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Abstract: The agenda of Industry 4.0 highlights smart manufacturing by making machines smart
enough to make data-driven decisions. Large-scale 3D printers, being one of the important pillars in
Industry 4.0, are equipped with smart sensors to continuously monitor print processes and make
automated decisions. One of the biggest challenges in decision autonomy is to consume data quickly
along the process and extract knowledge from the printer, suitable for improving the printing process.
This paper presents the innovative unsupervised learning approach, bootstrap–CURE, to decode
the sensor patterns and operation modes of 3D printers by analyzing multivariate sensor data. An
automatic technique to detect the suitable number of clusters using the dendrogram is developed.
The proposed methodology is scalable and significantly reduces computational cost as compared to
classical CURE. A distinct combination of the 3D printer’s sensors is found, and its impact on the
printing process is also discussed. A real application is presented to illustrate the performance and
usefulness of the proposal. In addition, a new state of the art for sensor data analysis is presented.

Keywords: CURE; hierarchical clustering; cluster validity indices; Calinski–Harabasz index; boot-
strapping; Industry 4.0; 3D printing

1. Introduction

Industry 4.0 [1] has been revolutionizing the manufacturing practices with a strong
influence on mechanization and automation. Inadvertently, this also brings up the impor-
tance of sensors and their pattern analysis. A sensor is a physical device that detects or
measures an external signal and records it or responds to it. A comprehensive definition
and types of sensors are explained in the work [2]. New generation machines are now
equipped with dozens of sensors to extract data at high temporal resolution. An exhaustive
analysis of the data provided by sensors can help obtain crucial information about the
health of the overall system, as well as developing tools for faster knowledge extraction
and automation. Sensor data are typically unlabeled and thus demand an unsupervised
methodology to characterize their impact on a machine and also explainable AI techniques
to interpret the results from a semantic point of view. When a 3D printer works in the
real production environment under smart manufacturing [3], most of its activities are
completely automated and governed by an electronic control system. There can still be
situations when the printer stops a print job or results in some fault, and this leads to
a lot of open questions. A proper understanding of machine operations under various
conditions can help answer what factors cause such problems.

The main goal of this paper is to use data to study the behavior of the 3D printer
machine to better understand its operation and to obtain insights with respect to the control
systems that govern the printing process in a real production environment. Understanding
what factors result in a successful or unsuccessful job and how they are expressed through
sensor data is crucial for the future development of 3D printer technologies.
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It is important to note that this behavioral study is conducted from the perspective of
aiding the printer manufacturer in predictive maintenance as well as gaining a superior
understanding of the printing subsystems and their operation modes by solely using the
multivariate sensor data.

This research addresses the enterprise-grade multi-jet fusion 3D printers working in a
real production environment. As these machines operate in the customer’s environment
with strict confidentiality agreements, neither confidential data (such as print-layer images
or video) nor any external modification to the printer are possible, and this is why this
approach is based on the mere use of sensor data. This situation also applies to other
domains outside 3D printing, such as wastewater treatment plants [4], gas turbines [5],
aero-generators [6], etc. Therefore, the methodology proposed in this paper may be useful
in other Industry 4.0 application domains as well.

The long-term goal of this research is to build an intelligent diagnosis system that can
understand what leads to a failure while the machine is operating and can react in real time
to restore the normal behavior of the machine. In the long term, it is also expected to predict
such failures in advance and react preventively. The focus of this paper is a preliminary
step to reach these goals. This step consists of identifying and understanding the main
operation modes exhibited by the machine and eventually association with different kinds
of failures.

Thus, the main goal of the proposal is to provide a tool that identifies states of oper-
ation in the 3D printing machine without needing any prior hypotheses on the number
of clusters and is also suitable for analyzing a large amount of data in a rather short
computation time. This is directly related to the use of hierarchical clustering methods,
where the real number of existing clusters is not required as an input parameter. How-
ever, hierarchical clustering is of quadratic complexity and does not scale up to large
datasets automatically.

Although the research is focused on analyzing sensor data from 3D printers, the
clustering methodology itself is agnostic to the domain and can be used in any generic
application wherein data from sensors are used. Thus, the final and fourth contribution of
this paper is to provide a general conceptualization of the field of sensor data.

The structure of the paper is as follows. First, a summary of the motivation behind
the research, including the high-level goals, is presented in Section 1. A brief overview
of 3D printing is shared in Section 2, followed by the literature review of state-of-the-art
models in Section 3. The contributions of the paper are explicitly mentioned in Section 4.
Section 5 describes the methodology and continues to Section 6, providing an application
from a real-life dataset from 3D printing. Section 7 discusses the proposed methodology in
an industrial setting of 3D printers. The paper finally rests with the conclusion in Section 8
along with the future lines of work in the research.

2. 3D Printing Process

The term, additive manufacturing (commonly known as 3D printing), has been drawing
attention from different sections of the industries by allowing the digitization of physical
models. In [7], a review of the main 3D printing technologies can be found.

One of the major advantages of 3D printing is the ability to produce a monolithic
structure of complex geometry. This is possible by building parts through a stack of thin
cross sections in an additive manner. Hence, this type of printing also saves print material,
which is often wasted in traditional subtractive manufacturing. Some of the key 3D printing
technologies are as follows [8]:

1. Fused deposition modeling: Machine lets the plastic filament melt and extrude
through nozzles onto the bed platform, where it is cooled and solidified.

2. Binder jetting: Machine distributes a layer of powder onto a build platform, and a
bonding agent helps to fuse the parts. The process keeps repeating until the parts are
built up in the powder bed.
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3. Laser sintering: Uses a laser as a power source to aim at points in 3D space to sinter
the powder material and create a solid part.

4. Laser melting: Machine uses laser(s) to melt metal powder.
5. Stereo-lithography: Machine builds parts out of liquid photopolymer through poly-

merization activated by a UV laser.

This paper focuses on finding interpretable models to describe the work done on
anonymized sample sensor measurements from HP Multi-Jet 3D Fusion printers. According
to the overview provided in additive manufacturing [7], the jet-fusion technology is a further
improvement developed by HP, on the fused deposition modeling and polyjet technologies.
A brief technical introduction of multi-jet fusion technology is provided in the work [9].
Such 3D printers are equipped with dozens of sensors placed across different components
to measure and control factors, such as temperature, humidity, velocity, pressure, etc. A 3D
printing process is a complex job, where many parameters must align among themselves
for the success of the job. A brief technical introduction of multi-jet fusion technology is
provided in the work by [9].

The data collected through the sensors network of the printer are produced in a
streaming mode and sent to a cloud-based server for further processing. Analyzing the
sensor-based network is challenging in the sense that it is required to run the analysis on
the fly and be able to ingest large amount of sensor data rather quickly.

3. State-of-the-Art

The literature review is divided into two major parts, focusing, respectively, on data
science applications in sensor analysis (Section 3.1) and the methods to scale hierarchical
clustering and identify the best number of clusters (Section 3.2.1).

3.1. Data Science Applications in Sensor Analysis

The field of sensor analysis has been quite active in recent years, with both academics
and industry contributing to the research alike.

Although one can find innumerable data science applications of sensor data (including
the one in 3D printing) in the literature, and it is difficult to write an exhaustive survey, the
authors identify the following main research areas.

• Anomaly detection;
• Automatic reporting and visualization;
• Pattern analysis;
• Process control;
• Predictive maintenance.

The authors were thus able to synthesize the map displayed in Figure 1. The authors
conclude that most of the literature in this field can be grouped into five broad categories
as shown in Figure 1. This picture helps to organize the contents of this section.

