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Abstract: Atrial fibrillation (AF) is characterized by totally disorganized atrial depolarizations without
effective atrial contraction. It is the most common form of cardiac arrhythmia, affecting more than
46.3 million people worldwide and its incidence rate remains increasing. Although AF itself is not life-
threatening, its complications, such as strokes and heart failure, are lethal. About 25% of paroxysmal
AF (PAF) patients become chronic for an observation period of more than one year. For long-term
and real-time monitoring, a PAF prediction system was developed with four objectives: (1) high
prediction accuracy, (2) fast computation, (3) small data storage, and (4) easy medical interpretations.
The system takes a 400-point heart rate variability (HRV) sequence containing no AF episodes as
the input and outputs whether the corresponding subject will experience AF episodes in the near
future (i.e., 30 min). It first converts an input HRV sequence into four image matrices via extended
Poincaré plots to capture inter- and intra-person features. Then, the system employs a convolutional
neural network (CNN) to perform feature selection and classification based on the input image
matrices. Some design issues of the system, including feature conversion and classifier structure,
were formulated as a binary optimization problem, which was then solved via a genetic algorithm
(GA). A numerical study involving 6085 400-point HRV sequences excerpted from three PhysioNet
databases showed that the developed PAF prediction system achieved 87.9% and 87.2% accuracy on
the validation and the testing datasets, respectively. The performance is competitive with that of the
leading PAF prediction system in the literature, yet our system is much faster and more intensively
tested. Furthermore, from the designed inter-person features, we found that PAF patients often
possess lower (~60 beats/min) or higher (~100 beats/min) heart rates than non-PAF subjects. On
the other hand, from the intra-person features, we observed that PAF patients often exhibit smaller
variations (≤5 beats/min) in heart rate than non-PAF subjects, but they may experience short bursts
of large heart rate changes sometimes, probably due to abnormal beats, such as premature atrial
beats. The other findings warrant further investigations for their medical implications about the onset
of PAF.

Keywords: paroxysmal atrial fibrillation; heart rate variability; poincaré plot; convolutional neural
network; genetic algorithm

1. Introduction

Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia that affects
the quality of human life all over the world [1]. The common symptoms of AF contain
dizziness, chest pain, shortness of breath, and palpitations, and it causes strokes and heart-
related complications. The estimated number of people with AF was 20.9 million men
and 12.6 million women worldwide in 2010 [2], and was updated to a total of 46.3 million
individuals in 2016 [3]. The prevalence of AF increases with age, and affects males more
than females [4]. The early form of AF is paroxysmal AF (PAF), during which the AF
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episode is self-terminating (≤48 h), and it is usually treatable. On-time prediction of PAF
can prevent its transformation into chronic AF, which leads to high morbidity and mortality
rates [5].

Owing to the highly nonlinear and nonstationary nature of human heartbeat signals [6,7],
the prediction of PAF onset via a signal-prediction approach (i.e., by predicting further
heartbeat signals based on the existing ones and checking for AF episodes) is impractical.
Instead, a feature-classification approach is more commonly adopted, in which one set of
heartbeat signals acquired from PAF patients that contain no AF episodes but are known
to exhibit AF episodes in the near future (say, within 30 min) are to be distinguished from
the other set acquired from healthy subjects. In such an approach, various features that
improve signal separability, as well as computational efficiency, are first extracted from
the heartbeat signals. Then, a classifier is designed to distinguish the two sets of signals.
In the last few decades, many methods have been proposed for the feature-classification
approach. According to the signal source, they can be roughly classified into two categories:
electrocardiogram (ECG)-based or heart rate variability (HRV)-based methods. In ECG-
based methods, the detection of features such as P-wave morphology and P-wave variability
is essential for premature atrial complexes (PAC) detection [8,9]. However, ECG monitoring
devices that provide accurate signals for such features are hardly accessible outside health
centers. Although ECG signals can be acquired from some wearable devices, they have not
met the medical-grade demands.

On the other hand, HRV has become a widely used signal to diagnose/predict several
cardiac diseases because it can be more easily extracted from ECG through successive
QRS complexes than those features through P waves. In addition, HRV signals have been
found to provide useful clues about the underlying cardiac diseases [10–14], not to mention
that they require much less computation and storage than ECG. A feature-classification
approach is commonly adopted in HRV-based methods. Features representing subtle
changes in an HRV signal that are associated with the underlying cardiac disease are
computed and then sent to a classifier for state determination. These features are usually
derived from the time, frequency, and state-space domains [6,15–27]. Some approaches
that used a combination of features [11,12] in different domains may require a considerable
amount of computations and, hence, are not suitable for quick diagnosis. Moreover,
previous approaches seldom considered inter- and intra-person differences. However,
features such as absolute and relative heart rate variations may both contribute to the
disease onset, perhaps in different facets.

