototype
attention alignment and triplet loss to dynamically recognize the novel relations with a few
support instances without catastrophic forgetting. Similarly, Fan et al. [21] proposed the
large-margin prototypical network with fine-grained features (LM-ProtoNet), which could
generalize well on few-shot relations classification. To learn predictive and robust relation
representations from the training phase, Ding et al. [22] proposed prototype learning
methods with geometric interpretation, where the prototypes were unit vectors uniformly
dispersed in a unit ball, and the sentence embeddings were centered at the end of their
corresponding prototype vectors. Wu et al. [23] expanded the mean selection to dynamic
prototype selection by fusing a self-attention mechanism and proposed a query-attention
mechanism to more accurately select prototypes. Our approach is based on a pre-trained
encoder [2], which belongs to a metric-learning method.

2.2. Open-World Detection

The essence of the NOTA category resembles open-world detection, as in both cases,
the goal is to detect instances not falling under the known categories. Tan et al. [24] defined
the OOD classes as the set of all classes that were not part of the training classes (vs.
NOTA, which means that none of the given support classes in an episode are present).
Andreas L. et al. [25] proposed a novel framework as a solution to the open world learning
problem. Willes et al. [26] proposed the small-context and large-context few-shot open-
world recognition (FS-OWR) problem settings, extending the scope of the existing open-
world recognition setting to include learning with limited labeled data. The above work
made great progress in image open-domain recognition, but there are few studies on
open-domain few-shot relation classification tasks.

2.3. Prompt-Tuning

Since the emergence of GPT3 [27], prompt tuning has received considerable attention.
GPT-3 [27] demonstrates that with prompt tuning and in context learning, large-scale
language models can achieve superior performance in the low-data regime. The authors of
Ref. [27] suggest that this framework is powerful and attractive for a number of reasons:
it allows the language model to be pre-trained on massive amounts of raw text, and by
defining a new prompting function, the model is able to perform few-shot or even zero-shot
learning, adapting to new scenarios with few or no labeled data. Liu et al. [28] surveyed and
organized research works in a new paradigm in natural language processing, which was
dubbed “prompt-based learning”. They introduced the basics of this promising paradigm,
described a unified set of mathematical notations that could cover a wide variety of existing
work, and organized existing work along several dimensions, e.g., the choice of pre-trained
models, prompts, and tuning strategies.

The following works [29,30] argued that small-scale language models [2,31,32] could
also achieve decent performance using prompt tuning. Some research works have been
conducted on text classification or the tasks in SuperGLUE [33]. Ding et al. [34] applied
prompt tuning to entity typing with prompt learning by constructing an entity-oriented
verbalizer and templates. To avoid label-intensive prompt design, automatic searches for
discrete prompts have been extensively explored. Gao, Fisch, and Chen et al. [35] first
explored the automatic generation of label words and templates. Shin et al. [36] designed
automatic verbalizer searching methods for better verbalizer choices. However, their
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methods required an adequate training set and validation set for optimization. Recently,
some continuous prompts have also been proposed [37,38], which directly utilize learn-
able continuous embeddings as prompt templates. For relation extraction, Han et al. [30]
proposed a model called PTR, which applied logic rules to construct prompts with several
sub-prompts. Previous fine-tuning methods mainly focus on optimizing additional clas-
sifiers, thus requiring more training samples to converge. Prompt methods reformulate
downstream tasks as closed tasks with textual templates and a set of label words, and the
design of templates is proved to be significant for prompt-based learning. In this work,
we propose the CKPT model, which uses external knowledge to boost the performance of
prompt tuning. Compared to the previous strategies, our method can effectively utilize
more than 50 related label words from common knowledge for each class, and can be
effectively applied to a few-shot NOTA relation classification.