3.1.1. Anomaly Detection

A majority of works in recent times focus on using sensor data to detect anomalies in
real time or offline data. This itself is a fairly general framework with applications in a wide
variety of domains, ranging from healthcare, autonomous vehicles, printing, internet-of-
things, etc. The literature can further be subdivided based on the kind of algorithms used
for the modeling. Deep learning-based methods are most popular in this category [10],
sometimes in their classical supervised version [11,12], and sometimes in an unsupervised
deep learning approach, such as Ref. [13] applying autoencoders to detect anomalies in
an aircraft system, and Parllaku et al. [14] and Karna et al. [15] finding anomalies in 3D
printing processes. Although deep learning techniques generally have high accuracy, there
is a high variety of architectures depending on each concrete application. This implies that
the sensor data behave differently as per the application field. In addition, the inability of
neural network models, in general, to explain anomalies is a big industrial challenge for
research purposes.
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Figure 1. Sensor analyses goals.

Although relatively fewer, there are still several studies using other machine learning
methods, most of them hybrid approaches combining different techniques: Ref. [16], where
hybrid random forest with wavelet transform is developed to recognize vehicle steering
mode and further detect abnormal behavior; some references based on the combination
of support vector machines with other techniques, such as deep belief networks [17] and
DBScan [18]; or statistical applications, such as kernel PCA [19]. These works propose
a hybrid scheme of using a previously unsupervised method to identify anomalies and
build a predictive model on top of using SVM. Although SVM provides more explainable
predictions than deep learning, their learning times are not scalable to big-data-based real
industrial scenarios yet.

3.1.2. Automatic Reporting and Visualization

Here, the authors find works contributing mainly to visualizing traffic coming from
sensors and interpreting their patterns. From analyzing EEG (ElectroEncephaloGram) [20,21],
to visualizing traffic data [22], a good visualization tool can allow interacting with anoma-
lies in real time [23] or combine common system abnormalities with simple descriptive
statistics [24]. In this field, interactivity and visual interfaces provide business dashboards
and tools to track key business process indicators. This field focuses more on the human–
computer interaction than intensive algorithmic models.

3.1.3. Pattern Analysis

A typical data challenge in industrial applications is to discover or recognize patterns
from sensor data. A large number of works use clustering techniques and related methods
to discover patterns or characterize features. In [25], a theoretical approach to density
estimation clustering on sensor networks is found. Although the literature is limited with
respect to pattern recognition research in Industry 4.0, some important works have been
found in the following. In [26], the unsupervised deep convolutional network was used to
recognize patterns of cyber attacks in industrial wastewater treatment plants, whereas [27]
used Markov models on sensor data to identify patterns of energy consumption and com-
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fort management in intelligent buildings. Some noteworthy work in the characterization
of sensor signals using k-means clustering was done by Hromic et al. [28] on sensor data
for air quality, and Loane et al. [29] used clustering to find patterns of households based
on domestic sensors. Ref. [30] used k-means and support vector machines (SVM) to first
identify patterns of print conditions in selective laser melting machines and then identified
them with an SVM model.

Some of these works are approaching the dynamics of the system. In [26], a univariate
approach of time series modeling was followed, while in [27], a multivariate approach was
used for characterizing the relationships among the sensors along time. All other works
are based on clustering, finding groups of similar objects under a multivariate approach.
K-means is used frequently, although it requires many runs and finding the optimization
criteria to identify the right number of clusters. Only one work used hierarchical cluster-
ing [29], showing evidence that the optimal number of clusters is obtained by running
several k-means and optimizing the silhouette index results in the same number of clusters
given by the dendrogram of the hierarchical clustering. Specific to 3D printing, only one
work is found that combined k-means with a classifier to identify types of operation with a
predictive model. The authors also want to use clustering to identify types of operation of
3D printers and thus understand the relationships among sensors. A detailed overview of
the related works in clustering is provided in Section 3.2.

3.1.4. Process Control

Process control and monitoring sensors is highly relevant for Industry 4.0. The lit-
erature is relatively limited and mostly comes from the field of time series forecasting or
supervised machine learning based on images.

A number of references describe supervised learning applications especially on small-
scale 3D printers (commonly based on fused-deposition-modeling principle). Some notable
works that help in detecting quality of 3D printed part are presented in [31–36]. Although
these works provide valuable contributions to 3D printing especially in detecting and
monitoring part quality, they assume the possibility of using tagged data to train the
models, and they are mainly based on images of video processing. These approaches are
out of the scope of this research for several reasons:

• The need to obtain supervised data every time a model has to be trained is unrealistic
in real Industry 4.0 manufacturing.

• In a customer environment with a fleet of 3D printers installed, obtaining global
knowledge of the machines’ health from the manufacturer’s perspective would require
analyzing data anonymously, as any confidential data (involving 3D print design or
the print images) other than the sensor records cannot be shared or stored outside the
customer site.

• Additionally, some of these works assume the possibility of installing additional
cameras into the 3D printers; however, in an industrial setting, this is not always
possible, as only customers have the sole decision-making authority to make any
changes.

The time series approach based on sensor data seems a more suitable reference for our
research. In this regard, some works merit a reference. In [37], an application from the iron
and steel industries processes sensor data through a discrete-time extended Kalman filter for
both process state estimation and sensor data fusion. Understanding the sensors’ patterns
and invoking real-time process control can tremendously improve print job success on a
whole. In the context of 3D printing, process control helps monitor the evolution of the
part by printing layers and guarantees the overall success of the job. In process control,
some works can be found in the field of 3D printing, although they are not suitable for our
research goals. In [38], exponential weighted moving average (EWMA) charts are used to
monitor the process parameters and detect shifts in the fused deposition printing process
and thereby assess geometrical deformations of the printed part. In [39], Zang et al. present
a novel scheme of simulating surface properties of printed part by defining in-control and



Appl. Sci. 2022, 12, 2191 6 of 29

out-of-control specifications and use bootstrap sampling to estimate the control limit of
several control charts. Both of these works consider small-scale 3D printers. In the context
of a large-scale 3D printer, such as multi-jet fusion, such approaches do not apply, as the
machine is far more complex, so process monitoring cannot be limited to just one surface
of the part, and external cameras are also not applicable. However, it is interesting to see
the idea of introducing bootstrap techniques in the processing to scale up the modeling.

3.1.5. Predictive Maintenance

Predictive maintenance [40,41], is the latest trend in Industry 4.0 to provide superior
customer experience by using an automated and highly interconnected network of sensors
to predict faults at the early stage and minimize industrial downtime. Predictive main-
tenance is a wider approach and mostly includes anomaly detection by detecting faults
at an early stage in addition to estimating the remaining useful life and time-to-failure of
equipment in industrial processes. A general framework of designing predictive mainte-
nance solution is described in [42] with a case study from steel industries to estimate the
degradation of coiler drums, using the discrete Bayesian filter. Bonci et al. in [43] used the
wavelet decomposition model to analyze and predict faults in Cartesian robots based on
the motor current signal, while Lin et al. in [44] presented an ARIMA-based time series
prediction approach to predict the remaining useful life of the target device in the factory
settings based on aging features. Gibert et al. [45] used clustering techniques to assess the
health of the wind turbines based on sensor data and introduced some post-processing
techniques to interpret the meaning of the clusters and the associated healthy state they
represent.

Deep learning techniques are also frequently used in predictive maintenance. In [46],
autoencoders and deep belief networks were proposed for early fault detection in digital
manufacturing. In [47], dynamic predictive maintenance framework was proposed for
the turbofan engine by using deep learning. In [48], deep learning was used on IoT for
predictive maintenance of a Porsche car based on the sound recorded on different parts of
the engine.