Recently, deep learning models have been widely applied to various fields, including
computer vision [28], speech recognition [29], and natural language processing [30], where
their performances are comparable to, and in some cases surpass, human experts. One of
the most popular models is the convolutional neural network (CNN), which has appealing
performances, particularly in image classification. It outperforms many conventional
classifiers, such as artificial neural network (ANN), k-nearest neighbors (KNN), and support
vector machine (SVM), in medical image analysis [31]. Since we converted an HRV sequence
into multiple 2-dimensional matrices to reveal useful features, CNN was adopted in our
system for feature selection and classification.

In this work, we developed a PAF prediction system that achieved accurate prediction
with 400-point (~5 min) HRV sequences. Intra- as well as inter-person features that are easy
to compute and interpret were proposed. The developed system was trained, validated,
and tested using three datasets excerpted from PhysioNet [32]. The system performance
and some medical implications derived from the proposed features are discussed herein.

2. Materials and Methods
2.1. Data Collection

Three databases, the PAF Prediction Challenge Database (accessed on 20 November
2019), MIT-BIH Atrial Fibrillation Database (accessed on 11 March 2021), and MIT-BIH
Normal Sinus Rhythm Database (accessed on 11 March 2021) from PhysioNet, were em-
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ployed to construct our PAF prediction system. Digitized ECG signals along with machine-
generated beat annotation are available for download in the three databases. The PAF
Prediction Challenge Database was issued in 2001 for competition and has been a bench-
mark database ever since. To compare with similar systems in the literature, we used it for
training and validation, and used the other two databases for testing our system. The PAF
Prediction Challenge Database consists of 200 30 min HRV sequences from 53 PAF patients
and 47 normal subjects (two sequences per person). Those sequences were split into train-
ing and validation datasets with a ratio of 80:20 in such a way that the same numbers of PAF
and non-PAF subjects were in the validation dataset, and the two HRV sequences from a
person were allocated to the same dataset. We then extracted non-PAF HRV sequences from
the MIT-BIH Normal Sinus Rhythm Database and PAF HRV sequences from the MIT-BIH
Atrial Fibrillation Database to test the performance of our system. The MIT-BIH Normal
Sinus Rhythm Database includes 24 h ECG recordings of 18 subjects without significant
arrhythmias. On the other hand, the MIT-BIH Atrial Fibrillation Database contains 10 h
ECG recordings of 25 patients with atrial fibrillation (mostly paroxysmal). We removed the
top and the bottom one-hour data in each recording to avoid unstable data points.

2.2. Signal Preprocessing

To convert the HRV sequences from the afore-mentioned ECG signals, we downloaded
RR intervals (in the unit of sec/beat) for each of those ECG signals from PhysioBank ATM at
https://archive.physionet.org/cgi-bin/atm/ATM (last accessed on 11 March 2021). Then,
each HRV sequence (in the unit of beats/min) was converted from its corresponding RR
intervals using 60/(RR intervals). According to PhysioBank, the locations of the R waves in
an ECG signal were determined by a QRS detector that used a modified Pan and Tompkins
algorithm [33,34]. In the algorithm, a bandpass filter composed of cascaded low-pass and
high-pass filters was applied to an ECG signal to reduce the influences of muscle noise,
60 Hz interference, baseline wander, and T-wave interference. The desirable passband
was set to approximately 5–15 Hz in order to maximize the QRS energy [35,36]. A testing
result showed that the accuracies of the QRS detection algorithm were generally >95% on
multiple ECG databases acquired from bedside monitors when the subjects were in a resting
state [37]. No further filtering in the frequency domain was applied to the HRV sequences
for two reasons. Firstly, an HRV sequence is an uneven sampling (i.e., RR intervals) from
ECG. It is difficult to interpret a certain frequency band in the frequency transformation of
HRV. Secondly, the HRV sequence has been shown to exhibit a continuous spectrum [6].
Without knowing the exact sources of the noise, any filtering in the frequency domain can
introduce artifacts into the sequence. However, certain countermeasures did apply in the
feature conversion stage to reduce the noise caused by inaccurate QRS detections, which
will be covered in the next section.

