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Abstract: Accurate human body profiles have many potential applications. Image-based human body
profile estimation can be regarded as a fine-grained semantic segmentation problem, which is typically
used to locate objects and boundaries in images. However, existing image segmentation methods,
such as human parsing, require significant amounts of annotation and their datasets consider clothes
as part of the human body profile. Therefore, the results they generate are not accurate when the
human subject is dressed in loose-fitting clothing. In this paper, we created and labeled an under-the-
clothes human body contour keypoint dataset; we utilized a convolutional neural network (CNN)
to extract the contour keypoints, then combined them with a body profile database to generate
under-the-clothes profiles. In order to improve the precision of keypoint detection, we propose a
short-skip multi-scale dense (SMSD) block in the CNN to keep the details of the image and increase
the information flow among different layers. Extensive experiments were conducted to show the
effectiveness of our method. We demonstrate that our method achieved better results—especially
when the person was dressed in loose-fitting clothes—than and competitive quantitative performance
compared to state-of-the-art methods, while requiring less annotation effort. We also extended our
method to the applications of 3D human model reconstruction and body size measurement.

Keywords: contour detection; convolutional neural network; image segmentation; 3D human model
reconstruction

1. Introduction

Human body profiling can be widely used in many fields, such as ergonomics, clothing
technology and computer graphics. The estimation of image-based human body profiles
can be regarded as a fine-grained semantic segmentation problem. However, current
image segmentation methods [1–3] have several drawbacks when applied to body profile
estimation. On the one hand, the existing segmentation datasets usually label the contours
of each person with clothes and the annotation result is shown in Figure 1b. Therefore,
they cannot obtain an accurate result, as the precise body profile is invisible, being covered
by clothes. On the other hand, although the human profile can be segmented by a closed
boundary that is approximated by polygons, human labelers have to accurately click on
numerous boundary points to obtain an accurate human profile, especially for invisible
parts covered by clothes.

To overcome these drawbacks, we propose DeepProfile, a novel method to estimate ac-
curate under-the-clothes body profiles. Our DeepProfile includes two stages, body contour
keypoint extraction and profile generation. For the first stage, based on our observations
in the real world, the tailor just measures several body parts to make well-fitting garments.
We extract contour keypoints that are used for later body profile generation. Since there are
no contour keypoint training and test datasets, we established a new dataset labeled with
front-view and side-view contour keypoints. More details about this dataset are described
in Section 3. Based on this dataset, we present an architecture named short-skip multi-scale
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dense (SMSD) block to extract contour keypoints. Inspired by multi-scale dense networks
(MSDNets) [4], in order to keep the details of the image and increase the information flow,
we maintain high-resolution representations through the whole process and connect differ-
ent layers with short skips in our SMSD block. Additionally, these connections strengthen
the back propagation between the loss function and original input features, leading to an
implicit deep supervision which makes our network easy to train. Due to the effectiveness
of the multi-stage setting in Hourglass and MSPN, we also use the coarse-to-fine strategy
by stacking two SMSD blocks with a different setting to obtain better performance. For
the second stage, according to the contour keypoints detected in the first stage, we find
several more similar profiles in an under-the-clothes body profile database [5] , which
was extracted from a large database of 3D human scans. Finally, we generate the final
under-the-clothes profile by interpolating these similar profiles.

(a) (b)

Figure 1. An example of profile in existing segmentation dataset. (a) Input image and (b) correspond-
ing profile.

In summary, our contributions are three-fold, as follows:

• We constructed an under-the-clothes contour keypoint dataset including a total of
9016 different persons, each person having one front-view image and one side-view
image. There were, in total, 45 contour keypoints, 28 for the front view and 17 for the
side view. We trained a separate model for each view.

• We put forward DeepProfile, an effective method to estimate accurate under-the-
clothes human body profiles, which is generated by contour keypoints extracted from
images. Compared with image segmentation methods, it reduced data labeling time
and cost by requiring only several contour keypoints to be labeled.