Shi et al. [49] concluded that multi-core CPU machines do not scale sufficiently well
for training deep neural networks and still require a dedicated GPU. This is a a serious
limitation for those Industry 4.0 applications with machines embedded with computation-
intensive hardware, such as 3D printers, as adding a GPU implies increasing the printing
time of jobs. This also adds extra cost to the total value of the machine. Additionally,
deep learning models are generally assumed to be black-box in nature and cannot explain
the proposed predictions, which is critical in a decision-making context, as predictive
maintenance often is.

Thus, there is no existing method known to be effective in analyzing and controlling
the manufacturing process in the context of multi-jet large-scale 3D printers [50]. A machine
like a multi-jet 3D printer, running non-stop and generating tons of data, would thus require
appropriate statistical techniques to ingest data and process them rather rapidly. Hence,
for a suitable insertion in real production systems, near-real-time and non-supervised
approaches are required; classic deep learning approaches for predictive maintenance
might not be suitable.

In this paper, the authors are attempting to establish telemetry monitoring and analysis,
using an unsupervised learning approach (hierarchical clustering in particular) with a
focus on explainable artificial intelligence methods.

3.2. Clustering Strategies

In general, clustering refers to the task of grouping similar objects. Xu et al. [51]
provided a comprehensive survey of various clustering algorithms. While hard-clustering
algorithms (e.g., hierarchical and k-means) uniquely assign an object into a single cluster,
soft-clustering methods, such as fuzzy-clustering, rather assign each object with a certain
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membership degree to belong to different clusters. Fuzzy clustering provides a fuzzy
partition as a result and requires defuzzification in the post-processing step.

Gupta et al. [52] presented a new approach based on evolutionary multi-objective
optimization in fuzzy clustering to identify clusters at different levels of fuzziness. Lah-
mar et al. [53] provided a self-adaptive fuzzy c-means method to find the number of
clusters; however, scalability to large datasets is not guaranteed in the paper. Shirkhor-
shidi et al. [54] provided an evolving fuzzy-clustering approach, where a small subset of
data is clustered in every epoch, centroids are generated, and a global clustering takes
place using k-means on these centroids. Although this work also elaborates on the idea
of finding previous clusters and making a further clustering over centroids, the use of
k-means demands a clear hypothesis on the number of clusters in each epoch, which is not
possible in the real 3D printer management application field that the authors are targeting.

Among non-fuzzy clustering algorithms, k-means is one of the most popular for its
ability to work on large datasets. Sebastian et al. [55] provided an interesting application
of k-means clustering in the characterization of snore signals in the context of upper-
airway collapse. Chakraborty et al. [56] proposed the Lass-weighted k-means algorithm
specifically useful for a high-dimensional dataset, such as gene-expression data. Another
interesting algorithm was developed by Gondeau et al. [57], using object-weighting in k-
means clustering. The algorithm therein can help as a data preprocessing step to deal with
outliers, especially in the case of noisy data. This method attempts to increase the weights
of the outliers instead of removing them from the study. The results of this algorithm on
both simulated and real-life datasets are quite promising too. However, the context of the
current research is far from the situation where the real number of clusters to be built is
known a priori, and all partitioning methods, including k-means, require the number of
clusters to be found as an input parameter. For this reason, the authors will not work with
partitioning methods.

In some recent works, the use of evolutionary and meta-heuristic optimization is also
seen in the context of clustering. Li et al. [58] used gravitational search to optimize the
number of clusters (obtained using DBSCAN approach) in multiple iterations. The final
number of clusters is, however, decided manually. The approach seems scalable to large
datasets; however, the requirement of running the algorithm in multiple iterations limits the
application on cases where near-real-time data are to be analyzed rather quickly, such as the
data from 3D printers’ sensors. In the current research, the 3D printing sensor data require
quicker analysis on a large amount of data, and running multiple iterations may not be
acceptable from the practical point of view. Liu et al. [19] proposed another meta-heuristic
optimization to improve the maximum-entropy clustering method. The applications of such
an algorithm on large-scale data would be interesting to check.

In the current age of deep learning, the graph-convolutional network algorithm was
provided by Zhao et al. [59] for incremental clustering. The algorithm was tested on face
images and showed promising results. However, in the context of this paper, the authors
deal only with the unsupervised sensor data, and no print images are provided for the
analysis. The authors’ goal is to generate a tool to support the learning and management of
3D printers at the manufacturer’s site; the images are available only at the customer site
and are bound by privacy clauses. Indeed, all customer images are confidential and not
available to the company making the printers.

Some other recent works in the literature also include the work done in subspace
clustering to deal with high dimensional datasets. Menon et al. [60] proposed a parameter-
free approach in the subspace clustering, where the data are clustered based on statistical
distribution within a subspace. The performance of the algorithm is also shown on various
public datasets. In our context, distributional assumptions might be a challenge.

3.2.1. Hierarchical Clustering and Automatic Identification of the Number of Clusters

Hierarchical clustering creates a tree-like structure, called the dendrogram, to disclose
the internal multivariate structure of data by moving from a pairwise distance matrix
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toward nested partitions on data. Unlike other clustering algorithms, such as k-means, it
does not require prior knowledge about the number of clusters, as the clusters result from
the appropriate horizontal cut of the dendrogram (see Section 5.2).

In [9], the authors presented an analysis to discover print profiles based on a random
sample using hierarchical clustering with Ward’s method. However, hierarchical clustering
has higher space and time complexity than partitioning methods (as k-means does) and
seems not very reliable for real applications comprising sensor data. Indeed, the standard
algorithm is O(n2), in both space and time [61] and although some implementations in
class O(nlog(n)) are available, it is still prohibitive for large datasets. Rafsanjani et al. [62]
discussed different hierarchical clustering algorithms along with their comparison.

3.2.2. Clustering Using Representation (CURE)

CURE is a clustering algorithm that combines hierarchical clustering with sampling to
deal with bigger datasets at smaller computation costs. Guha et al. [63] presented the CURE
(clustering using representation) algorithm that can scale hierarchical clustering up to large
datasets. The CURE algorithm can broadly be divided into two phases: initialization
and completion. Initialization begins with taking a random sample without replacement
from the original population and applying hierarchical clustering. Both the number of
representative points and the shrinkage factor can be optimized as part of hyperparameter
tuning. In the completion step, for each resulting cluster, CURE chooses a small set
of representative points which are well scattered inside the cluster (so representing the
shape of the cluster itself) and after shrinking toward the cluster centroid, a KNN scheme
is used to assign the cluster to all remaining objects by computing distances toward
all those cluster representatives. Due to its robust approach, the CURE algorithm can
even recognize arbitrary shaped geometries while being robust against outliers. Another
important advantage of the algorithm is that it is linear in space complexity, of order
O(n); however, the time complexity is still of order O(n2log(n) [63]. The algorithm also
does not need any strict assumption about the distribution of the data inside the clusters.
However, in the context of big data [64], this method is still not sufficiently scalable.
In this paper, a modification of CURE is proposed to increase the model capacity based on
bootstrap strategies.

3.2.3. Detection of the Number of Clusters

The most common strategies used in deciding the number of clusters in a hierarchical
setting are cross-validation, resampling, and finding the knee or elbow of an error curve.
The approach of cross-validation aims at computing the regression coefficients on the v− 1
portion of the dataset and validating the same on the vth portion, which is not used in
building the regression model. The approach, however, becomes time intensive for large
data and is not recommended. In [65], Kawamoto et al. proposed a criterion to detect the
number of clusters in a modular network, using a leave-one-out cross-validation approach.
Fu et al. [66] proposed a cross-validation-based approach to determine the number of
clusters in a k-means type of clustering. Hence, the idea of using cross validation in
clustering is to iteratively test which cluster solution yields the lowest error rate and
consider that the best clustering solution. However, as pointed out by McIntyre et al.
in [67], cluster analysis has no such linear coefficients which can be applied to multiple
random samples and true cluster membership is rather unknown. Consequently, the
cross-validation strategy cannot be used globally for all cases. This was also highlighted by
Krieger et al. in [68], where the authors demonstrated how the cross-validation technique
fails in hierarchical clustering by doing an Monte-Carlo simulation-based study of cross-
validation techniques under different conditions.