3. Materials and Methods

This section introduces the overall framework of our CKPT model for NOTA few-shot
relation classification. The overall architecture of our CKPT model is shown in Figure 3.
In the following, we first introduce the task definition (Section 3.1), and then give the
details of our proposed method: (1) the commonsense knowledge-aware prompt tuning
method that measures the distance in the learned embedding of a few-shot classifier
(Sections 3.2 and 3.3), and (2) the learned scoring strategy on top of the embedding of
CKPT, which introduces a NOTA loss function to improve the ability to identify NOTA
relation (Section 3.4).
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Figure 3. The framework of commonsense knowledge-aware prompt tuning. The right part shows
the process of encoding input class supports, and the left part shows the process of encoding the
input query.
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3.1. Problem Definition

Given a training set Dbase containing samples of base classes Cbase, the goal of the
N-way few-shot NOTA relation classification task is to train a model with Dbase to predict
the relation rq between the entity pair

(
hq, tq

)
mentioned in the query sentence q, where

rq ∈ Cnovel = {r1, r2, . . . , rN , NOTA}, and Cnovel ∩ Cbase = ∅. That is, the novel classes are
totally different from the base classes, and the number of class labels in the novel classes is
N + 1. In addition, for a K-shot task, each class label ri ∈ Cnovel is provided by K support
samples, Si =

{
sij
}K

j=1, where sij represents the j-th support sample sentence for class ri,
and sij contains two entities hij and tij. In summary, the task is to predict the label rq of a
query q according to the set of support samples, {Si}N+1

i=1 .

3.2. Prompt Tuning Construction

Prompt tuning formalizes the classification task into a masked language modeling
problem. Specifically, prompt-tuning wraps the input sentence with a natural language
template, where several words are obscured that imply a relation between two entities
contained in the sentence. For example, as show in Figure 2, an input query is “London is
the biggest city in the UK”. The entities contained in the query are kept. The converted input
to the model is “[CLS] + original sentence + In this sentence, the London is the [MASK] of the
UK.[SEP]”. Similarly, a support sample for the relation class of the above query, “Washington
is located in the United States.”, is converted to the sentence, “[CLS] +xsupport+ In this sentence,
the Washington is the [MASK] of the United States.[SEP]”. LetM be a language model pre-
trained on large scale corpora (in this paper, we use BERT). Let q = (xq

1, hq, xq
3, . . . , tq, . . . , xq

n)
be a query sentence, where hq and tq are two entities, and n is the length of the query. After
preprocessing, the converted sentence of q is input to theM. Its contextualized representa-
tion is produced, such as {hq

[CLS], hq
1, . . . , hq

[MASK], . . . , hq
[SEP]}. Finally, the representation of

[MASK] is fed into an output layer ofM to predict the probability distribution over the
vocabulary space:

Pq(h
q
[MASK] = v, v ∈ V|q) = so f tmax(Whq

[MASK] + b), (1)

where W and b are trainable model parameters, V is the vocabulary of the model, and v
is a word in the vocabulary V. The above formula gets the probability that the relation
contained in the question is v. Similarly, input the support samples of each class separately,
and the similarity between each class and each word in the vocabulary is obtained. Let
sij = (x

sij
1 , hij, x

sij
3 , . . . , tij, . . . , x

sij
m ) be the j-th support sample for relation class ri. Wrap sij,

input to the pre-trained language model M, and obtain the representation of [MASK],
h

sij
[MASK]. The similarity between the relation represented by this support sample, and each

word in the vocabulary is

Pij(h
sij
[MASK] = v, v ∈ V|sij) = so f tmax(Wh

sij
[MASK] + b). (2)

For the K-shot task, there are K support samples for each relation class. Thus, in-
put K support samples separately and obtain K probability distributions. Finally, the
mean-pooling operation is performed to integrate the probability distributions over the
vocabulary space obtained by K support samples of a relation label:

Pri (ri = v, v ∈ V|Si) = POOL(Pi1(h
si1
[MASK] = v, v ∈ V|si1), . . . , (3)

PiK(h
siK
[MASK] = v, v ∈ V|siK)) (4)

where POOL represents a mean-pooling operation.
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3.3. Commonsense Knowledge Enhanced Prompt-Tuning