For the PAF Prediction Challenge Database, each 30 min HRV sequence was further
divided into six 400-point subsequences, and overlapping was allowed if the sequence was
less than 2400 points. As a result, 960 and 240 400-point HRV sequences were attained in
the training and validation sets, respectively. The purpose of the division was not only
to increase the dataset size, but also to reduce the data length for less computation and
storage so that the constructed prediction system could be applicable to wearable devices.
For the MIT-BIH Atrial Fibrillation Database, only episodes with 400 consecutive normal
sinus beats (each beat is noted as “N” in the annotation file) and at least five consecutive
normal sinus beats before and after the episodes were extracted from the two databases.
Consequently, we acquired 3850 400-point HRV sequences from 18 healthy controls and
1035 400-point HRV sequences from 21 PAF patients (4 of the 25 patients in the database did
not have a qualified episode). The detailed numbers of non-PAF and PAF HRV sequences
in the training, validation, and testing datasets are listed in Table 1.

https://archive.physionet.org/cgi-bin/atm/ATM
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Table 1. The number of non-PAF and PAF 400-point HRV sequences and the number of corresponding
persons in our training, validation, and testing datasets.

Dataset Non-PAF Sequences (Persons) PAF Sequences (Persons)

Training 444 (37) 516 (46)
Validation 120 (10) 120 (10)

Testing 3850 (18) 1035 (21)

2.3. Feature Matrices Conversion

The purpose of this task is to convert each HRV sequence from its original data space
into a feature space such that characteristics differentiating PAF from non-PAF data can
be more explicitly revealed than in the original space. Let the dataset be made up of a
set of m n-point HRV sequences, which can be denoted by X = [x1, x2, . . . , xm], where
xi = [xi,1, xi,2, . . . , xi,n]T in the unit of beats/min, i = 1, 2, . . . , m. The process of constructing
a feature matrix A ∈ Rs×t from an HRV sequence x ∈ Rn can be accomplished through a
mapping function, Φ, such that A = Φ(x). In this work, we chose the discretized Poincaré
plot to perform such a conversion for its easy construction, modification, and interpretation.
In addition, it has been related to HRV physiology [38,39] and adopted for HRV analysis
on PAF prediction for decades [11,13,40–42]. However, most of the previous works used
features that measure only a certain facet of the plot and thus the information carried in the
plot is not fully utilized. In fact, according to the definition of various abnormal beats in [43],
these beats can be found in different regions in the Poincaré plot of an HRV sequence, as
illustrated in Figure 1. More importantly, the discretized Poincaré plot of a sequence is
shift-invariant in that the plot is independent of the feature locations in the sequence.
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Figure 1. Regions related to different abnormal beats in an accumulated discretized Poincaré plot of
PAF HRV sequences.

A Poincaré plot is a graph of xi versus xi+1 of a sequence, x = x1, x2, . . . , xn, where
I = 1, 2, . . . , n − 1. This plot is used to capture the correlation between two consecutive
data points. It can be extended to calculate the correlation between sequential data points
that are τ points away (lag), where τ is a positive integer less than n. Therefore, an n-
point sequence can be represented by an extended Poincaré plot by drawing the points
(xi, xi+τ) where i = 1, 2, . . . , n−τ. However, the Poincaré plot is a 2-dimensional real-valued
image with an infinite number of points in a data-dependent range of [lx, ux] × [lx, ux],
where lx = min(x) and ux = max(x). To generate a fixed-size matrix A ∈ Ns×s for each HRV
sequence, the range of allowable heart rates is to be defined, and then the resultant plot
needs to be discretized before it can be used in the subsequent analysis. Let lp and up
represent accordingly the lower and the upper bounds of the heart rates to be included
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in the feature matrix A. The (i, j)-th component of the feature matrix, A(i, j), 1 ≤ i, j ≤ s,
denotes the number of points lying within the region in the Poincaré plot defined by
[lp + (i − 1)q, lp + iq] × [lp + (j − 1)q, lp + jq], where q = (up − lp)/s is the quantization factor.
The quantitation factor affects not only the heart rate range considered in our system, but
also the level of noise tolerated by the system. In this design, the lower and the upper
bounds of the Poincaré plot can be adjusted to reduce noise in an HRV sequence introduced
by incorrect QRS detection. The missing and additional R waves due to incorrect QRS
detection usually result in very low and very high heart rates accordingly that fall outside
the normal resting heart rates (i.e., outliers), and thus can be removed by the bounds. On
the other hand, the quantitation factor is useful in reducing noise caused by inaccurate
QRS detection. This is because inaccurate QRS detection often leads to a small shift from
its original value, which can be covered by a quantization window. The robustness of our
system to the noise in the HRV sequences will be investigated in the discussion section.