Several works related to using resampling methods to decide the number of clusters in
data can be found in the literature. In [69], Overall and Magee presented a replication-based
stopping rule in which a replication defined by higher-order clustering helps identify the
distinct underlying populations (clusters) in a multidimensional space. An improved ver-
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sion of this criterion was presented in [70], where Tonidandel et al. used the bootstrapping
procedure along with the increase in the size of the resampled dataset with respect to
the primary dataset and thus showed an increase in accuracy of the clustering solution.
Related work is found in [71], where Fang et al. discussed a bootstrapping-based approach
to estimate the clustering instability and then select the best number of clusters.

Another popular method of finding the optimal number of clusters is to seek the local
maxima (or minima) corresponding to the knee or elbow of a curve that plots values of some
clustering evaluation criteria on a range of numbers. Sevilla et al. in [72] reviewed several
CVIs and their association with the type of data. Tibshirani et al. [73] also provided a
measure called the gap statistic. It tests the hypothesis that the model has a single cluster
(K = 1) and tries to reject it with an alternative hypothesis (K > 1). This method compares
the total within intra-cluster variation for different values of k with their expected values
under null reference distribution of the data, i.e., when there is no underlying clustering.
However, the rejection of the null hypothesis only indicates insufficient evidence in support
of the null hypothesis and does not really make it true. The underlying methodology in
elbow or knee is, in fact, agnostic to the cluster validity index being used.

In [74], Jung et al. proposed clustering gain to find the right number of clusters in
hierarchical clustering. Clustering gain is designed to have a maximum value when the
intra-cluster similarity is maximized and inter-cluster similarity is minimized. The optimal
number of clusters is then chosen based on the maximum point in the clustering gain curve.

Similarly, in [75], Zhou et al. proposed another criterion, called CSP (compact sep-
aration proportion) wherein the optimal number of clusters is estimated corresponding
to the maximum average value of the CSP index. The CSP is used as a substitute for the
Calinski–Harabasz index, and it functions in a similar relationship between intracluster
homogeneity and intercluster separability. However, part of the CSP is focused on building
a minimum spanning tree, and the proposal is of O(n3), which is prohibitive in large
dataset contexts.

The Calinski–Harabasz index [76] is often regarded as the most suitable criterion to
determine the number of clusters in hierarchical clustering. Milligan in [77] conducted an
extensive experiment on 30 different CVIs and concluded the Calinski–Harabsz index to be
the most consistent one. In the recent work by Karna et al. [78], the authors performed
empirical analysis on several real-life datasets and presented an improved CVI, called
∆Kcond , that maximizes the difference of successive Calinski–Harabasz indices over a range of
K clusters (k = 1, 2, . . . K) and suggests the conditional criterion to select between 2 and the
next best clustering solution. However, several instances were found where the number
of clusters by the proposed ∆Kcond criterion did not match correctly against the expert’s
judgment based on the dendrogram.

Additionally, several unique solutions to correctly determine the number of clusters
are mentioned in the literature. In [79], Cowgill et al. proposed the genetic-algorithm-based
method, COWCLUS, which optimizes a fitness function defined in terms of within-cluster
cohesion and between-cluster isolation which itself is a Calinski–Harabasz criterion. However,
such a method does not appear to be scalable for large datasets and, hence, not very suitable
for real-life applications.

Similarly, in [80,81], Bruzzese et al. proposed a permutation test-based approach to
determine the optimal number of clusters in hierarchical clustering. This too appears to be
complex to execute for large-scale datasets in real time.

In [82], the reachability plot (derived from the density-based clustering methods)
is used as preprocessing to identify the number of clusters of the hierarchical tree. The
process of the heights of tree nodes is complex and iterative in this technique.

In [83], a single-height similarity threshold is applied, using a dynamic slider to
identify the main clusters. Continuing this, in [84], Vogogias et al. used the height of the
nodes to identify interesting branches of the tree. However, the concept of using non-
horizontal cuts of the trees violates the ultra-metric properties of the dendrogram itself and
is thus not very aligned with the objective of this current research work by the authors.
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To the extent of interpreting cluster patterns, several works are studied. In [85], the
authors presented an approach to interpret cluster patterns in real datasets. Gibert et al. [86]
presented the KLASS clustering system to measure similarity in ill-structured domains.
In [5], using mixed metrics was proposed while clustering complex messy datasets. Gib-
ert et al. in [87] introduced the concept of semantic variables and generalized Gibert’s
mixed metrics for clustering heterogeneous data matrices. Another related work can be
seen in [4], where the authors presented a real-life application from a wastewater treatment
plant, using a clustering-based approach.

In the recent study by Suman et al. [88], a new cluster-validity-criteria was proposed
that operates directly on the linkage matrix of the hierarchical clustering to detect the
suitable number of clusters similar to how human experts perceive clusters visually in a
dendrogram.

4. Contributions

This paper presents three novel contributions:

• A modification of the CURE approach consists of substituting the first phase of the
original CURE approach by a bootstrap process that generates several small samples
(S samples) from the original dataset and runs some clustering and super-classification
processes to create the centroids that constitute the input of the second step of the
CURE strategy. This contribution permits to scale up a hierarchical clustering process
to large datasets and also reduces the CPU time drastically. Section 5.1.1 provides the
details on it.

• As a consequence of using the bootstrap–CURE strategy in real large dataset applica-
tions, a new challenge appears of developing an automatic criterion to cut the resulting
dendrograms (S + 1) in order to identify the number of clusters in such a way that
the number of clusters manually proposed by an expert is properly approached (see
Section 5.2).

• A third contribution is the proposal of an entire data science process that inserts
bootstrap–CURE with the automatic criterion to cut the dendrograms in a process,
including the steps from the preprocessing to the interpretation-oriented tools. This
automatically interprets the clusters emerging from this process, in line with the works
in [89,90] and with the emerging field of explainable AI [91]. The proposal is described
in Section 5.

Therefore, this work contributes to automatically profile the operation modes of 3D
printers, providing an understandable description of profiles. This bridges the gap be-
tween obtaining the profiles with advanced clustering methods and connecting them with
actionable knowledge, supporting decision making. The proposal is extremely useful in
a real production process to better manage 3D printers, as it can automatically detect the
operational modes of 3D printers by analyzing their sensor data and is also potentially
linkable to an intelligent alert system, for example. Although the methodology presented
is developed in the context of 3D printing, it is easily adaptable to other situations, where
a machine is monitored through sensors and thus has a wide range of applications, con-
tributing to the maintenance and follow up of machines in industrial settings as well as
contributing to solving the open problem of real-time management of the machines.