The process of predicting masked words based on the context is not a single-choice
procedure, that is, there is no standard correct answer. There are a wealth of words that
may be suitable for this context. To reduce the uncertainty of predictions of the masked
language model, we expand the label set. The expanded labels come from the synset of
the original labels and form a new label space, which is screened from a commonsense
knowledge base. Next, the label words that are split into multiple tokens are removed since
they tend to be more tricky to handle in the training objective. Then, T similar extended
labels are kept. Let Vi denote the subset of V, which is mapped into a specific label ri. The
learned weights are introduced to measure similarity between the input query q and the
relation label ri by the following function:

λi
k =

exp(Pri (ri = vi
k, vi

k ∈ Vi|Si))

∑T
k=1exp(Pri (ri = vi

k, vi
k ∈ Vi|Si))

. (5)

where T is the number of extended labels for one original label. The similarity between the
query q and the vocab vi

k for class ri is calculated by

P(vi
k|q) = λi

kPq(h
q
[MASK] = vi

k, vi
k ∈ Vi|q). (6)

The probability distribution that the query q contains the extended label for relation ri is

Pi
q = [P(vi

1|q), P(vi
2|q), . . . , P(vi

T |q)] (7)

Similarly, the similarity between the class ri and the extended label vi
k for class ri is

calculated as
P(vi

k|Si) = λi
kPri (ri = vi

k, vi
k ∈ Vi|Si). (8)

The similarity between the original label ri and extended labels for ri is:

Pri = [P(vi
1|Si), P(vi

2|Si), . . . , P(vi
T |Si)] (9)

Since the impact of the label and query sample should be measured at the distribution
level, we choose Jensen–Shannon divergence as a metric to measure the similarity of the
two distributions. The more similar the samples, the smaller the value of the divergence
distribution. Let JS(·||·) denote the Jensen–Shannon divergence function. Thus, 1− JS(·||·)
is used to represent the similarity between the label and query sample. The probability
score of the query q containing relation ri is computed by

s(q, ri) = T − JS(Pi
q||Pri ) JS(·||·) ∈ [0, T]. (10)

Specifically, the Jensen–Shannon divergence is calculated by

KL(Q(x)||P(x)) = ∑ Q(x)log
Q(x)
P(x)

, (11)

JS(Q(x)||P(x)) =
1
2

KL(P(x)||P(x) + Q(x)
2

) +
1
2

KL(Q(x)||P(x) + Q(x)
2

) (12)

where Q(x) and P(x) are any two probability distributions.

3.4. A Learned Scoring Strategy

There are two situations in which the query should be classified as the NOTA class.
One situation is that the two entities in the query do not have any relationship, and the other
situation is that the two entities in the query have a certain relationship, but this relationship
does not belong to any labels provided by the dataset. We design a learnable classification
strategy to distinguish the NOTA relation by introducing a threshold parameter. The
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threshold is determined by the labeled samples in the training set. Calculate the similarity
between any two classes in the support set, and average them as the threshold

θ =
1

(L− 1)! ∑L
i ∑L

j=i+1s(ri, rj), (13)

where L represents the total number of classes in a support set. After obtaining the similarity
between the query and each class, {s(q, ri), ri ∈ Cnovel}, the classification strategy of the
model is as follows. If the similarity score of the query and any class is lower than the
threshold θ, the query belongs to the NOTA relation. Otherwise, the query belongs to the
class with the highest similarity score.

When the relation contained in the query and class are negative pairs, their similarity
is very low. After passing the softmax function, the probability of the similarity of negative
sample pairs will be 0, which makes standard softmax prediction probability fail in the
few-shot setting and the original cross-entropy formulation unsuitable for NOTA detection.
Thus, a special term is added to the overall loss to accurately detect NOTA examples, in
addition to accurately performing the episode’s classification task. Intuitively, adding this
term will change the embedding when training the model, making the optimized score
perform well on the NOTA task. The overall loss function is as follows:

Loss({s}) = − ∑
r(target)∈r+

log s(q, r(target))− ∑
r(¬target)∈r−

τ log(T − s(q, r(¬target))) (14)

where r+ is the positive sample set, r− is the negative sample set, {s} is the set of similarity
scores between the query and each class, including the scores of the query and the positive
class {s(q, r(target)), r(target) ∈ r+}, and the scores of the query and the negative class
{s(q, r(¬target)), r(¬target) ∈ r−}, and τ is a penalty parameter.