Furthermore, the conventional Poincaré plot presents the absolute variations in the
heart rate of the neighboring points in a sequence. In this case, a patient with a higher heart
rate exhibits different features in the plot to those of another patient with a lower heart
rate, even if their disease mechanisms are the same. To reduce the differences caused by
the heart rate and focus on the relative heart rate variations among the sequence itself, we
generated another Poincaré plot for each HRV sequence using the mean-removed sequence,
^
x = x− ¯

x ,
¯
x = ∑n

i=1 xi. Consequently, the original Poincaré plot was used to capture
inter-person features, whereas the one generated from the mean-removed sequence was
designed to tackle intra-person features. According to our preliminary studies, we set
s = 32 and q = 4 and 5. As a result, four 32 × 32 feature matrices were generated for each
input sequence. However, which matrices were actually input to the prediction system and
their corresponding lags were determined by a genetic algorithm (GA). In this work, we
derived the following formulas to convert an HRV sequence, x, from its original range to
the feature matrix ranges.

x′ =
⌊

x−
(

110− qi ∗
s
2

)
/qi

⌋
, i = 1, 2 (unit : beats/min) (1)

^
x′ =

⌊
x− ¯

x +
(

qi ∗
s
2

)
/qi

⌋
, i = 1, 2 (unit : beats/min) (2)

2.4. Feature Selection and Classification

As all of the HRV sequences were being converted to two-dimensional featured
matrices, a CNN was to be trained to classify the PAF feature matrices from non-PAF ones.
The combination of techniques, such as mask convolution, normalization, ReLU activation
function, and pooling (subsampling), and by arranging them into multiple replicates has
enabled the CNN to extract effective features, which facilitates the subsequent classifications
performed by a fully connected neural network.

However, the optimal structure of a CNN is problem-dependent. It usually starts
with an input layer, followed by a few repeats of a layer set, including a convolution, a
normalization, a ReLU, and a pooling layer, and ends up with several fully connected layers,
a dropout layer, and a classification layer. Nevertheless, no clear guidelines are available
for their suitable combinations. In our implementation, the above general structure was
adopted, except that the number of repeats of the layer set, the involved layers in the
layer set, the number of filters (or masks), and the filter size were determined by a GA.
Noted that, although the actual involved layers in a layer set were determined by a GA, a
convolution layer was always selected in the set, whereas the other layers were optional.

2.5. Parameter Determinations

As mentioned previously, a GA was employed to determine the parameters in feature
conversion and in CNN structure optimization. A GA is a stochastic search algorithm for
function optimization inspired by natural genetics. It begins with the random generation
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of an initial population of many individuals. An individual can be represented by either
a binary or a real vector, depending on the applied problem. Each of the individuals in
the population is then evaluated by a fitness function (the minimum of training accuracy
and validation accuracy in this work). Individuals with better fitness values are more
likely to be selected for mating. Each pair of selected individuals produces a pair of new
individuals through crossover and mutation under some predetermined probabilities. The
same population size is produced in each generation and some of the new individuals
may exhibit better fitness values than those in the previous generation. The evolutionary
process is continued until the maximum number of generations is reached. In real practice,
the related settings are as follows: population size = 500, cross over rate = 0.85, mutation
rate = 0.1, and the tournament method was used for individual selection.

In feature conversion, the time lags τ of the extended Poincaré plots and the usage
of the four resultant feature matrices were determined by GA. Four time lags were corre-
spondingly calculated by vti + 1, where vti, i = 1, 2, 3, 4, were binary vectors of length 5,
making each time lag drawn from integers in the range of [1, 32]. The first two time lags
were for the two inter-person feature matrices, whereas the latter two were for the two
intra-person feature matrices. An additional binary vector, vm, of length 4 were used to
control the usage (1 for use and 0 for not use) of the four feature matrices, resulting in a
total of 24 binary numbers for feature conversion.

In CNN structure optimization, the layer usage in each layer set and the filter size and
filter numbers in each convolution layer were determined by GA. Firstly, we assigned the
maximum number of layer sets as 5, according to our preliminary studies. Then, five length-
4 binary vectors, vli, i = 1, 2, 3, 4, 5, were employed to regulate the usage of the convolution
layer, batch normalization layer, ReLU layer, and max-pooling layer sequentially in each
of the layer sets. Finally, the number of filters and the size of the filters in the convolution
layer of each layer set were determined accordingly via vfi + 1 and vsi + 1, where vfi and
vsi, i = 1, 2, 3, 4, 5, were binary vectors of length 4, making the number of filters and the
size of filters all drawn from integers in the range of [1, 16].