5. Methodology

As mentioned previously, this paper proposes a data science approach [92] to discover
states of operation in a machine monitored through several sensors in a 3D printing scenario.
As stated before, the main contribution of the paper is to introduce a modification of the
CURE algorithm [63] that scales the hierarchical clustering up to big data and automatically
cuts the hierarchical dendrogram so that the operation states of a certain population of
printers can be identified. The proposed approach also introduces interpretation-oriented
tools to provide a conceptual description of the discovered clusters to assist the printer
operators in real-time decision making.
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5.1. Preprocessing

The importance of preprocessing was highlighted in [93] along with the proposal of a
general-purpose methodology for preprocessing in data science. In the current research
work, sensor data consist of all numerical measurements, and the preprocessing step
includes only a few steps from the general methodology. The very first step is to re-label
the sensor names to support direct conceptualization and knowledge production. The
actual names of the sensors are anonymized due to confidentiality issues. All variables
represent sensor measurements captured as numerics but with different scales and units.
Normalization is applied across sensors to bring them to a uniform scale.

The sensor data addressed in this work come from multi-jet fusion 3D printers in a
smart factory setting that feeds data continuously to the cloud environment, which reduces
the probability of missing-data instances to be negligibly small.

In all the experiments performed throughout the research, no missing values are ob-
served yet. This eliminates the need to perform any missing value imputation in the current
state of the research. Thus, the missing data treatment, which is based on multivariate
interpolation techniques, is delayed to further steps of the research. As a matter of fact, the
missing data issue will become important in the context of processed log files, which is out
of the scope of this paper.

The proposed approach relies on using raw log files instead of processed ones since the
authors pretend that the proposal works well in real time when introduced in an industrial
manufacturing process and the method must be able to work with raw and unprocessed
data. Thus, no feature extraction steps are considered to deal with transformed data. The
hierarchical clustering-based methodologies are also useful since they are robust to the
presence of outliers and there is no need for prior outlier detection.

Following the approach described in [94] and the main goals of this research, clustering
methods are most suitable to find patterns in sensor data. Clustering is one of the widely
used unsupervised distance-based learning methods that aims at deciphering the hidden
patterns in the data. Some key measures of distance were discussed in [95]. Jain et al. [96]
presented a good overview of clustering algorithms and their applicability in the real world.
In this work, since no previous hypotheses are available about the number of real existing
patterns, hierarchical clustering is used as a starting point.

5.1.1. The Proposed Bootstrap–CURE Approach

As said before, the CURE algorithm accelerates the hierarchical clustering processes
so as to increase the capacity to deal with bigger datasets, but this is still not sufficient to
deal with sensor datasets that provide millions of readings per second.

In this work, a modification of CURE is proposed to overcome this limitation. (Figure 2
shows an overview of the proposal.)

The proposed modification is based on the well-known mathematical fact that, given
a data set of size n, decomposed in S disjunct subsets of size ns such that

n =
S

∑
s=1

ns (1)

then the square of the total size is bigger than or equal to the sum of squares of individ-
ual components

n2 = (
S

∑
s=1

ns)
2 �

S

∑
s=1

ns
2 (2)

Consequently, any quadratic algorithm running on the entire dataset of size n will be
more expensive from the computational point of view than its replication on the S samples.
There is no need to run any experiment to demonstrate this property since it is based on an
analytical geometrical property of the sum of squares.
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This means that applying the bootstrap technique to hierarchical clustering by repeat-
ing clustering of small samples from the original dataset several times will surely decrease
the complexity of the total process as compared to the global clustering of the entire dataset.

Figure 2. Comparison between original and bootstrap–CURE processing.

The authors introduce the bootstrap technique in the process in the following. As
mentioned earlier, the CURE initialization step in the original definition of the method
involves taking a small sample of data, applying hierarchical clustering on it, and further
identifying a set of representative points to be used to extend the clusters to the whole
dataset. The whole CURE algorithm is based on the idea that the initialization sample is
representative of the total population and that other objects assigned in the completion
step follow the same cluster structure as the one discovered in the sample. This is quite
a strong hypothesis that might not necessarily hold when we are sampling a subset of
data, sufficiently small to process hierarchical clustering (quadratic) in a big data dynamic
environment. Hence, the authors propose to use the bootstrap principle to extract S small
samples (ns � n), with n being the size of the original dataset and ns being the size of the
sth sample from the initial dataset for the initial clustering step.

This proposal is based on the idea that each sample is clustered under a hierarchical
method independently, thus resulting in S dendrograms. A subsequent intermediate step
of super classification is proposed as well to encompass the results of independent sample
clusters. The super classification performs over the set of class representatives (centroids)
coming from all the samples processed and thus the final set of clusters is more robust
than the original CURE algorithm and eventually, has better representation and lower
computational cost. To assign class labels to the remaining objects, the following steps
are followed:

1. Draw S random samples of a single reference dataset I, each of same size ns, with-
out replacement.

2. Subject each sample to hierarchical clustering (in this work with Euclidean distance
and Ward’s method), and obtain the S dendrograms.
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3. Cut the S sample dendrograms and retrieve a set of clusters for each sample. In
Section 5.2, a method to automatically determine the number of clusters in each
dendrogram is proposed.

4. Compute the centroid of all clusters found in the previous step and build a final
dataset with all centroids.

5. Super-classification step: Apply hierarchical clustering on the centroids dataset.
6. Cut the resulting dendrogram by using the automatic criterion proposed in Section 5.2

and find the set of centroids belonging to each super-class.
7. Compute the super-centroids of each super-class.
8. Retrieve the list of original points belonging to each super-class by finding the cen-

troids belonging to the super-class and the original elements used for each centroid.
9. Assign the label of the corresponding super-class to all elements included in the S

samples used.
10. For all the elements that were not part of the S samples, compute the distances to

each of the super-centroids.
11. Assign each element the class of the nearest super-centroid.

Figure 2 compares the steps in the original CURE and the proposed bootstrap–
CURE methods.

5.2. Determining the Number of Clusters: Calinski–Harabasz Index

In any hierarchical clustering algorithm, the number of clusters emerges after plotting
the dendrogram and optimizing both the homogeneity and the distinguishability of the
clusters. There is an abundance of works in the literature available, dealing with the
evaluation and performance of clustering [97–99]. A robust evaluation measure was
provided by the Calinski–Harabasz index [76], also popularly known as the variance-ratio
method. The Calinski–Harabasz index, for a clustering solution P consisting of k clusters
from a dataset having n rows, is calculated as follows:

CH(k) =
Bk/(k− 1)
Wk/(n− k)

(3)

where k is the number of clusters. Bk is the between classes variability, defined as

Bk = ∑
C∈P

nC d
(
l̄C, l̄

)2 (4)

and Wk is the within classes variability, defined as

Wk = ∑
C∈P

∑
i∈C

d
(
i, īC

)2 (5)

l̄C is the centroid of the cluster C, nC is the size of cluster C, and l̄ is the centroid of the
whole dataset.

In theory, the number of clusters obtained by using the Calinski–Harabasz method
should match with the number of clusters deduced by the experts looking at the dendro-
gram. In the earlier work by Karna et al. [78], the authors evaluated five different criteria
based on the Calinski–Harabasz index over 100 datasets of varying size and assessed the
validity of those five criteria in regards to visual inspection by human experts. In practice,
a human expert usually finds the best cut of the dendrogram, finding the branches with
a wider vertical gap between consecutive nodes. The final clusters correspond to the
branches of the tree isolated by the horizontal cut. The result of the experiments performed
in [88], however, indicated all criteria based on the Calinski–Harabasz index to be under-
performing. It was also evidenced that the Calinski–Harabasz index does not align with real
expert practices well enough.