4. Results

In this section, we conduct experiments to evaluate the effectiveness of our methods.

4.1. Dataset

As shown in Table 1, we use two fine-grained few-shot relation extraction datasets:
FewRel 2.0 [1] and Few-Shot TACRED [39].

Table 1. Number of relation instances in the FewRel 2.0 and Few-Shot TACRED datasets.

Dataset Train Val Test

FewRel 2.0 70,000 2500 3000
Few-Shot TACRED 8163 633 804

FewRel 2.0 [1] is a more challenging few-shot relation classification task with the
none-of-the-above setting based on the N-way K-shot setting. It adopts the original FewRel
training set for training and the newly annotated dataset for testing. Additionally, FewRel
2.0 includes the SemEval-2010 task 8 dataset as the validation set.

The Few-Shot TACRED [39] dataset was collected from a news corpus, purposing
extracting relations involving 100 target entities. Accordingly, each sentence containing a
mention of one of these target entities was used to generate candidate relation instances
for the RC task. The relation label was annotated as 1 of 41 pre-defined relation categories,
when appropriate, or into an additional no relation category. The no relation category
corresponds to cases where some other relation type holds between the two arguments, as
well as cases in which no relation holds between them. The Few-Shot TACRED dataset has
a test set including 10 relations, a val set including 6 relations, and a training set including
25 relations.



Appl. Sci. 2022, 12, 2185 9 of 17

4.2. Experimental Setup

The NOTA few-shot relation classification is based on the N-way K-shot setting.
For the original N-way K-shot setting, each episode has a query instance q, the correct
relation label rq ∈ {r1, r2, . . . , rN}, and each class has K samples. For the NOTA few-shot
classification, the correct relation label becomes rq ∈ {r1, r2, . . . , rN , NOTA} rather than
rq ∈ {r1, r2, . . . , ri}.

The parameter NOTA rate is to describe the proportion of NOTA queries at the test
stage. For example, a 0% NOTA rate means no queries belong to the NOTA relation and
the 50% NOTA rate means half of the queries have the NOTA label.

Accuracy is adopted as the evaluation metric

Accuracy =
TP + TN

TP + FP + FN + TN
(15)

where TP + TN is the number of queries correctly classified, and TP + FP + FN + TN are the
number of all queries.

4.3. Experimental Details

We use the BERT base [2] as the backbone structure of our model, initialized with the
corresponding pre-trained cased weights. The hidden size is 768, and the number of layers
is 12. Models are implemented by the Pytorch framework and Huggingface transformers.
BERT models are optimized by AdamW with the learning rate of 6 × 10−5. The training
batch size used is 16 for all models. In the supervised setting, each model is trained for
10 epochs and evaluated on the dev set every 1000 steps. In the few-shot setting, each
model is trained for 16 epochs and evaluated every 10–50 steps; each time the evaluation is
run for 200 steps. Experiments are conducted with CUDA on NVIDIA Tesla V100 GPUs.

4.4. Models

CKPT—Our commonsense knowledge prompt tuning approach adding a common-
sense knowledge expanded label on the basis of the prompt tuning approach.

Sentence Pair [1]—A fine-tuned BERT-based model utilizing the embedding-based
next sentence prediction score of BERT [2] as the similarity score between a query and each
support set instance.

Threshold [1]—A fine-tuned BERT-based model setting a predetermined thresh-
old for NOTA few-shot classification. When the NOTA option is present, the NOTA
class tests queries whose similarity with all of the target classes does not surpass the
predetermined threshold.