In summary, a length-84 binary vector v = [vti, vm, vlj, vfj, vsj], i = 1, 2, 3, 4 and
j = 1, 2, 3, 4, 5, selected by GA determined the parameters and the architecture of our PAF
prediction system. Figure 2 shows the flowchart for the construction of the system. Let
Et(v) and Ev(v) denote accordingly the training error and the validation error of the system
determined by a binary vector v, then the design of our PAF prediction system can be
formulated as the following optimization problem.

min
v

(max(Et(v), Ev(v))) (3)
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3. Results
3.1. Data Split

Recall that we employed two sets of extended Poincaré plots to capture inter- and
intra-person features in a 400-point HRV sequence, respectively. In each set, two extended
Poincaré plots, each with an individual quantization factor, were used to record features
in different heart rate ranges and resolutions. Therefore, a total of four extended Poincaré
plots were generated for each 400-point HRV signal. By using Equations (1) and (2) with the
settings of s = 32 and q = 4 and 5, the covered heart rate ranges were [46, 174] and [30, 190]
for the original HRV signals, and [−64, 64] and [−80, 80] for the mean-removed HRV. Since
the HRV signals were extracted from ECG signals during normal sinus rhythm (both PAF
and non-PAF subjects), the heart rate range of [30, 190] contained the majority (~99.8%) of
the data points (refer to Appendix A Figure A1); thus, those points outside these ranges
were most likely contaminated with noise or falsely measured and were ignored in the
subsequent analysis.

3.2. The Converted Feature Matrices

Each filtered HRV sequence was then converted into four extended Poincaré plots.
The four time lags, τ = 2, 1, 4, and 5, obtained from GA were used for the conversions.
With these time lags, two extended Poincaré plots were accordingly generated from the
original HRV signal with lags 2 and 1, and another two plots were generated from the
mean-removed HRV signals with lags 4 and 5, respectively. Notably, the out–of–range
data point and its corresponding lag point in the HRV signal were ignored during the
conversion. With the matrix dimension s = 32 and the quantization factors q = 4 and 5, four
Poincaré plots of ranges [46, 174] × [46, 174], [30, 190] × [30, 190], [−64, 64] × [−64, 64],
and [−80, 80] × [−80, 80] were discretized to four 32 × 32 feature matrices. Since the
binary vectors, vm, obtained from GA were all 1s, all four matrices were retained for the
inputs of the subsequent CNN. Figure 3 presents the images of the four matrices generated
from a non-PAF subject in the upper panel, whereas those generated from a PAF patient
are presented in the lower panel.
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Figure 3. Feature matrices input to the CNN. (a) Two inter-person feature matrices generated from
the extended Poincaré plot of a non-PAF subject with τ = 2, q = 4 and τ = 1, q = 5. (b) Two Intra-person
feature matrices generated from the extended Poincaré plot of a non-PAF subject with τ = 4, q = 4 and
τ = 5, q = 5. (c) Two inter-person feature matrices generated from the extended Poincaré plot of a PAF
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patient with τ = 2, q = 4 and τ = 1, q = 5. (d) Two intra-person feature matrices generated from the
extended Poincaré plot of a PAF subject with τ = 4, q = 4 and τ = 5, q = 5. All the matrix values
were log-transformed for better visualization. The symbol τ denotes time lag and q denotes the
quantization factor.

3.3. Performance of the Developed PAF Prediction System

A five-layer CNN was selected by GA. The detail of the CNN structure is presented in
Appendix A Table A1. Moreover, the filter numbers and sizes were 16 3 × 3 filters in the
first convolution layer, 16 15 × 15 filters in the second convolution layer, 16 13 × 13 filters
in the third convolution layer, 14 16 × 16 filters in the fourth convolution layer, and
15 12 × 12 filters in the fifth convolution layer. In summary, our PAF prediction system
achieved an accuracy of 100% in the training dataset, 87.9% in the validation set, and 87.2%
in the testing set. Figure 4 depicts the confusion matrices for the training, validation, and
testing datasets.
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4. Discussion
4.1. Comparison with Similar Systems