Thus, Suman et al. proposed two new criteria to overcome this limitation based on
the heights of the internal nodes of the dendrogram that better follow the real practices
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performed by experts and prove that the criterion ∆Hcond is the one that better approaches
that of experts. This is the criteria proposed to be included in the general methodology
proposed in Section 5.1.1

Let hν, ν ∈ 1 : n− 1 be the height of node ν in a given dendrogram built over a dataset
I. The values of hν depend on the linkage method used in the hierarchical process that
generates the dendrogram. The ∆Hcond [88] is defined as follows:

K∗∆Hcond
=

{
K∗2∆H

if K∗∆H
= 2 and (h2/hroot) > 1/3

K∗∆H
otherwise

(6)

where hroot and h2 represent the heights of the two highest nodes of the dendrogram and
the K∗∆H

and K∗2∆H
are the maximum and second maximum of the ∆H criterion as defined

in [78]:

K∗∆H
= argmax

2≤k≤K
(∆Hk ); k ∈ (2, 3, . . . K− 1) (7)

where
∆Hk = hk − hk+1; k ∈ (2, 3, . . . K− 1) (8)

It is shown empirically that the ∆H criterion underperforms where the best cut of the
tree is two clusters, as experts are biased toward this scenario and use a heuristic to skip
the two clusters’ cut sometimes. The modified criterion, defined as, The ∆Hcond incorporates
this heuristic by introducing the concept of the height factor as a ratio between the heights of
the two highest nodes of the dendrogram. This can be visualized in Figure 3. Here, the tree
structure on the right (Figure 3b) represents the annotated dendrogram that reveals that
the biggest gap between nodes occurs at K = 2, where the difference in height between
involved nodes is (85.5− 27.1 = 58.4). The second-best clustering solution occurs at K = 4
with the height difference as (25.9− 19.5 = 6.4). In this case, the expert does not go for a
solution of K = 4, but a solution of K = 2.

Figure 3. (a) Dendrogram of sample 10; (b) dendrogram of sample 31.

At the same time, in Figure 3a, the annotated dendrogram reveals the biggest gap
of the tree as occurring at solution K = 2, the maximum ∆h1 = 68.5− 43 = 25.5, and
the second best solution is seen at K = 3, ∆h2 = 43− 27.5 = 15.5. Thus, following the
height-factor notion, the second best solution coincides with the expert’s understanding of
three clusters.

This corresponds to a practical situation where the cut in two clusters often provides
general results, which may not be very interesting from the application point of view, and
the second-best cut tends to be preferred by stakeholders, as it is more informative.

The proposed method by Suman et al. [88] shows an impressive result with the ∆Hcond
criterion matching the expert criterion in 93% of tested datasets and performs significantly
better than all other criteria, including the proposals in [78].
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5.3. Post-Processing: Toward Explaining the Clusters

Once the dataset is clustered, specific assessment tests are used to identify the signifi-
cant sensors in the clusters according to the methodologies presented in [90]. The class panel
graphs (CPG) [89] are used to visualize the behavior of the sensors through the different
clusters; properly interpret the results of the tests given in [90] as well as to show how
sensors are related with one another; and eventually to induce conceptualization to the
experts. The CPG is used to analyze the conditional distribution of sensor data versus
clusters. It also helps understand some key patterns among the clusters with respect to
sensor behavior. Illustrative variables, which were not part of the original data used in the
clustering, are also used to enrich the interpretations.

The proposal of using conditional distributions of sensors toward clusters as a basis to
the automatic interpretation of the clusters is based on the post-processing methodologies
discussed in [89,100,101], which is directly aligned with the introduction of a knowledge
production step on the data mining process as proposed by Fayyad et al. [102]. This
approach of interpreting clusters is also aligned with the emerging field of explainable
AI [103] by providing conceptual explanations of the discovered patterns. This confers
explanatory capabilities to the AI methods, which is one of the fundamental requirements
for integrating a data-driven method in an intelligent decision support system.

5.4. Validation of the Proposal

The validation is performed with regards to two different aspects. Firstly, the dis-
covered clusters are validated by adding external information from the job summary
that provides a status message for each job as well as the reasons of failure (if available),
which is captured separately, analyzing how this external information distributes with the
discovered clusters.

Secondly, regarding the benefits of bootstrap–CURE with respect to scalability, the
methodology is also validated in terms of computational cost. The total CPU time it takes
to cluster a large dataset by the classical hierarchical clustering method and original CURE
clustering method is compared against the proposed bootstrap–CURE approach. Hence, the
scalability of the algorithm is directly tested by running several experiments of varying
dataset sizes, both by the traditional and proposed approaches. The experimental results
are discussed in Sections 6.5 and 6.6.

6. Applications to 3D Printer Data
6.1. Data Collection

The data from eight anonymized HP multi-jet 3D printers were collected for over
300 printing jobs and appended together to create a large dataset comprising sensors’ behav-
iors toward various internal processes and sub-systems, including pressure, temperature,
humidity, etc. A dataset of approximately 562,000 records was thus generated, containing
the behavior of the machines in different phases of a print job. For the current study,
the focus was given to the print phase only. For experiments, Python 3.6 was used along
with standard scientific libraries (Pandas, NumPy, Scipy, Scikit-learn, and Matplotlib). All
experiments were conducted on a GPU-enabled, four-core processor, Windows computer
with 32 GB memory.

6.2. Data Preprocessing

The data analysis starts with the computation of descriptive statistics and prepro-
cessing of the variables. Preprocessing follows the scheme provided in Section 5.1. After
eliminating the redundant and non-informative sensor features, the final dataset contains
46,821 sensor records across 41 sensors. Table 1 contains the final list of sensors considered
in the study [9] with anonymous names to maintain confidentiality. Each sensor rules
as a variable of the data matrix (one column of the dataset), whereas rows of the dataset
represent measurements at a certain time interval (in seconds).
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Table 1. List of sensors.

Variables Description

Timestamp Timestamp of the sensor recording
Sensor_1 To measure pressure in Air release system
Sensor_2 To measure Ambient temperature
Sensor_3 To measure temperature in cooling system-1
Sensor_4 To measure temperature in cooling system-2
Sensor_5 To measure temperature in cooling system-3
Sensor_6 To detect glass breakage on left fusing system
Sensor_7 To detect glass breakage on right fusing lamp
Sensor_8 To measure temperature in carriage back
Sensor_9 To measure temperature in carriage front

Sensor_10 To measure temperature in carriage middle
Sensor_11 Internal camera reading
Sensor_12 To measure the reference temperature in subsystem–back
Sensor_13 To measure the reference temperature in subsystem–front
Sensor_14 To measure the reference temperature in subsystem–middle
Sensor_15 To measure the temperature in the subsystem–back
Sensor_16 To measure the temperature in the subsystem–front
Sensor_17 To measure the temperature in the subsystem–middle
Sensor_18 To measure the reference temperature in subsystem–back
Sensor_19 To measure the reference temperature in subsystem–front
Sensor_20 To measure the reference temperature in subsystem-middle
Sensor_21 To measure the temperature in the subsystem–back
Sensor_22 To measure the temperature in the subsystem–front
Sensor_23 To measure the temperature in the subsystem–middle
Sensor_24 To check obstruction in pressure system-left
Sensor_25 Temperature coefficient sensor
Sensor_26 Temp. coefficient for fusing system1–left
Sensor_27 Temp. coefficient for fusing system1–right
Sensor_28 Temp. coefficient for fusing system2–left
Sensor_29 Temp. coefficient for fusing system2–right
Sensor_30 Temp. coefficient for camera system
Sensor_31 Temp. coefficient for Cooling left air exit
Sensor_32 Temp. coefficient for Top heating
Sensor_33 Temp. coefficient for right air exit
Sensor_34 Humidity sensor for subsystem XX
Sensor_35 Temperature sensor for subsystem XX
Sensor_36 Connectivity check sensor for fusing system-left
Sensor_37 Connectivity check sensor for fusing system–right
Sensor_38 To check obstruction in pressure system-right
Sensor_39 Sensor in subsystem
Sensor_40 Temperature Sensor in subsystem_z1
Sensor_41 Temperature Sensor in subsystem_z2

6.3. Hierarchical Clustering

As proposed in Section 5.1.1, the study began with a random sample of 10,000 records
drawn without replacement to subject it to hierarchical clustering with Ward’s method.
The result was shown in the earlier research work of [9]. Figure 4 shows the correspond-
ing dendrogram.
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Figure 4. Classical dendrogram suggesting four potential clusters.