NAV [3]—A fine-tuned BERT-based model for few-shot classification with the NOTA
class. In this approach, the NOTA class is represented by an explicit vector in the embedding
space, which is learned during training. At test time, the similarity between the query
and this vector is computed and regarded as the probability that the query belongs to the
NOTA relation.

MNAV [3]—A natural extension of the NAV approach, which is to represent the NOTA
class by multiple vectors, whose value is an empirically tuned hyperparameter.

4.5. FewRel 2.0 Result

We first confirm the appropriateness of our investigation by comparing the perfor-
mance of the prior FewRel 2.0 test data. Table 2 presents the figures on the two official
(synthetic) test NOTA rates for this benchmark. We use the 50% NOTA rate to train all our
models, with 3000 episodes per epoch. As shown, the CKPT model performs best across all
FewRel settings, obtaining a new state of the art for this task.

We next turn to a comparison of the investigated embedding-based few-shot models
on the FewRel 2.0 val set, with a 50% NOTA rate. Most of the previous models used a
50% NOTA rate for experiments. We chose a 50% NOTA rate to compare CKPT with
previous models more comprehensively. The results in Table 2 show that the CKPT model
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outperforms others in both settings. The gap between CKPT and the previous state-of-the-
art model is significant for the two settings.

Overall, the prompt-tuning methods have shown certain improvements, compared
to directly fine-tuned models. It shows that the prompt-based method does help with
capturing contextual information from a given sentence. It is also observed that the
magnitude of the improvement and the preference of the prompt encoding strategy may
vary with different datasets. The prompt-tuning method seems less effective on the FewRel
2.0 test dataset than on the FewRel 2.0 val dataset. It indicates that the effect of the prompt-
based method partially depends on the characteristics of the dataset and that different
prompt designs may suit different data.

Table 2. Accuracy(%) results on FewRel 2.0 dataset for the four available settings for this benchmark.

Dataset Model 1-Shot(15%) 1-Shot (50%) 5-Shot(15%) 5-Shot (50%)

FewRel 2.0 test

Sentence-Pair 77.67% 80.31% 84.19% 86.06%
Threshold 63.41% 76.48%. 65.43 % 78.95%

NAV 77.17% 81.47% 82.97% 87.08%
MNAV 79.06% 81.69% 85.52% 87.74%
CKPT 80.37% 83.02% 86.26% 88.12%

FewRel 2.0 val

Sentence-Pair 70.32% 75.48% 74.27% 78.43%
Threshold 63.28% 76.32% 66.89% 80.30%

NAV - 78.54% - 80.44%
MNAV - 78.23% - 81.25%
CKPT 73.28% 81.25% 77.92% 83.62%

4.6. Few-Shot TACRED Results

We compare the CKPT, MNAV, NAV, sentence-pair and threshold-based models over
the Few-Shot TACRED test set. As seen in Table 3, the performance of CKPT is better
than others, just like the situation for FewRel 2.0. Due to several differences between the
datasets, including training size, NOTA rate, and different entity types, the results on
Few-Shot TACRED are drastically lower than those obtained for FewRel 2.0. The most
important reason is that the training data on FewRel TACRED are significantly less than the
training data on FewRel 2.0, and the ability of the traditional fine-tune method to train the
model to learn to measure the gap between samples is significantly weakened. In contrast,
the prompt tuning method converts downstream tasks into tasks similar to the pre-train
stage to fully tap the potential of the pre-training model. In addition, the fewer the labeled
data, the greater the alignment with the theme of small sample learning. The pre-training
model uses the self-supervised masked language mechanism to learn a large number of
text features in the pre-train stage and uses the prompt tuning method to apply this part
of the information in the classification to reduce the dependency of downstream tasks on
annotated data.

Table 3. Micro F1 results on Few-Shot TACRED.

