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Abstract: Modular addition is an important component of many cryptographic algorithms such as
ARX-ciphers and lattice-based post-quantum secure schemes. In order to protect devices that execute
these algorithms against side-channel attacks, countermeasures such as masking must be applied.
However, if an implementation needs to be secured against multivariate attacks, univariately secure
masking schemes do not suffice. In this work, we focus on hardware architectures for higher-order
masked addition circuits. We present and discuss three adder designs that are protected with a
provably secure masking scheme. Concretely, we discuss Kogge–Stone, Sklansky and Brent–Kung
adders regarding their suitability for high-order masking and their performance in this setting. All
architectures are fully pipelined and achieve a throughput of one addition per cycle. In order to
achieve multivariate security at arbitrary orders, we use HPC2 Gadgets that satisfy the PINI security
notion. Additionally, we apply a first-order secure threshold implementation scheme to the adder
variants and compare their performance in the univariate case.

Keywords: side-channel analysis; Boolean masking; hardware; addition; threshold implementa-
tion; HPC2

1. Introduction

Modular addition in the ring Z2n is a core part of several cryptographic schemes.
For example, in Addition-Rotation-XOR (ARX) ciphers they perform similar function to
S-boxes in classical block ciphers, being the only non-linear part of the algorithm. ARX
constructions, such as SPECK or SALSA20, combine this arithmetic function with the
Boolean exclusive or operation (XOR) and a bit-wise rotation to produce a secure algorithm.
When hardware implementations of such algorithms can potentially be targets of side-
channel attacks, masking can be used as an effective countermeasure. However, while
the separate protection of the arithmetic and Boolean parts of these algorithms is possible
using both an arithmetic and a Boolean masking scheme, the conversion between these
representations poses significant problems, especially in hardware.

Contribution

In this work we study how addition operations can be protected against side-channel
attacks in the hardware context using Boolean masking. We propose three different designs
for parallel-prefix addition circuits that can generically be masked at arbitrary order using
gadgets that follow the Probe Isolating Non Interference (PINI) security notion. To this end,
we study their suitability for masking and compare them regarding their area and random-
ness requirements as well as their latency. In order to achieve higher-order multivariate
security, we employ the HPC2-gadgets that were proposed in [1]. Concretely, the proposed
adder structures are:

1. A Kogge–Stone adder with a latency of log n-cycles.
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2. A Sklansky adder with the same latency but reduced area and randomness requirements.
3. A Brent–Kung adder which trades off higher latency for an even lower logic area

requirement and requires less randomness.

After performing a detailed analysis of their structure, we implement these adder
types as 32-bit variants on an FPGA. All implemented variants are fully pipelined and
therefore achieve a throughput of one addition per cycle. To our knowledge, the pro-
posed adders are the first arbitrary-order masked hardware designs that are secure against
multivariate attacks.

Additionally, we discuss the application of the Threshold Implementation (TI) masking
scheme to the Sklansky and Brent–Kung structures, where we use the same sharing that the
authors of [2] applied to ripple-carry and Kogge–Stone adders. Only the first order variant
is considered, as higher-order TI can not generically provide protection against multivariate
attacks [3]. In this case, randomness and area can be saved in comparison to the variants
that are secure at arbitrary order. Finally, we provide practical side-channel evaluations of
the Sklansky- and Brent–Kung-adders using Test Vector Leakage Assessment (TVLA).

2. Preliminaries
2.1. Notation

The binary operations and, or and xor are denoted by the symbols ∧, ∨ and ⊕, while
the + sign is used for the addition over integers or rings. All logarithms are in base two. The
least significant and most significant bits of the n-bit variable a are a0 and an−1 , respectively.
Single subscripts indicate the index of multi-bit variable (e.g., ai) and consecutive groups
of bits between index i and j are indicated as a{i,j}. In order to simplify equations, indices
are treated as zero if they become negative. Superscripts note the respective share of a
shared variable.