The four clusters so revealed in the dendrogram were further studied in detail. The
use of the class panel graph (Figure 5) helped identify the redundancy among the sensor
measurements and drop the redundant variables further to enrich the interpretation.

• Cluster 0: Specific sensors not meeting the required conditions to print without error.
• Cluster 1: Shows many sensors reaching the acceptable threshold (to initiate printing).
• Cluster 2: Conditions associated with print job to fail.
• Cluster 3: Imbalance in the internal cooling which would result in system error.

Figure 5. CPG of redundant variables.
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6.4. CURE and Bootstrap–CURE

The first step toward the CURE strategy is to shuffle the original data of size n records
into a sample of size n′ = pn, with p being a certain proportion of n. For the bootstrap–
CURE, this n′ size sample is split into r = 10 datasets of size s = n′/r records each, drawn
at random without replacement. The index of each record from the original dataset was
preserved to use them at the later stage of the clustering and to keep the reproducibility of
experiments. All 10 sample datasets share the same set of variables as used in work [9] to
enable comparisons.

This work continues the application of both CURE and bootstrap–CURE to data accord-
ing to Section 5.1.1.

For n = 46821 and s = 2000 (and r = 10, so that almost half of the data size is
involved in the bootstrap phase and the bootstrap samples have sufficient variability).
The dendrograms of some of the samples in the bootstrap process are shown in Figure 6.
The proposed approach resulted in a total of 39 centroids (3 centroids from sample_0 and
4 centroids from each of the rest). These 39 centroids merge in a new dataset of final
representative points of the clusters. This new dataset of centroids would be subject to
the super-clustering step (see Figure 7) in such a way that all centroids across all samples
representing the same cluster group are merged. Without going into detail, it is interesting
to see that all samples provide more or less similar structures, which are aligned with a
good sample representation, even with smaller sample sizes as compared to the size of the
complete dataset. As is evident from the dendrograms (Figure 6), all samples (1–9) exhibit
4 cluster structures, except sample_0, which shows 3 clusters.

Figure 6. Sample dendrograms in bootstrap method.

The final bootstrap–CURE dendrogram (Figure 7) indicates a two-cluster solution;
however, as a general practice, a human expert in such a situation often considers the
second-best solution which shows four clusters. This strengthens the fact that a four-
cluster solution (also established in [9]) is sufficient to represent the sensor behavior in the
3D printer.
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Figure 7. Dendrogram of centroids.

6.5. Comparison of Original CURE against Bootstrap–CURE

In order to evaluate the bootstrap–CURE implementation, the algorithm was tested on
eight datasets from 3D printers of different sample sizes n, fixed p = 0.5 and r = 10 and
the total time to execute CURE and bootstrap–CURE, as well as the hierarchical clustering
algorithms, were computed, as shown in Table 2, and a graphical summary was provided
(Figure 8).

Table 2. CPU time (sec) comparison among hierarchical, CURE and bootstrap–CURE methods.

Data Size Hierarchical Clustering CURE Bootstrap–CURE

5000 36.296 2.922 0.578
10,000 68.875 4.125 1.406
15,000 101.094 8.297 2.094
20,000 139.625 14.25 3.156
25,000 257.375 22.125 4.187
30,000 262.718 32.422 5.328
35,000 274.109 47.469 6.75
40,000 330.391 62.703 8.062
45,000 443.578 76.078 10.141

It is quite evident from Table 2 that as the data grows in size, the original CURE
implementation [63] takes quadratically longer CPU time (TCPU). In fact, a quadratic
regression between TCPU and sample size provides a single significant coefficient (to the
quadratic term) and significant goodness-of-fit coefficient R2 = 0.9982.

The proposed bootstrap implementation processes the data quite rapidly, even for a
large sample size, and appears to exceed 7× speed for bigger datasets when compared
with the classical implementation of the CURE algorithm. The same appears to be up to
40× faster than the hierarchical clustering algorithm in the experiments. This property
seems to be well aligned with the goals of Industry 4.0, which require quick automation
and analysis of a huge amount of data.
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Figure 8. CPU time comparison.

It is also interesting to remark that the automatic criterion to cut the dendrograms
developed in [88] was introduced into the process to help automate the entire bootstrap–
CURE methodology, which is a great advantage.

From another perspective, the quality of the clusters does not change between CURE
and bootstrap–CURE by construction, since the data used for the sampling step are the
same in both algorithms; one is clustered together while the other is clustered, divided
into 10 samples, and thus is only impacting on TCPU savings but not on the quality of the
resulting clusters.

6.6. Post-Processing in Bootstrap–CURE Method

Post-processing of bootstrap–CURE dataset is accompanied with the class panel graph.
Figure 9 shows part of the class panel graph from final data (with vertical scales of all
cells normalized to a range of [0–1]). The conditional distribution of sensor_1 to sensor_5
exhibits a similar behavior as observed in the work [9].

To compare hierarchical clustering with the bootstrap–CURE strategy, the authors focus
on the 10,000 elements common between both experiments. Table 3 shows that class 0 of
both clustering approaches is distributed among the other classes, thereby showing some
differences in the results for both strategies. The objects included in each cluster are not
exactly the same. However, 81.36% of the printing jobs data match in the same class for
both hierarchical clustering and bootstrap–CURE, strengthening our proposal.

Table 3. Cluster evaluation between hierarchical and bootstrap–CURE.

Bootstrap–CURE
Cluster 0 Cluster 1 Cluster 2 Cluster 3

Hierarchical Clustering

Cluster_0 1476 549 770 133
Cluster 1 157 2324 0 0
Cluster 2 201 0 2639 0
Cluster 3 54 0 0 1697
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Figure 9. Class panel graph for selected sensors.

Table 4 compares the Calinski–Harabasz (CH) indices between the original sample using
the classical hierarchical algorithm, original CURE and the bootstrap–CURE proposal. The
CH index obtained on the bootstrap–CURE clustering is much lower than the same obtained
in [9], using hierarchical clustering. It is to be noted that the bootstrap–CURE method is
computationally much less expensive, as the assignment of labels does not need the whole
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set of rows to be used in clustering. This is particularly useful to approximate large data by
a substantially lesser number of records to process in clustering.

Hence, the profiles discovered by both of the approaches maintain stable clusters;
however, the ones obtained by the bootstrap–CURE method are more relevant for the big
data framework, as they are based on the larger dataset size and most of the clusters show
smaller standard deviations as well. Illustrative variables are also used to help understand
the structure of the clusters (see Figure 10 for job status by clusters and Figure 11 for fail
reasons by clusters).

Figure 10. Job status across clusters.

Out of 41 sensors, 12 were found to be non-significant subsystems (those referring
to sensor_12 through sensor_23), and both sensor_24 and sensor_38 pressure values were
found to be constant and, thus, not providing any insight about the printing process. For
the remaining 25 sensors, some pairs were found to be redundant according to the clusters,
and thus only one of them is considered (sensor_2–sensor_3, sensor_6–sensor_7, and
sensor_26–sensor_28) for further study. The remaining 24 variables were analyzed to be
following three basic profiles that can be interpreted in detail by analyzing the distribution
of sensors.

Figure 11. Job failure reasons.
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Table 4. Calinski–Harbasz index comparison.