• We applied our body profiles in two scenarios, including accurate 3D human model
construction and body size measurement. The 3D human model was generated from
front-view and side-view under-the-clothes profiles and the body size measurement
results satisfy the criteria of the clothing industry.

2. Related Works

In this section, we focus on techniques targeting image-based human segmentation,
3D body shape estimation and keypoint detection, the topics that are most relevant to
our work.

2.1. Image-Based Human Segmentation

General image segmentation is typically used to locate objects and boundaries in
images. Long et al. [6] introduced one of the first deep learning works for semantic image
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segmentation using a fully convolutional network. Later, deep-learning based semantic
segmentation models, such as encoder–decoder architectures [7], regional convolutional
networks (R-CNN) [8], Dilated Convolutional Models (ASPP) [9], Gated shape CNNs [10],
Attention-Based Models [11], few-shot models [12] and Pyramid Networks [13] have been
proposed. General image segmentation methods can be easily applied for extracting human
body contours with the corresponding datasets.

One of the popular topics in image segmentation is human segmentation, which can be
classified into two categories, human parsing and pose-based human segmentation. On the
one hand, human parsing is to segment a human image into different fine grained semantic
parts, such as head, torso, arms and legs. Yamaguchi et al. [14] first proposed solving
the problem of human parsing as a labeling problem, where images are segmented into
superpixels. Dong et al. [15] introduced a method to seamlessly integrate human parsing
and pose estimation within a unified framework by utilizing Parselets and Mixture of joint-
group templates. Liu et al. [16] proposed a quasi-parametric human parsing model with
a specially designed matching convolutional neural network (M-CNN). Liang et al. [2]
labeled the human parsing dataset LIP and proposed the JPPNet, which uses multi-scale
features and iterative refinement for human parsing. To increase the accuracy of boundary
area segmentation results, Ruan et al. [1] added an edge-perceiving module to integrate
the characteristic of object contour to refine the boundaries of parsing. On the other hand,
pose-based human segmentation approaches generate human instance segmentation with
the help of pose estimation. Pose2Instance [17] is a human pose-conditioned segmentation
model that adopts a cascade network to improve instance-level person segmentation.
However, it relies on human detection and the performance drops when bounding boxes
have large overlaps. PersonLab [18] is an approach for the tasks of pose estimation and
human instance segmentation using an efficient single-shot model. It treats human body
segmentation as a pixel-wise clustering and employs human pose to refine the clustering
results. Pose2Seg [19] concatenates the human pose skeleton feature to the image feature in
the network to improve human instance segmentation, especially in the case of occlusion.
It detects human body key parts and then builds up a segmentation mask on top of the key
parts. However, the human body segmentation results generated by the aforementioned
methods include information of the clothes the person wears, which does not make for
accurate human profiles.

Our method is to estimate the under-the-clothes body profile even when people are
dressed in loose-fitting clothing.

2.2. Three-Dimensional Body Shape Estimation

Recently, parametric body models have been commonly used to reconstruct body
shape and pose. Kanazawa et al. [20] proposed the HMR method, which uses a 3D
regression module to generate parameters of an SMPL [21] body model from a single
image. DensePose [22] also uses the SMPL model for dense pose estimation in the wild.
It recovers highly accurate dense poses, but it is not suitable for predicting the body
shape. NBF [23] takes advantage of both deep learning-based and traditional model-
based methods; additionally, it directly predicts the parameters of the model from an RGB
image or a semantic segmentation of the image. Smplify-x [24] improves SMPLify [25]
by detecting 2D features corresponding to the face, hands and feet to fit the full SMPL-X
model. However, these methods address the human pose and shape jointly.