Although some systems had achieved higher accuracies of more than 90%, they
were based on 30 min or longer records [12]. Table 2 shows a comparison of similar PAF
prediction systems in the literature, in which predictions were made based on 5 min HRV
sequences extracted from the PAF Prediction Challenge Database (AFPDB). We note that
the second to the last group in the table claimed to achieve an accuracy of 90, but, in their
paper, they indicated that such an accuracy was only attained when the HRV signals were
2.5–7.5 min prior to the onset of AF, whereas other episodes could only achieve around 85%
accuracy [12]. The most competitive and promising result in the table thus leads to Boon’s
system with an accuracy of 87.7% [11]. Such an accuracy is very close to our result of 87.9%
in the validation set and 87.2% in the testing set. However, the accuracy of Boon’s system
was obtained from a 10-fold cross-validation, in which the data were only drawn from the
AFPDB. The same database was used as our training and validation sets. Yet, we tested our
system on a much larger dataset with 4885 HRV sequences from two other databases and
achieved a similar accuracy of 87.2%.

Furthermore, the features used in other systems in Table 2 consisted of time-domain
and/or frequency-domain nonlinear features. These features are usually computationally
intensive and their medical implications are rarely interpretable. In comparison, our system
was able to perform prediction of 4885 400-point HRV sequences in the test dataset in an
average (from 10 tests) of 6.1 s or 1.25 milliseconds per sequence under the MATLAB®

environment with an Intel® Core™ i7-9750H CPU at 2.60 GHz and 32 GB RAM. In addition,
because our features can directly link back to the original HRV sequence, their medical
implications can be traced easily. Some of the implications from the designed inter- and
intra-features are discussed next.
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Table 2. Similar studies in the literature.

Literature Databases
Data Length

(min) Features Cross-
Validation

Results (%)
SEN SPE ACC

Hickey and
Henegham [44] AFPDB 5 HRV power spectral

density and PACs 5-fold 51.0 79.0 68.0

Chazal and
Henegham [45] AFPDB 5 P-wave power spectral

density 5-fold 81.0 69.0 75.6

Boon et al. [9] AFPDB 5
Combination of 9 HRV

features in time and
frequency domains

10-fold 86.8 88.7 87.7

Narin et al. [10] AFPDB 5
Combination of 26 HRV

features in time and
frequency domains

10-fold 92.0 88.0 90.0

Mendez et al.
(This study)

AFPDB *
NSRDB *
AFDB *

~5
(400 points)

32 × 32 × 4 images from
extended and discretized

Poincaré plot
Single-fold 80.4 89.0 87.2

* AFPDB, NSRDB, and AFDB are abbreviations for the PAF Prediction Challenge Database, MIT-BIH Normal
Sinus Rhythm Database, and MIT-BIH Atrial Fibrillation Database, respectively.

4.2. Medical Implications from the Features

Recall that we generated four feature matrices for the input of CNN by discretizing
four extended Poincaré plots including two inter-person features and two intra-person
features. We computed the average counts of each element in the four matrices for PAF
patients and for non-PAF subjects. Then, the four averaged matrices of non-PAF subjects
were subtracted accordingly from those of PAF patients, as shown in Figure 5. Consequently,
the elements with larger differences (dark-red color in the image) are highly associated
with the PAF patients and can be regarded as risk factors for AF. According to the inter-
person feature matrices, PAF patients seem to have either a lower heart rate of around
60 beats/min or higher heart rate of around 100 beats/min, and they tend to exhibit more
off-diagonal pixels (yellow pixels along the off-diagonal lines), indicating interchanges of
fast–slow or slow–fast heart rates in the neighbor beats. In addition, from the intra-person
feature matrices, PAF patients often have smaller heart rate variations ≤5 beats/min in the
lag-4 and lag-5 sequences, but they may occasionally exhibit large heart rate changes of
≥20 beats/min (brighter pixels along the vertical and horizontal axes). Such phenomena
coincided with our understanding since PAF patients tend to exhibit more irregular beat–
to–beat intervals than non-PAF patients, as shown in Figure 6. For example, premature
atrial beats are frequently observed in PAF patients [8], resulting in a short R-R interval
followed by a prolonged R-R interval, which leads to a fast–slow heart rate change in an
HRV sequence.