2.2. Parallel Prefix Adders

In order to compute the sum s of two n-bit inputs over Zn, an addition circuit needs to
compute a sum bit si for every pair of input bits (ai, bi) using carry bits ci as:

si = ai ⊕ bi ⊕ ci with

ci = ci−1 ∧ (ai−1 ⊕ bi−1) ∨ (ai−1 ∧ bi−1) ∀i > 0 , else 0

A direct realization of these equations leads to a carry-ripple adder with a circuit depth
of n due to the dependency of ci from ci−1. When masking this architecture in hardware
where glitches occur, the required registers in each stage lead to a latency of n cycles.

Parallel-prefix adders can reduce this latency by restating the computation of the
carry bits using (group-) generate and propagate terms and computing them in parallel.
Intuitively, the generate term p{i,j} determines if the groups of input bits a{i,j} and b{i,j}
will generate a carry output cj+1, independently of the carry input ci. The propagate term
determines if an input carry ci will affect the output carry cj+1.

For single-bit inputs (ai, bi), the generate and propagate terms are computed as
gi = ai ∧ bi and pi = ai ⊕ bi , respectively. We call this initial step, which is the same
for all parallel-prefix adders, the preprocessing step. Given i > k ≥ j, the group-generate
term is calculated as

g{i,j} = g{k,j} ⊕
(

p{k,j} ∧ g{i,k+1}

)
(1)

and the group-propagate term as

p{i,j} = p{i,k+1} ∧ p{k,j} . (2)

The final sum bits can then be computed as si = g{i−1,0} ⊕ pi, where g{−1,0} = 0. The
costs in XOR and AND operations for implementing each of the functions mentioned above
are itemized in Table 1.
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Table 1. Number of elementary XOR and AND operations per basic function.

Function g(i) p(i) g({i, j}) p({i, j}) s(i)

AND 1 0 1 1 0
XOR 0 1 1 0 1

In the following we use pg{i,j} (or PG term where the indices are not relevant) as a
short form for the tuple (p{i,j}, g{i,j}). We define the function block that computes these
terms by combining existing terms as PG({i, j}, {k, l}) = (p({i, l}), g({i, l})) and call them
PG blocks.

The different variants of parallel-prefix adders, such as the ones discussed here, all
apply this same principle but differ in the way PG terms of larger groups of bits are
constructed from smaller ones.

2.3. Masking Countermeasures

A common and effective countermeasure against side-channel attacks is masking.
Here, the relation between the sensitive data and the side-channel is obscured by removing
the dependencies between the two to a certain degree. In a d-th order masking scheme,
sensitive values are split into multiple (at least d + 1) shares and a successful attacker is
required to combine information from at least d + 1 of these shares to be able to deduce
any information about the original value. As the measurement of a physical side-channel
always introduces noise, the complexity of attacks increases exponentially with the masking
order under most practical conditions [4]. Masking schemes for hardware implementations
should provide security in the presence of glitches.

A multitude of masking schemes, such as the Consolidated Masking Scheme [5]
and Domain-Oriented Masking [6], have been proposed in the literature of which we will
discuss Threshold Implementation [7] and Hardware Private Circuits [1] as they are applied
in this contribution.

Threshold Implementation

A Threshold Implementation (TI) is a Boolean masking scheme, i.e., a sensitive value x
is split into shares xi such that x =

⊕
xi. The number of input (din) and output (dout) shares

of a function following the TI notion depends on the masking order and the algebraic
degree of the function. However, we will mainly focus on the first-order secure variant
here, where din > d and dout > d. While higher-order TI instantiations are possible [8],
their security is limited to univariate attacks in practice [3]. In order to correctly instantiate
a threshold implementation, three properties have to be fulfilled. The non-completeness
property requires any subset of output shares smaller than d + 1 to be independent of
at least one input share. The correctness property guarantees that the output of a shared
function can be unmasked yielding the result an unprotected realization of the function
would produce, i.e.,

⊕
fshared(x1, ..., xdin) = funshared(x). Finally, uniformity requires each

possible output sharing to be equally likely when the input sharing is drawn from a uniform
distribution. Note, that this last property is usually the hardest to fulfill and frequently
requires the addition of fresh randomness. As with most masking schemes, linear functions
(e.g., XOR) are trivially shared by applying the unshared function to all input shares
independently, while non-linear functions (e.g., AND) are more difficult to share correctly.
To ensure the resistance of TI against leakage through glitches, registers have to be placed
between components when composing larger circuits from multiple functions.