Attributes Hierarchical Clustering Original CURE Bootstrap–CURE

Sample size 10,000 10,000 10,000
No. of clusters 4 4 4

Calinski–Harabasz 9208.0117 2885.2101 5198.4981

Cluster 0 (non-conformable jobs):

The main characteristics of this cluster are as follows. Firstly, sensor_1 does not reach
the recommended pressure for most of the instances and, hence, the job does not start.
Sensor_3 shows a higher than expected temperature, which might result in system error.
However, sensor_39 shows the measurement within specifications. Thus, the cluster should
lead to unsuccessful printing. Further, the cluster is also found to contain several failed
jobs with few successful ones, with the most common reasons being failed-to-print and
system-error. This aligns with our interpretation based on unsupervised analysis of the
cluster data.

Cluster 1 (successful jobs):

This cluster is characterized as follows. Sensor_1 has the recommended pressure
reading to initiate the job. The temperature measurement in sensor_3 is also adequate
as per the domain knowledge, as is sensor_39. In general, the behavior of sensor_39
and sensor_1 should match what is seen in this cluster. Sensor_35 also has the correct
measurements; however, sensor_34 does not match the behavior all the time. Hence, this
cluster is expected to lead to successful jobs, but there may be a few failures due to a
mismatch in the behavior of sensor_35 and sensor_34. Further, analysis of the data reveals
that the cluster indeed has mostly successful jobs with few that are ‘failed’ or ‘operator-
canceled’. The main reason found for the failure of the job is ’power-cut’, while some failed
to print because an operator canceled the jobs.

Cluster 2 (failed jobs due to malfunction of components):

In this cluster, sensor_1 does not reach the recommended pressure value to start
the job and this should result in system error. Although the measurements of sensor_3
are within spec, the behavior of sensor_1 and sensor_39 does not match (the pressure
values should be reversed to each other), which is evident almost throughout the data.
Additionally, sensor_34 shows measurements that are higher than normal. Overall, the
cluster shows quite unfavorable readings that would hamper a job to start or would lead
to failure. Further analysis revealed that most of the jobs found in this cluster failed with
the main reason being ’system error’.

Cluster 3 (failed jobs due to imbalance of sensors):

This cluster is peculiar, as sensor_1 and sensor_3 both are found to be within the
recommended specifications, as are sensor_4 and sensor_5. This indicates sufficient con-
ditions for a print job to start. Further, the measurements of sensor_1 and sensor_39 also
correspond to each other, which is necessary for a print job to continue. Sensor_34 shows
very high readings and thus points to a higher level of humidity; sensor_32 and sensor_33,
which control the overall airflow in the machine, run at a lower temperature. This creates
an imbalance in the internal cooling environment, which might result in system error.
Further verification of the jobs in this cluster disclosed that most of them failed due to
’system error’.

7. Discussion

This paper presents a sensor data science contribution in the field of Industry 4.0
and comprises all steps from the very first of identifying operation modes in a machine
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monitoring scenario, where large multivariate sensor data are continuously reported.
Understanding these operation modes and identifying the patterns of failures can be of
interest for further development of statistical models for predictive maintenance, and also
to analyze the relationships among other sensors that suggest future improvements in the
design of the 3D printer.

It is important to note that the methodology proposed here is general for any large-
scale sensor data environment, and this applies to other Industry 4.0 domains, such as gas
turbines or air quality in smart cities.

The specific application presented here is with regards to the industrial 3D printers,
where customers’ print-layer images or videos are considered confidential, and the method
has to rely solely on the sensor data to obtain a global understanding of machine behavior.
This is only possible through unsupervised analysis.

In fact, in a real industry context, rapid product innovation makes it difficult to prepare
supervised data continuously to learn models. When unsupervised learning is faced, there
is no possibility to compute either the misclassification rates or the confusion matrices.
To introduce the proposed methodology in a real production environment, the technique
must be capable of executing large datasets rapidly in a smart factory setting. The current
research identified a bootstrapping-based CURE technique that indeed executes much
faster than the traditional methods.

With the help of the proposed methodology, sensor data from the real industrial large
3D printers were analyzed in lesser computational time, and four potential clusters of
sensor profiles were discovered. Three of them were associated with print job failure
due to different problems, and specific sensors reporting abnormal values were observed.
The job summary captured separately is a good resource to validate whether the patterns
interpreted from the proposed methodology point to the actual scenarios in the print jobs.
Thus, along with the domain knowledge, one can find useful patterns of sensor behavior
leading to the overall quality of the print job.

This proposed methodology is unsupervised and scalable to big data frameworks
in real-time applications. Compared with the CURE algorithm, without including the
proposed bootstrap-based modification, this approach was also found to be very efficient
with minimal CPU cost and an increase in speed of up to two orders of magnitude for
large datasets. This seems quite promising for Industry 4.0, where such a technique
could help retrieve insights from machines or printers with limited computational power
rather quickly.

8. Conclusions

In this paper, a new data-science-based intelligent methodology is proposed to assist
the management of 3D printers. The work presented in this paper includes three novel
contributions.

The main contribution of the proposal is a new scalable hierarchical clustering method,
called bootstrap–CURE, which modifies the first step of the original CURE algorithm by
introducing a combination of a bootstrap strategy and a super-classification method so
that large datasets can be hierarchically clustered. Apart from scaling up the process
to large datasets, the impact on the CPU time reduction is also drastic. This provides a
new hierarchical-clustering-based algorithm that suitably scales up to the large sensor
data and becomes applicable to additive manufacturing. Hierarchical clustering has
many advantages, as it is a non-supervised learning method that does not require human
intervention. In particular, the hierarchical clustering family does not require any prior
hypotheses for the number of clusters, which is extremely useful in additive manufacturing,
as, in real cases, users have no a priori idea of the real number of clusters, and it is much
better to leave the algorithm to discover it.

Since hierarchical clustering is quadratic, it is not suitable in its original form for large
datasets. The proposed bootstrap–CURE method overcomes this limitation and reduces the
computational cost drastically by keeping all advantages of the hierarchical clustering.
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In addition, a second contribution is a novel criterion to automatically determine
the number of clusters from the dendrogram in such a way that the results properly
approach what clustering experts find by manual inspection. The proposed criterion is
based on the analysis of the level indices of the internal nodes of the dendrograms. Being
computationally cheap, this method can be introduced in the bootstrap–CURE strategy
without incrementing the computational cost significantly.

This provides a clustering method that is fully automated and can be used with sen-
sor data coming directly from the 3D printers to identify the operational modes of the
machines. Finally, the bootstrap–CURE was introduced in a complete data-science method-
ology to identify those operational modes by obtaining an automatic interpretation of the
clusters’ meaning. This provides a very useful decision support tool in the management
of 3D printers or complex sensor-equipped machines in general (aero-generators, gas
turbines, etc.).

The proposal was tested on real data coming from real 3D printers with very promising
results.

For the future, the integration of the proposed method in an intelligent decision
support system that can interpret the operation of an entire fleet of machines in real time is
in progress. This will help manufacturers to build better predictive maintenance policies or
identify possibilities to improve the 3D printers’ design as well. Regarding the proposed
algorithm itself, in the current formulation of the bootstrap–CURE approach, the shrinking
step (as used in original CURE) is skipped before the integral clustering of all objects
since a super-classification process is used with the bootstrap centroids. However, the
improvements of implementing the shrinking on top of them will be analyzed in the
mid-term. Once the behavior of 3D printers is profiled and interpreted, in the next steps of
the research, a reduced subset of significant sensors associated with the different types of
failures will be identified, and predictive models will be developed to identify anomalies
in advance.
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