On the other hand, the pixels in dark-blue colors in Figure 5 are predominant in
non-PAF subjects and they can be considered as protective factors from AF. From the
inter-person feature matrices, non-PAF subjects tend to have a heart rate range of around
82–94 beats/min. Moreover, from the intra-person features, non-PAF subjects often exhibit
medium heart rate changes of around 10 beats/min. However, such changes tend to
increase from the average heart rate, rather than decrease. Other phenomena in Figure 5 also
drew our attention. Nevertheless, their medical implications warrant further investigations.
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4.3. Robustness of the System

As mentioned in Section 2.2, we attempted to reduce the noise resulting from inaccu-
rate QRS detection by adjusting the upper and lower bounds and the quantization factor of
the discretized Poincaré plot. To investigate the robustness of our PAF prediction system,
we added various percentages of random noise to the HRV sequences and recorded the
corresponding performance of the system. We note that the percentage of noise added to
the HRV sequence was proportional to the median of the sequence, since some abnormal
beats may be involved in the sequence, affecting the average and range of the sequence.
Figure 7 shows the resulting changes in the prediction accuracy (Acc), true positive per-
centage (TPP), and true negative percentage (TNP) in the training, validation, and testing
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datasets, respectively. As shown in the figure, all the prediction accuracies remained ≥80%
if no larger than 3% of noise was added to the HRV sequences.
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4.4. Analysis of Misclassifications

We attempted to explore the causes of misclassifications of our PAF prediction system.
Firstly, hierarchical clustering was adopted to find subgroups in PAF as well as in non-
PAF HRV sequences. All the HRV sequences (4414 non-PAF and 1671 PAF) in the three
datasets adopted in this study were used to obtain representative subgroups. The four
32 × 32 feature matrices for each sequence were flattened into a 4096 vector, and then the
similarity among the sequences was measured by their Euclidean distances. The Ward’s
method was applied to perform linkages among the converted vectors. The clustering result
of the PAF HRV sequences and that of non-PAF sequences are provided in Appendix A
Figure A2. Using a distance of 3500 as a cutting threshold, the PAF and non-PAF HRV
sequences were divided into nine and six subgroups, respectively. Secondly, we further
separated the sequences that were correctly identified from those that were falsely identified
in each subgroup, resulting in a total of 30 subgroups. Thirdly, the converted vectors in
each subgroup were averaged so that all of the HRV sequences were represented by
30 4096 vectors. Finally, the 30 vectors were again clustered using the Euclidean distances
among them and the Ward’s linkage method. Figure 8 illustrates the clustering result.
The symbols of TP, TN, FP, and FN in the figure denote true positive (PAF), true negative
(non-PAF), false positive, and false negative, respectively. The number behind each group
represents the group index, whereas the number in parentheses indicates the number of
sequences in the corresponding subgroup. As shown in the figure, the false-negative HRV
sequences were indeed apart from the true positive ones. Similar situations can be also
observed among the true negative and false positive subgroups. Such phenomena suggest
that the misclassified HRV sequences, either PAF or non-PAF, exhibit larger differences
than the correctly identified ones and, hence, they are more likely to be misclassified.
Such misclassifications may be inevitable, either due to large differences from their fellow
sequences or due to measuring noise. By using shorter sequences and simpler features, we
anticipate that our PAF prediction system can reduce misclassifications by integrating the
classification results of neighboring HRV sequences.
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4.5. Future Works

We shall continue to work with cardiologists to explore the medical implications of the
designed inter- and intra-person features. In addition, we shall conduct an investigation
about whether some of the features can be used to develop a scoring scheme, such that the
confidence of the prediction can be calculated and be provided to the users. Furthermore,
since the PAF Prediction Challenge Database also provides information about how far a
30 min ECG signal is away from an AF episode, we can study the predictability of the
designed features toward the onset of PAF. With the information of the time to AF onset,
data can be further divided into different time intervals to AF onset and then be used
to train a PAF system to predict the distance (in time) to the AF onset. To increase the
applicability of the system, data from patients with other arrhythmias should also be used
to train and test the prediction system so that the system can differentiate PAF patients
from not only healthy subjects, but also other arrhythmia patients.