Probe-Isolating Non-Interference and Hardware Private Circuits

Several attack models have been developed in order to abstract the observation of
side-channels in a meaningful way and allow the construction of masking schemes that are
provably secure in the respective model. The probing model, formalized in [9], generally
requires any set of values that can be accessed by up to d probes in a circuit to be indepen-
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dent of the sensitive variables. As this property is insufficient to guarantee the security of a
composition of gadgets, which are themselves secure in this model [10], the more restrictive
notions of Non-Interference (NI) and Strong Non-Interference (SNI) [11] were introduced.
In order to satisfy NI, a set of t ≤ d probes on a gadget needs to be simulatable using at
most t shares of each input. For SNI-secure gadgets, every set of tint internal probes and tout
probes on the gadget output, where tin + tout ≤ d, can be simulated using only tint shares
of each input. While the authors of [11] showed that gadgets can be securely composed
using NI or SNI gadgets, the area and randomness costs are typically high because refresh
gadgets are needed to allow composition. The Probe Isolating Non Interference (PINI)
notion proposed in [12] aims to solve this problem by developing a model which allows
trivial composition with reasonable cost. For a PINI-secure gadget, the simulatability is
constraint by the share index a probe is associated with. The resulting model allows trivial
realizations of linear functions as with TI.

Following this notion, the authors of [1] proposed several hardware realizations of
PINI-secure gadgets. The HPC2 AND gadget (which we use in this work) provides dth-
order security using d + 1 input and output shares. It has an asymmetric latency with
respect to the two input arguments, where the first argument influences the output after
one cycle and the second after two cycles. The required fresh randomness per gadget
amounts to d · (d + 1)/2 bits. We used the source code for the gadgets from the library
provided by the authors [13] in our implementations.

3. Boolean Masking for Addition Circuits

In this section, we discuss the application of three different architectures for parallel
addition circuits that can be effectively used for higher-order masked applications. In many
cryptographic schemes, e.g., in ARX algorithms, the addition operation is performed in the
ring Zn, where n = 2m, m ∈ Z. Therefore, we assume the width of the addition circuits to
be 2m and do not consider input and output carry bits. However, the proposed designs can
be adapted to other bit widths and to the handling of carries, if required by an application.

Throughout this section we use diagrams to illustrate the structures of the algorithms
under discussion. In these diagrams, the preprocessing blocks are represented by oval
shapes while all other blocks are rectangular. A block is shaded gray if both, the generate
and propagate terms, are computed by it. If a block only needs to calculate the generate or
propagate term, it is shaded green or orange, respectively. Blocks that are only needed if an
output carry is required are not filled. All described adder designs require a final stage for
the calculation of the sum bits, which is not shown in the diagrams.

3.1. Kogge–Stone Adder (KSA)

KSAs [14] are parallel-prefix adders that are similar to greedy algorithms in the sense
that the maximal number of PG terms are combined in each stage. An n-bit KSA requires
log n stages to compute all g({i, 0}) terms and one additional stage to compute the final
sum bits. In order to better illustrate the architecture, an 8-bit KSA is depicted in Figure 1.
When excluding the preprocessing step and the final sum calculation, it requires 3 stages
and 14 PG blocks.

In the first stage after the preprocessing step, every PG term is combined with
its neighbor, i.e., PG({i, i} , {i− 1, i− 1}) ∀0 < i < n − 1 is computed. Therefore,
n − 1 PG function blocks need to be instantiated in that stage. In the second stage,
PG({i, i− 1} , {i− 2, i− 4}) ∀1 < i < n − 1 is computed, requiring n − 2 PG function
blocks. Note that p({1, 0}) is not needed in this computation and the hardware for its gener-
ation can therefore be omitted in the first stage. In general, stage k computes n− 2k PG terms
as (when numbering the stages, the stage number k of the first stage after preprocessing
is zero):