To estimate an accurate 3D body shape, some under-clothing shape estimation meth-
ods have been proposed. “The naked truth” [26] is one of the earliest works on recovering
the underlying shape; it fits the SCAPE model to a set of calibrated multi-view images or
video sequences. The drawback of this method is that it requires the subjects to be captured
in several different poses or in a long dynamic sequence. Wuhrer et al. [27] presented
a representation that models human body shape and posture independently. et al. [28]
proposed a learning-based framework, Body PointNet, to estimate body shape and pose
under clothing from a 3D scan. The estimated body shape is output in a point cloud by



Appl. Sci. 2022, 12, 2220 4 of 15

operating on a single scan of a dressed person. However, both of these two methods
estimate the shape under clothing directly from 3D scans instead of images, making them
not as convenient as image-based methods. Streuber et al. [29] introduced Body Talk,
which creates a plausible 3D body from standard linguistic descriptions of a 3D shape.
This approach mostly uses semantic values that are difficult to quantify; therefore, it may
not achieve metric precision. Shigeki et al. [30] proposed an approach to estimate 3D
under-clothing human body shapes from a single RGB image. Their approach optimizes an
SMPL [21] model using a cloth–skin displacement model, silhouette shape and joint loca-
tions. Zhu et al. [5] proposed a method to predict realistic and precise under-the-clothes
human body models based on two orthogonal-view photos. However, it requires tedious
manual feature extraction operation to be performed on the images.

2.3. Keypoint Detection Techniques

Human keypoint detection usually refers to human pose estimation and it aims
to obtain the spatial coordinates of human body joints within a person’s image. Simi-
larly, these human pose keypoint detection techniques can be used in our human contour
keypoint estimation.

Mainstream keypoint detection methods calculate the position of each keypoint by
estimating its heatmap, then choose the coordinate with the highest heat value as its
position. “SimpleBaseline” [31] is a simple and effective baseline method to evaluate new
methods for keypoint detection. Tompson et al. [32] used CNNs and graphical models
to estimate the keypoint offset location. Newell et al. [33] proposed a Stacked Hourglass
Network for human pose estimation which fuses low-level and high-level features and
improves accuracy by increasing the number of Hourglass units. SPM [34] is a fast
and efficient single-stage method implemented with CNNs. Multi-stage methods can
decompose complicated problems and improve the accuracy and robustness. G-RMI [35]
is a top-down pose estimation approach; it predicts the location and scale of boxes in the
first stage and estimates the keypoints in the second stage. Chen et al. [36] presented a
two-stage algorithm CPN to relieve the occlusion and complex background problems. Li
et al. [37] improved the multi-stage keypoint detection by single-stage module design,
cross-stage feature aggregation and coarse-to-fine supervision. Sun et al. [38] proposed a
network to maintain high-resolution representations through the whole process. Recently,
Zhang et al. [39] paid attention to the investigation of the representation of the human pose
using heatmaps. They proposed a more principled distribution-aware decoding method
and improved the standard coordinate encoding process. To regress the keypoint positions
accurately, Geng et al. [40] presented disentangled keypoint regression (DEKR) to learn
disentangled representations through two simple schemes, adaptive convolutions and
a multi-branch structure. The first stage of our profile estimation is contour keypoint
estimation and its accuracy directly affects the accuracy of profile estimation. In our
method, we create and label an under-the-clothes human contour keypoint dataset and
propose a CNN network with short-skip multi-scale dense (SMSD) blocks to predict contour
keypoints.

3. Dataset

According to anthropometry, ergonomics and product design, the human body shape
can be represented by several body parts (neck, shoulder, bust, waist, crotch, knee, calf
and ankle, etc.). To better capture the regional shape of the human body, we expanded
these features to 45 contour keypoints, including 28 keypoints in the front-view image
and 17 keypoints in the side-view image. Figure 2 shows under-the-clothes human body
contour keypoint annotation in front-view images and side-view images.

The under-the-clothes contour keypoint dataset covers 9016 persons and each person
has one front-view image and one side-view image. There were no restrictions to clothing
types, so the human subjects of the dataset were dressed in arbitrary clothing, including
tight-fitting, normal-fitting or even loose-fitting clothes. There were 4615 male subjects
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and 4401 female subjects and the gender distribution was even. The height distribution
and weight distribution of the dataset are shown in Figure 3. We randomly split the 9016
subjects into 8016 for training, 500 for validation and 500 for testing. The front-view and
side-view images of the subjects were taken with the subject assuming a standard standing
pose, as shown in Figure 1a . There was a small number of front-view images in which
the subject was partly obscured by something. In the side-view images, the faces of all the
subjects were facing right.