5. Conclusions

In this paper, an HRV-based PAF prediction system was developed. We showed that
the proposed PAF prediction system achieved 87.2% accuracy using 400-point (~5 min)
HRV sequences. Although the accuracy was equivalent to that of the leading system in
the literature, our system was more intensively tested (three large databases containing
608, 400-point HRV sequences), and had a faster prediction speed (1.25 millisecond per
400-point HRV sequence) and smaller storage requirement (<1 KB per 400-point HRV
sequence). In addition to the system performance, we utilized a discretized Poincaré plot
to represent the features in an HRV sequence; such features are easy to construct and, more
importantly, their medical implications can be easily interpreted since they still possess a
direct link to the original HRV sequence. Instead of investigating the relationship between
two consecutive points in the conventional Poincaré plot, we further explored the relation-
ship between two points that are some distance apart using a generalized Poincaré plot. We
also used a generalized Poincaré plot to represent features from the original HRV sequence
and its mean-removed sequence. Such a manipulation allows our system to explore the
data from two (i.e., inter-person and intra-person) different aspects. Consequently, from
the inter-person features, we found that PAF patients often possess lower (~60 beats/min)
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or higher (~100 beats/min) heart rates than non-PAF subjects. On the other hand, from
the intra-person features, we observed that PAF patients often exhibit smaller variations
(≤5 beats/min) in heart rate than non-PAF subjects, but they may experience short bursts
of large heart rate changes sometimes, probably due to abnormal beats, such as prema-
ture atrial beats. Finally, we converted the Poincaré plot-based features into images and
employed a CNN to select the crucial ones so as to distinguish PAF from non-PAF HRV
sequences. Although the CNN has been shown to exhibit powerful image classification
capabilities, training a new CNN is very time-consuming, not only to compute the weights
in all of the network connections, but also to determine many parameters for the network
structure. To determine suitable parameters in feature conversion (lag between data points
and the number of input images) and in CNN construction, we adopted a GA approach,
which is famous for its capability of finding near-global optimization solutions. As a result,
we successfully constructed a PAF prediction system whose performance is competitive
with the leading PAF prediction system in the literature. The system requires only Poincaré
plot-based features and thus outperforms many existing systems in computation speed.
Furthermore, we anticipate that such features can contribute to identifying key differences
between PAF and non-PAF HRV sequences, which may thus help cardiologists to pinpoint
PAF onset mechanisms and eventually facilitate AF prevention.
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Appendix A

Table A1. The optimum structure of the CNN found by the GA approach.

No. Name Type Activations Learnables

1
imageinput

32 × 32 × 4 images with ‘zerocenter’
normalization

Image Input 32 × 32 × 4 -

2
conv_1

16 3 × 3 × 4 convolutions with stride [1 1] and
padding ‘same’

Convolution 32 × 32 × 16 Weights 3 × 3 × 4 × 16
Bias 1 × 1 × 16

3 relu_1
ReLU ReLU 32 × 32 × 16 -

4
conv_2

16 15 × 15 × 16 convolutions with stride [1 1] and
padding ‘same’

Convolution 32 × 32 × 16 Weights 15 × 15 × 16 × 16
Bias 1 × 1 × 16

5 batchnorm_1
Batch normalization with 16 channels

Batch
Normalization 32 × 32 × 16 Offset 1 × 1 × 16

Scale 1 × 1 × 16

6
conv_3

16 13 × 13 × 16 convolutions with stride [1 1] and
padding ‘same’

Convolution 32 × 32 × 16 Weights 13 × 13 × 16 × 16
Bias 1 × 1 × 16

https://www.physionet.org/about/database/
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Table A1. Cont.

No. Name Type Activations Learnables

7
conv_4

14 16 × 16 × 16 convolutions with stride [1 1] and
padding ‘same’

Convolution 32 × 32 × 14 Weights 16 × 16 × 16 × 14
Bias 1 × 1 × 14

8 batchnorm_2
Batch normalization with 14 channels

Batch
Normalization 32 × 32 × 14 Offset 1 × 1 × 14

Scale 1 × 1 × 14

9 relu_2
ReLU ReLU 32 × 32 × 14 -

10
conv_5

15 12 × 12 × 14 convolutions with stride [1 1] and
padding ‘same’

Convolution 32 × 32 × 15 Weights 12 × 12 × 14 × 15
Bias 1 × 1 × 15

11 batchnorm_3
Batch normalization with 15 channels

Batch
Normalization 32 × 32 × 15 Offset 1 × 1 × 15

Scale 1 × 1 × 15

12 relu_3
ReLU ReLU 32 × 32 × 15 -

13
fc

2 fully connected
layer

Fully Connected 1 × 1 × 2 Weights 2 × 15360
Bias 2 × 1

14 dropout
50% dropout Dropout 1 × 1 × 2 -

15 softmax
softmax Softmax 1 × 1 × 2 -

16 classoutput
crossentropyex with classes ‘0′ and ‘1′

Classification
Output -
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Figure A1. Heart rate distribution of the HRV sequences in the PAF Prediction Challenge Database
(AFPDB). Upper Left: Boxplot of the heart rate values of all of the HRV sequences. Upper Right:
Histogram of the heart rate values of all of the HRV sequences. Lower Left: Boxplot of the heart
rate values in the range of [0, 200] beats/min. Lower Right: Histogram of the heart rate values in
the range of [0, 200] beats/min, from which we determined to adopt the range of [30, 190] for HRV
sequence filtering.
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