PG
({

i, i− 2k + 1
}

,
{

i− 2k, i− 2k+1 + 1
})
∀k < i < n− 1.
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As we do not consider the output carry generation, the calculation of pg({n− 1, i})
∀i 6= n− 1 can be skipped, saving log n PG blocks. This reasoning does not only apply
to Kogge–Stone adders but also to the other structures discussed below. Over all stages
excluding the preprocessing, (n− 1) · log n− n + 1 PG blocks are required. Of these blocks,
n− 2 blocks do not need to compute the propagate term. In the preprocessing step, which is
the same for all parallel-prefix adders, n generate functions and n− 1 propagate functions
are needed. A summary of the required numbers of all the basic blocks for all adder types
is provided in Table 2. By combining Tables 1 and 2, we can summarize that an n-bit Kogge–
Stone adder requires (n− 1) · log n− 3 · n + 1 XOR gates and 2 · (n− 1) · log n− 2 · n + 3
AND gates. The number of elementary operations per adder is depicted in Table 3.

7 6 5 4 3 2 1 0

Figure 1. 8-bit Kogge–Stone Adder.

Table 2. Number of required basic functions for different parallel-prefix adders.

g(i) p(i) g({i, j}) p({i, j}) s(i)

Kogge–Stone n− 1 n (n− 1) · log n− n + 1 (n− 1) · log n− 2 · n + 3 n
Sklansky n− 1 n (n/2− 1) · log n (n/2− 1) · log n− n + 2 n
Brent–Kung n− 1 n 2 · n− 2 · log n− 2 n− 2 · log n n

Table 3. Number of elementary XOR and AND operations for different parallel-prefix adders
including the preprocessing stage and final computation of the sum bits.

Kogge–Stone Sklansky Brent–Kung

AND 2 · (n− 1) · log n− 2 · n + 3 (n− 2) · log n− n + 1 3 · n− 4 · log n− 1
XOR (n− 1) · log n− 3 · n (n/2− 1) · log n + 2 · n 4 · n− 2 · log n− 2

Masking KSAs

When compared to the other designs discussed in this work, an implementation of a
KSA requires the highest number of PG blocks, resulting in the largest area requirement
when implemented using masking. As dth-order secure HPC2 AND-Gadgets require
d · (d+ 1)/2 bits of fresh randomness, the total randomness requirement of a HPC2-masked
n-bit KSA is the highest of the discussed variants at d · (d + 1) · ((n− 1) · (log n− 1) + 1)
bits. However, the required randomness can be drastically reduced if only univariate
security is considered, as shown in [2]. Here, a first-order secure TI of a KSA using three
shares that only needs n bits of fresh randomness is proposed. As noted by the authors,
their second-order variant does not provide protection against multivariate attacks.

3.2. Sklansky Adder (SA)

The Sklansky Adder was introduced in 1960 [15] as an efficient parallel adder with low
area requirements. It has the same latency as a KSA at log n + 1 cycles but requires a lower
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total number of PG blocks. In contrast to the previously described circuit, the number of
PG blocks per stage is constant at n/2. Figure 2 depicts an 8-bit Sklansky adder, realized
with 12 PG blocks in 3 stages, excluding preprocessing.

7 6 5 4 3 2 1 0

Figure 2. 8-bit Sklansky Adder.

In the first stage, every other PG term is combined with its neighbor, i.e.,

PG({2 · i + 1, 2 · i + 1} , {2 · i, 2 · i}) ∀0 ≤ i < n/2

is computed. The second stage combines these 2-bit PG terms as

PG
({

4 ·
⌊

i
2

⌋
+ 2 + (i mod 2), 4 ·

⌊
i
2

⌋
+ 2
}

,
{

4 ·
⌊

i
2

⌋
+ 1, 4 ·

⌊
i
2

⌋})
∀0 ≤ i < n/2.

In general, the k-th stage for k > 0 combines the previous PG terms using n/2 PG
blocks in the following way:

PG
({⌊

i
2k

⌋
· 2k+1 + 2k + (i mod 2k),

⌊
i

2k

⌋
· 2k+1 + 2k

}
,{⌊

i
2k

⌋
· 2k+1 + 2k − 1,

⌊
i

2k

⌋
· 2k+1 + 2k−1 − 1

})
∀0 ≤ i < n/2

Following the reasoning of Section 3.1, (n/2− 1) · log n PG blocks are needed to build
a SA when excluding the preprocessing stage. As in in the Kogge–Stone case, n− 2 of these
do not need to compute the propagate term. The resulting number of required the basic
blocks is provided in Table 2.