(a) (b)

Figure 2. Human body contour keypoints for front-view images (a) and side-view images (b).

(a) (b)

Figure 3. Analysis of the contour keypoint dataset: (a) is height distribution and (b) is weight
distribution.

4. Our Approach

Our DeepProfile method involves two stages. First, we utilize a CNN with SMSD
blocks to extract high-precision human body contour keypoints. Then, we combine both
contour keypoints and the under-the-clothes profile database [5] to generate accurate
under-the-clothes body profiles. The overview of our method is shown in Figure 4.
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Figure 4. Overview of our DeepProfile. Given the input front- and side-view images (a) and a
human profile database (b), the body contour keypoints are estimated (c) to generate the human body
profile (d). Here, we employ a CNN with SMSD blocks to estimate contour keypoints and compare
the difference among them and relevant feature points in profile database, then we interpolate
the most similar profiles to synthesize the under-the-clothes profile. Images of different views are
trained separately.

4.1. Contour Keypoint Extraction

The contour keypoint extraction problem is defined as giving an RGB image
I ∈ R(W×H×3); we need to estimate the contour keypoints P ∈ R(NP×D) with NP points, D
dimensions and a regression function fr, represented as follows:

P = fr(I, θ), (1)

where θ is a set of trainable parameters of the function fr. Our goal is to optimize the
parameters θ so that we can obtain high-precision contour keypoints. To reliably detect
contour keypoints, we use a heatmap H to encode the probabilities of each keypoint. The
heatmap H is constructed by modeling the contour keypoints’ position as Gaussian peaks.
Specifically, for a position (x, y) in the given image I, H(x, y) is calculated by

H(x, y) =
NP

∑
i=1

e
(x−xi)

2+(y−yi)
2

2σ2 , (2)

where (xi, yi) represents the ith contour keypoint and σ is an empirically chosen constant
to control the variance of Gaussian distribution.

Network architecture. As shown in Figure 5, we mainly use two short-skip multi-
scale dense (SMSD) blocks to predict the contour keypoints from coarse to fine. For the
first SMSD block, we utilize ResNet directly to extract features at four different scales from
the input image. Then, for features at each scale, we use a 1× 1 convolution to decrease
the number of channels to 256. Here, we define features from the largest resolution to the
smallest resolution as m1, m2, m3 and m4. The remaining operation contains the following
three steps:

1. In general, a smaller resolution feature has a larger receptive field and a larger reso-
lution feature has a smaller receptive field but keeps more details. In order to take
advantage of different resolution features, we upsample m4 with nearest neighbor
sampling and add it to m3 to generate new features, n3. We then repeat the process
with (m3, m2) and (m2, m1) to generate features n2 and n1, respectively.
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2. With the input of n3, n2 and n1, two features of p2 and p1 are produced by using the
same operation in step 1. Unlike FPN [41], which directly upsamples the high-level fea-
tures and combines them with the low-level features, we add dense connections from
m1, m2, m3 and m4 to p1 and p2. These short-skip connections not only strengthen the
information flow in our network, but also strengthen the back propagation between
the loss function and current features, which makes our network easy to train.

3. Finally, we fuse two features, p2 and p1, to obtain the heatmaps of the first SMSD block.

(a) (b)

Figure 5. Our human body contour keypoint estimation network (a) and structure of SMSD block (b).

In order to extract higher-accuracy contour keypoints, we add coarse-to-fine supervi-
sion into the SMSD block. In step 1, we connect the output of ResNet to one feature; then,
a heatmap (σ = 3) is employed to compute loss, while, in step 3, σ is set as 2 to obtain
more accurate keypoint positions. Figure 6 shows two different heatmaps. Besides, unlike
MSDNet [4], we use multi-stage modules to obtain better performance. After the first
SMSD block, we fuse its output with m1 as the input of the second SMSD block. Especially,
for the second SMSD block, we remove the first layer of ResNet.