Model 5-Way 1-Shot 5-Way 5-Shot

Sentence-Pair 10.19 ± 0.81% -
Threshold 6.87 ± 0.48% 13.57 ± 0.46%

NAV 8.38 ± 0.80% 18.38 ± 2.01%
MNAV 12.39 ± 1.01% 30.04 ± 1.92%

CKPT 15.14 ± 1.12% 32.26 ± 2.13%

4.7. Ablation Experiments

In this section, we conduct ablation studies to analyze how each component affects
the few-shot recognition performance. Table 4 shows the results of our ablation studies
on the FewRel 2.0 development set. PT is a prompt tuning approach based on BERT [2]
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and uses the traditional cross entropy loss function. NOTA-Loss is a novel loss function
approach Section 3.4 for few-shot NOTA classification. PT+NOTA-Loss is a prompt tuning
approach using the novel loss function approach (Section 3.4) and does not use the method
of extending the label. It indicates that the model using NOTA-Loss achieves better results
compared with the model using the traditional cross-entropy loss. This is because NOTA-
Loss uses coefficients to amplify the loss of two samples that are not related to the two
entities, and the model learns more about these parts of the samples. In addition, the label
of the masked language model in the pre-train stage is the entire vocab text. Therefore, in
the prompt tuning prediction stage, the model may predict words with similar meanings
to the label, causing model classification errors. As shown in Table 4, we use commonsense
knowledge to expand the label, which can reduce the contingency of the masked language
model for label prediction and improve the prediction performance of the model.

Table 4. An ablation study of our proposed method on the FewRel 2.0 development set.

Model 5-Way 1-Shot (50%) 5-Way 5-Shot (50%)

PT 79.64 ± 0.10% 82.25 ± 0.13%
PT + NOTA-Loss 80.35 ± 0.15% 82.76 ± 0.14%

CKPT 81.25 ± 0.12% 83.62 ± 0.13%

4.8. Effect of Templates

The choice of templates may have a huge impact on the performance in prompt learn-
ing. In this section, we carry out experiments to investigate such an influence. The results
demonstrate that the choice of templates exerts a considerable influence on the performance
of prompt-based few-shot learning. As shown in Table 5, the phrase that describes the loca-
tion “in this sentence” contributes a remarkable improvement in performance. Specifically,
as we only change the direction of the relations and yield such improvements, prompts
are position aware. Therefore, the automatic selection of different templates for different
datasets is also the main direction of our future research.

Table 5. Effect of templates. The results are produced under the development set dataset by CKPT.

Template 5-Way
1-Shot (50%) 5-Shot (50%)

x.the entity1 is the [MASK] the entity2. 80.34 ± 0.11% 82.16 ± 0.18%
x.In this sentence, the entity2 is the [MASK] the entity1. 80.95 ± 0.12% 82.87 ± 0.14%
x.In this sentence, the entity1 is the [MASK] the entity2. 81.25 ± 0.12% 83.62 ± 0.13%

4.9. NOTA Rates Impact

We control the unrealistic NOTA rate in FewRel 2.0 by training and evaluating our
model on higher NOTA rates. The results in Figure 4 indicate that as the NOTA rate
increases, the rate of decrease in the accuracy of CKPT is significantly less than that of
MNAV. This is because pre-trained language models learn a lot of predictive capabilities
related to NOTA in the unsupervised pre-training stage. Compared with the pre-trained
model, CKPT can predict the NOTA relation more accurately.

At the same time, it can be observed that the predicted F1 value of the model will
become worse as the NOTA rate increases, mainly because the model is difficult to judge
the None category without any relationship between entities. The “None” category is not
only a relation that has never appeared in the training set, but also has many texts from
different corpora. There will be some differences in different corpora, which undoubtedly
increases the difficulty of model judgment. Therefore, improving the robustness of the
pre-trained model is also our main work in the future.
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Figure 4. CKPT and MNAV results on the FewRel 2.0 dev dataset at different NOTA rates.