Masking SAs

When compared to a KSA, the main advantage of an SA in the context of masked
implementations lies in the reduced number of required PG blocks, which directly results in
a lower area requirement. If HPC2 gadgets are used this also leads to reduces randomness
use of d · (d + 1) · ((n− 2) · log n− n + 1) bit.
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If only first-order security is desired, a TI similar to [2] can be used to reduce the
randomness requirements in comparison to HPC2 gadgets. In this publication, the au-
thors re-use shares of the generate terms to reduce the required fresh randomness in the
computation of the propagate term. Specifically, when computing p{i,j} as a masked ver-
sion of Equation (2), the first share of g{k,j} is used to achieve the uniformity of the tuple
(p{i,j}, g{i,j}). In the KSA-case, each p-term is not used more than once per stage as the
rightmost term in Equation (2). Therefore, each g-term is not used more than once to
replace a bit of fresh randomness, preventing potential violations of the joint uniformity of
the PG tuples in later stages. Unfortunately, this randomness reduction approach can not
directly be applied to SAs, due to the higher fan-out of the PG blocks of up to n/2− 1 in this
case. Therefore, SAs require additional randomness when masked with TI. However, the
number of required fresh random bits can be reduced by following the the construction of
the second-order secure KSA presented in [2]. Here, the authors take four shares from g{k,j}
to replace fresh mask bits. Following this approach, instead of taking the same first share as
mask replacement, we can use up to three different shares. In stages with a fan-out higher
than three, additional fresh random bits need to be inserted. This results in 10 additional
random bits required by a 32-bit first-order secure SA when masked with TI.

3.3. Brent–Kung Adder (BKA)

A BKA [16] allows a further reduction in the number of PG blocks in comparison to
an SA, albeit with the cost of increased latency. The general structure of BKA is composed
of two trees, where the first tree computes the group generate and propagate terms of
increasingly larger groups of bits until the carry bit for the most significant output can
be determined. The resulting structure can be viewed as a binary tree where the output
carry for the most significant bit represents the root and the PG terms generated by the
preprocessing represent the leafs. An 8-bit version of this tree is shown in Figure 3.

7 6 5 4 3 2 1 0

Figure 3. 8-bit Brent–Kung Adder, generation of the MSB carry bit.

As PG terms, which are not required to compute the most significant carry bit, are not
considered in this process, a second reversed tree is needed in order to generate them. A
full 8-bit BKA that can compute all bits of the final sum is depicted in Figure 4. Note that in
this 8-bit case, the carry for the most significant bit is already available after log 8 = 3 stages.
However, an additional stage is required for the reverse tree, which computes the remaining
carry bits. As a result, the 8-bit BKA requires a total of 4 stages and 11 PG blocks, excluding
the preprocessing stage.
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The first stage in a BKA is the same as for the SA, combining every other PG term
with its neighbor and therefore generating n

2 2-bit PG terms. Following the tree structure of
BKAs, the second stage combines adjacent 2-bit PG terms to 4-bit terms as:

PG({4 · i + 3, 4 · i + 2} , {4 · i + 1, 4 · i}) ∀0 ≤ i < n/4.

This pattern is repeated until the final carry can be computed, requiring log n stages.
The k-th stage therefore computes PG terms for increasingly larger groups of bits using n

2k+1

PG blocks according to:

PG
({

i · 2k+1 − 1, (2 · i− 1) · 2k
}

,{
(2 · i− 1) · 2k − 1, (i− 1) · 2k+1

})
∀1 ≤ i <

n
2k+1 .