(a) (b)

Figure 6. Heatmaps with different values of σ. The value of σ in (a) equals 3 and, in (b), σ equals 2.
These two heatmaps allow our network to estimate the contour keypoints from coarse to fine.

Loss function. There are four losses in our contour keypoint extraction network; all of
them come from the first and the third steps of two SMSD blocks. They are computed by
the loss function L2, written as follows:

L2 =
1

NP

NP

∑
i=1

ω|ĥi − hi|
2
, (3)



Appl. Sci. 2022, 12, 2220 8 of 15

where ĥi indicates the ground truth heatmap, hi is the predicted heatmap and i is for ith
keypoint. Since some keypoints may be invisible due to occlusion, we add a weight ω to
the loss. We set ω = 0 for invisible keypoints and ω = 1 for those visible ones.

4.2. Profile Estimation from Contour Keypoints

Based on the contour keypoints extracted from the images in Figure 4c, we then
combine them with an under-the-clothes body profile database [5] (see Figure 4b) to
generate the final human body profile shown in Figure 4d. The profiles in this database
are constructed from a large database of human scans and cover a wide range of body
shapes. Each profile is composed of about 1000 points with even vertical spacing. As there
are only 7–9 boundary keypoints in [5], in order to match our 45 contour keypoints with
it, we manually selected the corresponding 28 front-view keypoints and 17 side-view
keypoints from the database of [5]. As all the profiles had the same number of points and
topology, manual selection was required only once.

The under-the-clothes profile is synthesized by interpolating the most similar profiles
m. Keypoint and image features are both available to search similar profiles. In our
experiments, we searched with all keypoints and set m as 15.

5. Experimental Results and Discussions
5.1. Data Preprocessing and Evaluation of Contour Keypoints

In the contour keypoint extraction pre-process, data augmentations include random
rotation [−45◦, 45◦] and random scale [0.7, 1], which are applied to ensure the whole body is
in the image. The resolution of the input image for the detector was (256× 256). For test and
evaluation, the scale factor was set as 0.85 and no rotation was used. For a comprehensive
evaluation, we used a simplified object keypoint similarity (OKS) that is represented as

OKS =
∑i exp(−d2

i /2s2k2
i )δ(vi > 0)

∑iδ(vi > 0)
. (4)

where di is the Euclidean distance between the detected ith contour keypoint and the
corresponding ground truth, s is the object scale and vi is the visibility of the ith keypoint
in the ground truth. ki is per-keypoint constant that controls falloff and it was set as 0.025
in our method. For the predicted heatmap, we selected the highest heat value location with
a quarter offset in the direction of the second highest value. To obtain a detailed result,
such as COCO [42], we compared the average precision (AP) at OKS = 0.5, 0.55, . . . , 0.90,
0.95 and mAP (the mean of 10 AP scores).

5.2. Training and Comparison for Contour Keypoints

To compare with state-of-the-art methods, we chose Hourglass [33], CPN [36], HR-
Net [38], SimpleBaseline [31], MSPN [37], DARK [39] and DEKR [40], seven existing
mainstream methods, to train on front-view and side-view images separately. We used
their publicly available codes and trained them on our proposed training set for a fair
comparison. For front-view images, we generated a bounding box based on the contour
keypoints to remove some background. Especially, for CPN, σ was set as 2,3,4 and 5
to generate the heatmaps, because these values obtained higher accuracy results in our
dataset. For our method, we used the Adam optimizer. The learning rate started with
2.5 × 10−4 and decreased to 2.5 × 10−5 at the 180th epoch, then decreased to 2.5 × 10−6 at
the 220th epoch and, finally, stopped at the 240th epoch. The batch size for training was
24. For side-view images, we trained these methods the same way as we trained them on
front-view images. The result comparison of contour keypoint estimation between our
method and other methods is shown in Table 1; our method outperformed the second one
by 0.53 in respect to front-view images and 0.94 in respect to side-view images.
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Table 1. Quantitative comparisons with other state-of-the-art methods based on our keypoint dataset.