4.10. Effect of NOTA Loss

Figure 5 provides the visualization of the t-SNE-transformed feature representations.
We can observe that for the model using softmax cross-entropy loss, some features of
positive samples and negative samples are mixed, and the boundary between positive
and negative samples is not clear. Traditional softmax cross-entropy loss causes the loss
of negative sample pairs to be too small, resulting in insufficient model learning and the
overlap of the distribution of positive and negative samples in the embedding space. To
solve this problem, NOTA loss is introduced to learn the uniform distribution of negative
classes in the feature embedding space by amplifying the negative sample loss and using
the coefficient factor to control the proportion of negative sample loss and positive sample
loss. It can be seen from the Figure 5 that NOTA loss enables the model to fully learn the
characteristics of negative samples and improves the distribution of positive and negative
sample pairs in the embedding space.
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Figure 5. Cont.
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Figure 5. A t-SNE plot of the computed feature representations of instances in the FewRel 2.0 val set.
Node colors denote relation classes: P921 is a number of relationship classes, and the none-of-the-
above denote the NOTA relation. (a) Softmax cross entropy loss; (b) NOTA loss.

4.11. Effect of the Number of Expanding Label Words

Expanding the number of labels has an important impact on the experimental results.
In order to find a suitable number of labels, we have conducted many experiments. As
shown in Figure 6, when the number of extended labels is small, increasing the number of
labels can greatly improve the results of the experiment, but when the number of labels
exceeds 50, the accuracy of the experiment gradually decreases. This is because the number
of highly relevant synonyms in the knowledge base is limited. As the number of extended
labels increases, the correlation between the extended labels and the source labels becomes
lower and lower. These low-correlation extended labels become noise that affects the final
experimental accuracy. Therefore, in this article, all experiments use an extended label
number of 50.
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Figure 6. Effect of the number of expanding label words, and the NOTA rate used in the experiment
is 50%.
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4.12. Run-Time of the Model Prediction

As shown in Table 6, we conducted experiments on the prediction time of the model
on the FewRel 2.0 dataset. The predictions used in the experiments are 5way-1shot and
5way-5shot, respectively. It can be seen from the figure that the prediction time of CKPT is
the shortest, because the model structure of CKPT is simpler, and the parameters of the
model are smaller than those of NAV and MNAV. At the same time, the current pre-training
model has a large number of parameters, and the overall inference speed is still very slow.
In the future, we will also study knowledge distillation, quantization and other methods to
build a pre-training model for fast inference of our tasks.

Table 6. The run-time of the model prediction.

Model 5-Way 1-Shot 5-Way 5-Shot

NAV 0.52 s 2.62 s
MNAV 0.68 s 3.12 s

CKPT 0.47 s 2.28 s

5. Conclusions

In this paper, we contribute to the few-shot NOTA relation classification with a concise
and effective prompt tuning baseline named commonsense knowledge-aware prompt
tuning. We propose a commonsense knowledge-enhanced method for prompt tuning that
injects commonsense knowledge into the prompt label construction in order to express the
NOTA relation more comprehensively. We design a learned scoring strategy on top of the
embedding of our model, which is specially designed for the NOTA task combined with
the prompt-tuning method to more accurately identify the NOTA class. Experiments show
that our method achieves a new state of the art in the field of few-shot NOTA classification,
indicating that the use of the prompt tuning method to classify samples is a promising
direction for future research.

Our approach can also be applied in areas such as cultural heritage [40] and labor
market analysis [41]. However, commonsense knowledge-aware prompt tuning methods
are handcrafted and somewhat straightforward. A natural direction for improving it is
training an additional convolutional neural network end to end to measure the transduc-
tive similarity.

In our experiments, we found that different templates have a great impact on the accu-
racy of the pre-training model, and the training method of the pre-training model during
the pre-training process also has a great impact on the experimental results. Therefore,
there are two important directions for future work: (1) design a unified task format and
corresponding pre-training objectives for other types of tasks, such as language generation
and relation extraction, and (2) build an automatic template generation tool to generate
different templates for different tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

NOTA None-of-the-above
PLMs Pre-trained language models
CKPT Commonsense knowledge-aware prompt tuning
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