The resulting structure consists of n− 1 PG blocks, of which log n are only needed
for the output carry generation. As explained above, this binary tree does only generate
the group PG terms that are necessary to calculate carry for the MSB. The reversed tree is
therefore inserted to the circuit below the initial binary tree, generating the remaining terms.
In order to improve the readability of the equations describing the PG term generation,
we count the stages of this subtree beginning with the output stage of the adder, i.e., the
stage number l of the inverse tree is related to the stage of the complete adder k through
l = 2 · log n− 2− k. On the lowest level (l = 0), the inverse tree generates all even PG
terms, i.e., pg({2 · i, 0}) ∀1 ≤ i < n/2 as:

PG({2 · i, 2 · i} , {2 · i− 1, 0}) ∀1 ≤ i < n/2.

In general, the inverse tree in a BKA computes n
2k+1 − 1 PG terms in log n− 1 stages as:

PG
({

i · 2l+1 + 2l − 1, i · 2l+1
}

,
{

i · 2l+1 − 1, 0
})
∀1 ≤ i <

n
2l+1 − 1.

The total number of PG terms in this lower tree is equal to n− log n− 1.
When joining both tree structures, the last stage of the upper tree and the first stage

of the lower tree can be combined in one stage, as there is no direct dependency between
them. If no carry output is required, this step is trivial as the last stage of the upper tree
can be omitted. As a result, a BKA can be realized in with a total of 2 · (n− log n− 1) PG
blocks in 2 · log n− 2 stages, when no carry output is computed.

7 6 5 4 3 2 1 0

Figure 4. Complete 8-bit Brent–Kung Adder.
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Masking BKAs

The asymptotic complexity of the number of PG blocks in a BKA isO(n) in comparison
to O(n · log n) in the KSA and SA cases. This leads directly to smaller implementations if
masking countermeasures are employed. Additionally, as the number of AND-gates has
the same linear complexity, the required number of fresh random bits is reduced further
to d · (d + 1) · (3 · n− 4 · log n− 1). These improvements are bought with a higher latency
due to BKAs requiring 2 · log n− 2 stages, while KSAs and SAs can be realized in only
log n stages.

However, if a first-order TI is used as the masking scheme, the randomness require-
ments are higher than in the KSA case. As BKAs have a maximal fan-out of log n − 1,
additional randomness is needed, similar to the SA case. Due to the tree-like structure
of the BKA the randomness overhead is lower than for SA adders. This results in no
additional randomness requirements in a 32-bit adder, as a sufficient number of shares can
be re-used as described in Section 3.2.

4. Implementation Results and Discussion

This section provides implementation details for the proposed addition structures.
We implemented 32-bit versions of the three algorithms as this size is commonly needed
in cryptographic algorithms such as SALSA20. Note that adaptions to other widths are
trivial. All designs were specified in VHDL and VERILOG and were synthesized for a
Xilinx Spartan 6 XC6SLX75 Field-Programmable Gate Array (FPGA) with speed grade
−3 using Xilinx ISE 14.7. In order to assure the correct realization of masked gadgets the
relevant signals were exclude from optimizations and the design hierarchy was preserved.
The implementation results are presented in Table 4.

Table 4. Implementation results for different 32-bit adder designs.

Design LUTs Flip-Flops Freq. (MHz) Latency Rand. (Bit)

TI KSA [2] 937 1330 62 6 32
TI KSA 873 1416 228 6 31
1st-order HPC2-KSA 2936 3981 176 12 249
2nd-order HPC2-KSA 3915 8001 148 12 747

TI SA 579 1416 174 6 41
1st-order HPC2-SA 1801 3166 153 12 119
2nd-order HPC2-SA 1994 5979 128 12 357

TI BKA 487 2352 280 9 31
1st-order HPC2-BKA 1588 4317 173 18 74
2nd-order HPC2-BKA 1666 7122 158 18 222

4.1. TI Implementations

If first-order security is sufficient in an application, TI is a valid choice for a masking
scheme. Regarding area, our results for the KSA adder are similar to the figures from [2].
The clock frequency that was estimated by the synthesis tool differs significantly from
our results, although the authors performed their benchmark on an FPGA from the same
family as we did. Different speed grades of the devices and different constraining of the
synthesis might explain this discrepancy. Note that our implementation only uses 31 bit
of randomness as the carry output is not computed. The SA design utilizes significantly
less logic than the KSA, which can be attributed to the lower number of PG blocks. The
number of flip-flops is the same as it is dominated by the number of stages in a pipelined
architecture. When masking using TI, the BKA utilizes even less logic than the SA design
but the higher number of stages lead to a higher flip-flop requirement. In a scenario where
logic is expensive and high throughput is demanded but memory and latency are less
important, the BKA is a suitable design.
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4.2. HPC2 Implementations