Method Input Size Orient Params mAP AP65 AP75 AP85

8-stage Hourglass [33] 256× 256 Front 98.7M 78.56 99.0 94.4 67.6
CPN [36] 256× 256 Front 178.1M 77.14 99.4 94.2 63.8
SimpleBaseline [31] 256× 256 Front 262.6M 77.48 99.4 94.8 64.0
HRNet [38] 256× 256 Front 243.2M 77.71 99.0 94.2 62.8
MSPN [37] 256× 256 Front 462.1M 78.64 99.6 94.8 68.2
DARK(HRNet-W32) [39] 256× 256 Front 108.9M 78.89 99.4 93.8 68.8
DEKR(HRNet-W32) [40] 256× 256 Front 113.3M 78.85 99.2 94.8 68.2

Ours 256× 256 Front 248.6M 79.42 99.8 95.4 70.2

8-stage Hourglass [33] 256× 256 Side 98.6M 69.02 95.0 81.0 43.6
CPN [36] 256× 256 Side 177.6M 66.62 93.6 78.2 35.4
SimpleBaseline [31] 256× 256 Side 262.6M 67.76 94.6 78.4 41.6
HRNet [38] 256× 256 Side 243.2M 68.9 95.2 81.4 44.2
MSPN [37] 256× 256 Side 460.5M 66.72 94.0 77.4 36.8
DARK(HRNet-W32) [39] 256× 256 Side 108.9M 69.16 94.6 79.8 42.4
DEKR(HRNet-W32) [40] 256× 256 Side 112.8M 68.22 95.6 79.2 41.2

Ours 256× 256 Side 248.5M 70.1 95.4 84.0 46.0

To further prove the effectiveness of our SMSD block, we designed an ablation experi-
ment to show the results with different numbers of SMSD blocks in the network. As shown
in Table 2, the single-SMSD-block model performance was 79.24 with front-view images
and 69.16 with side-view images. By contrast, the model with two SMSD blocks led to a
0.18 improvement with front-view images and a 0.94 improvement with side-view images.
However, when we increased the number of SMSD blocks to three, it only led to a 0.02
improvement with front-view images and a 0.1 improvement with side-view images, while
more parameters were required.

Moreover, we also tried to remove the dense connections from m1, m2, m3 and m4 to p1
and p2 in the SMSD block to test the effectiveness of the dense connections. From Table 2, we
can see thaet a single SMSD block with dense connections led to a 0.46 improvement with
front-view images and a 0.6 improvement with side-view images. In addition, we compared
our SMSD block with Res2Net-50 [43]. Without these dense connections, Res2Net-50
outperformed the one-SMSD-block model by 0.44 with front-view images and 0.46 with
side-view images. However, with these dense connections, the one-SMSD-block model
outperformed Res2Net-50 by 0.04 with front-view images and 0.12 with side-view images.

Table 2. Component analysis. “Front” and “Side” denote the front- and side-view images. The accu-
racy was improved with the increase in the number of SMSD blocks. “1 SMSD w/o dense” means
that the dense connections from m1, m2, m3 and m4 to p1 and p2 in the SMSD block were removed.