If resistance against multivariate attacks is demanded, the KSA shows the worst
performance in most categories. It should therefore only be considered in this scenario if
the combination of latency and throughput are the primary optimization goals. The SA
can effectively be utilized if the latency of the adder and the area requirements are the
most important factors. The logic and memory requirements are significantly lower and
the randomness requirement is less than half when compared to the KSA, although the
throughput is slightly lower. If latency and memory are less important and the randomness
consumption is critical, the BKA should be preferred. The logic area is lower and the
randomness requirement can be further reduced by almost 40 % in comparison to the SA.
Due to the differing asymptotic complexity this difference increases for larger widths.

5. Side-Channel Evaluation

In this section, we provide a side-channel evaluation for the TI Sklansky- and Brent–
Kung-Adders using the well-established TVLA [17,18]. As the authors of [2] already
performed a side-channel evaluation of the TI-KSA we studied, we did not repeat this
evaluation. Our HPC2-based adder designs rely on AND- and XOR-Gadgets, that are
secure in the PINI model. Following this model, the gadgets can be composed arbitrarily in
the presence of glitches. Note that the authors of [19] showed, that this composability can
break if transitional leakage occurs. However, as our implementations are fully pipelined
and successive inputs are assumed to be shared independently, this vulnerability does
not apply in this case. The authors of [20,21] previously demonstrated the side-channel
resistance of the HPC2 gadgets using TVLA. Therefore, we did not perform side-channel
measurements for the HPC2 adder designs.

The power side-channel traces were obtained from a Sakura G [22] board specifi-
cally designed for side-channel evaluation. The clock rate was set to 4 MHz in order to
collect clean traces. The internal amplifier of the board was combined with an external
ZFL1000LN+ low-noise amplifier with a gain of approximately 21 dB. The samples were
collected with an Spectrum M4i22 PCIe digitizer at a sample rate of 1.25 GS s−1. The
internal 400 MHz low-pass filter was enabled for the purpose of preventing aliasing of
the signal.

We applied the non-specific fixed-vs-random t-test described in [18] and the confidence-
interval-based method proposed in [23] as the evaluation metrics in order to discern if the
side-channel is data-dependent. For detailed explanations of these methods the reader is
referred to the original publications. The analysis was performed for the first and second
orders using 300 million traces at a significance level of α = 0.01 adjusted for family-wise
error rate. The evaluation results are depicted in Figures 5 and 6.

As shown in Figure 5d, no first-order leakage can be detected in the SA implementation
with 300 million measurements. Following the plot in Figure 5b if any (undetected) first-
order leakage is present, it is below 60 nV after amplification. Second order leakage is
clearly detectable, which is expected as the TI masking scheme with three shares only
provides first-order security. Similar to the SA case, the BKA does not exhibit detectable
first order leakage, but is potentially vulnerable against second-order attacks.
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Figure 5. A sample power trace, confidence intervals, and t-test results for the TI Sklansky Adder
using 300 million traces. No first-order leakage is detectable.
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Figure 6. A sample power trace, confidence intervals, and t-test results for the TI Brent–Kung Adder
using 300 million traces. No first-order leakage is detectable.

6. Conclusions

In this work we studied three adder designs regarding their suitability for Boolean
masking. The algorithms where masked with the TI scheme for first-order security and
with HPC2 gadgets that provide resistance against multivariate attacks. After a detailed
complexity analysis and practical realization on an FPGA we found different scopes of
application for the algorithms. The KSA can effectively be used to achieve univariate
security. If randomness requirements and throughput are less important than area, an SA
can be considered. In the multivariate case the SA provides the lowest latency, while the
BKA can reduce logic area and randomness requirements and improve the throughput at
the cost of latency and memory. In future work a study of non-pipelined adder designs for
low throughput requirements would be interesting.
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