Method mAP/Front mAP/Side

Res2Net-50 [43] 79.20 69.02
1 SMSD w/o dense 78.78 68.56
1 SMSD w/ dense 79.24 69.16
2 SMSDs w/ dense 79.42 70.1
3 SMSDs w/ dense 79.44 70.2

5.3. Body Profile Results

For the body profile, we compared the contour line generated by our method with
several semantic segmentation methods, including CE2P [1], DeepLabv3+ [7], Gated-
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SCNN [10], DenseASPP [9], SPNet [13] and RePRI [12]. In order to obtain a fair result,
we labeled our dataset with region segmentation annotation and all these segmentation
methods were retrained on this newly created dataset. The comparison results are shown
in Figure 7. Most of the methods obtained good visual results if the human subject was
dressed in tight-fitting clothing and the background image was simple, such as the results
shown in the first and second rows. However, if the human subject was dressed in loose-
fitting clothing, the accuracy of the semantic segmentation methods decreased. As shown
in the third row, because of the long skirt, the results of CE2P, Deeplabv3+, DenseASPP,
Gated-SCNN and SPNet were not satisfactory around the crotch area compared with the
ground truth. Furthermore, as shown in the fourth row, due to the loose coat, most of
the semantic segmentation methods could not precisely locate some parts (such as the
armpit), which affected the precision of the body profile. By contrast, our method was able
to obtain more accurate results because the body profile was generated through extracted
contour keypoints. Moreover, our method required less data annotation than these semantic
segmentation approaches.

Figure 7. The contour prediction result comparison between other methods and our method, from left
to right: (a) CE2P, (b) Deeplabv3+, (c) DenseASPP, (d) Gated-SCNN, (e) SPNet, (f) RePRI, (g) our
contour keypoint, (h) our profile and (i) ground truth.
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In semantic segmentation, intersection over union (IoU) and pixel accuracy are two
frequent metrics for evaluating the effectiveness of a method. However, these two metrics
consider all the pixels in both background area and surrounding area. For the contours or
profiles, we propose a new metric which focuses on the pixels located on the contours. For
each pixel of the predicted profile, we calculate the shortest distance from its coordinates to
the coordinates of the pixels on the labeled profile. Then, a mean value is calculated based
on the shortest distance among all pixels, which indicates the difference between ground
truth and predicted profile. The mean value of distances is represented as

dism =
1
n

n

∑
i=1

arg min(||pi − p̂j||) (5)

where n is the number of pixels of the predicted under-the-clothes profile. There were
about 2000 pixels and 1200 pixels in front- and side-view images, respectively. pi is the
ith pixel of the predicted profile and p̂j is the jth pixel of the ground truth profile. The
comparison between our method and other six segmentation methods is shown in Table 3.
Our method achieved similar accuracy in terms of mIoU and pixel accuracy to those of
state-of-the-art segmentation methods. The mean distance of our method was shorter
than the second one by 0.057 pixels. Besides, as shown in Figure 8, we also evaluated
segmentation performance in terms of the boundary IoU and interior IoU [44] using trimap
widths from 3 pixels to 29 pixels. Our method achieved competitive results compared with
Gated-SCNN in boundary IoU and interior IoU, but required quite less data annotation.

Table 3. Result comparison between state-of-the-art segmentation methods and our method. “Pixel
acc” is pixel accuracy, “mIoU” represents mean intersection over union, “dism” denotes the mean
shortest distance between the locations of pixels of the predicted under-the-clothes profile and the
locations of pixels of the labeled profile.

Method Backbone Pixel Acc mIoU dism

DenseASPP [9] DenseNet121 97.72 88.36 6.193
Gated-SCNN [10] ResNet101 98.87 93.80 2.676
SPNet [13] ResNet101 98.83 93.65 2.951
CE2P [1] ResNet50 98.81 93.54 3.02
Deeplabv3+ [7] ResNet50 98.88 93.92 2.656
RePRI [12] ResNet50 98.61 93.92 2.419
Our method ResNet50 98.86 94.01 2.362

(a) (b)

Figure 8. Error analysis on test set. Boundary IoU (a) and Interior IoU (b) have different
trimap widths.



Appl. Sci. 2022, 12, 2220 12 of 15

6. Body Profile Applications

Three-dimensional human model reconstruction. We adopted the 3D human model
reconstruction method [5] to create an accurate customized human model from the front-
view and side-view profiles extracted in Section 4. We briefly review the process as follows
(for more details, refer to [5]): We introduce a 3D shape representation by a 30-layer mesh
structure representing shape characteristics from neck to ankle. Each layer represents a
cross-sectional shape of the subject’s body corresponding the girth of a feature, which
includes 2D size features and 3D shape features. Then, the 3D model is reconstructed in
the following three steps:

(1) Extract the cross-sectional 2D size features from the subject’s profiles estimated in
Section 4;

(2) Predict 3D shape features from 2D size features for each layer, which is based on
relationship models pre-learned between 2D size features and cross-sectional 3D
shape features from a large scale of real human scanned models;

(3) A template model is then deformed with the predicted cross-sectional 3D shapes.

We further fit the SMPL model to our 3D human model to compare with other recon-
struction methods based on SMPL [21]. Figure 9 shows two examples generated by body
profiles detected by our method and the reconstruction result comparison among different
approaches, including HMR [20], NBF [23] and Smplify-x [24]. Compared with other
methods, the pose of the 3D model generated by our method was closer to the human pose
in the input images, especially around the joints. Besides, the sizes of the limbs generated
by other methods were larger than the ground truth, while the corresponding results were
improved in our method.

Figure 9. Three-dimensional human model generation and comparison with other methods. From left
to right: (a) input front-view image, (b) 3D model generated by our method, (c) HMR [20], (d) NBF [23]
and (e) Smplify-x [24].

Non-contact body size measurement. Human size measurement and fit recommen-
dations play very important roles in the clothing industry and online shopping. We also
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applied our estimated under-the-clothes profile method to obtain body size via the gener-
ated 3D human model. To test the accuracy of our method, we selected three body parts,
including chest, abdomen and calf, which are from upper, middle and lower sections of the
body, respectively, for size measurements. The girth measurements of these parts could
be easily obtained from the parallel layered 3D shape representation. Table 4 shows the
results and the error analysis of size measurements between the estimated size and the
ground truth, where the ground truth of each body part was obtained by averaging three
manual measurements. The measurement deviation between our estimated size and the
manual measured ground truth was about 2 cm, which satisfies the size tolerance of the
clothing industry.

Table 4. Results and error analysis of size measurement: chest girth, abdominal girth and calf girth.
(Gt) means ground truth; (Err) means the deviation between the estimated size and the ground truth.

ID Sex Chest (Gt)/cm Chest (Err)/cm Abdominal (Gt)/cm Abdominal (Err)/cm Calf (Gt)/cm Calf (Err)/cm

1 M 83 1.85 75 1.00 38 −1.13
2 M 89 1.52 83 1.27 37 0.16
3 M 87 −1.87 80 1.76 34 −0.22
4 M 101 −0.55 104 −1.71 42 −2.03
5 M 93 1.45 83 1.25 37 −2.03
6 F 82 −2.26 67 0.56 32 1.91
7 F 83 1.03 62 1.82 29 1.14
8 F 80 1.28 66 −0.72 32 −0.38
9 F 80 −0.61 72 0.3 33 −0.13
10 F 86 1.67 82 −1.34 35 1.97
11 M 89 −1.65 84 0.91 38 −1.56

7. Conclusions and Future Work

In this work, we propose a human body profile estimation method which generates
accurate under-the-clothes human body profiles via deep learning. We established and
labeled under-the-clothes body contour keypoints, based on which the precise human
body profile was generated. To improve the precision of keypoint detection, we propose
an SMSD block, which keeps the details of the image and increases the information flow
among different layers. Extensive experimental results clearly demonstrate significant
performance gain from the proposed method over state-of-the-art methods. Moreover, the
body profiles obtained with our method were extended to the applications of 3D human
model reconstruction and non-contact body size measurement.

Since the images of human subjects in the dataset were captured in a standard standing
pose, the body profile extraction results were not satisfactory if the tested pose deviated
greatly from the standard pose. In the future, we aim to improve the robustness of the pro-
posed method by expanding our dataset with more, different human poses. Moreover, more
potential applications based on our profiling, such as personalized outfit recommendation,
could be developed [45,46].
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