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Abstract: The ubiquity of GPS-enabled devices has resulted in an abundance of data about individual
trajectories. Releasing trajectories enables a range of data analysis tasks, such as urban planning, but
it also poses a risk in compromising individual location privacy. To tackle this issue, a number of lo-
cation privacy protection algorithms are proposed. However, existing works are primarily concerned
with maintaining the trajectory data geographic utility and neglect the semantic utility. Thus, many
data analysis tasks relying on utility, e.g., semantic annotation, suffer from poor performance. Fur-
thermore, the released trajectories are vulnerable to location inference attacks and de-anonymization
attacks due to insufficient privacy guarantee. In this paper, to design a location privacy protection
algorithm for releasing an offline trajectory dataset to potentially untrusted analyzers, we propose a
utility-optimized and differentially private trajectory synthesizer (UDPT) with two novel features.
First, UDPT simultaneously preserves both geographical utility and semantic utility by solving a
data utility optimization problem with a genetic algorithm. Second, UDPT provides a formal and
provable guarantee against privacy attacks by synthesizing obfuscated trajectories in a differentially
private manner. Extensive experimental evaluations on real-world datasets demonstrate UDPT’s
outperformance against state-of-the-art works in terms of data utility and privacy.

Keywords: location-based services; mobile computing; data release; location privacy protection;
data utility

1. Introduction

The ubiquity of GPS-equipped devices, from airplanes and automobiles to smart-
phones and wearable technology, along with the popularity of location-based services
(LBSs), such as automobile navigation and searching nearby restaurants, has greatly eased
the collection of individual trajectories, where a trajectory is a sequence of locations vis-
ited by an individual over time. To help researchers develop solutions for a wide range
of important problems, such as business decision-making and urban planning [1], data
curators often publish individual trajectories to third-party data analyzers , which is known
as offline release of individual trajectories. For instance, New York City Taxi and Limousine
Commission publicly releases a trajectory dataset of taxi passengers every month. The data
analyzers, such as urban planners, can improve the community division with the help
of the spatial–temporal regularity of human movement patterns [2]. However, such data
release poses a serious threat to individual location privacy, since (potentially) untrusted
analyzers may have great interest in deriving personal identity and sensitive locations
from the individual trajectories [3].

To mitigate the threat, actual trajectories are usually obfuscated by location privacy
protection methods (LPPMs), e.g., location perturbation [4], cryptography [5], trajectory
synthesis [6], before being released. Among these works, the trajectory synthesis has
been widely accepted for offline releasing trajectories because of its good preservation
of population mobility patterns [6] . Generally, it builds a trajectory generator fitting the
movement patterns of the actual (or original) trajectories and then synthesizes a dataset
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of obfuscated trajectories in a generative fashion. To protect location privacy, the process
of trajectory synthesis is perturbed by random noise calibrated by some privacy notions,
e.g., differential privacy [7], a de facto notion for protecting privacy due to its strong privacy
guarantee. However, existing works based on trajectory synthesis can neither well preserve
the data utility nor effectively thwart the privacy attacks. The reasons are as follows.

First, existing location privacy protection algorithms merely focus on the geographical
utility in trajectories while neglecting the simultaneous preservation of semantic utility,
resulting in poor performance of numerous data analysis tasks. Specifically, the data utility
in individual trajectories consists of two aspects, namely geography and semantics. The ge-
ographical utility represents the superficially spatial–temporal regularity of population
movement, e.g., trajectory diameter distribution [6]. Early trajectory data analysis tasks
solely rely on the geographical utility. In this case, existing location privacy protection
algorithms can already satisfy the analyzer’s requirement. However, recently, a large
number of popular analysis tasks have emerged, e.g., semantic annotation [8], trajectory
prediction [9] , providing great convenience to people’s daily life. These emerging data
analysis tasks not only require the geographical utility but also heavily rely on deep-level
regularity implied in the individual trajectories, especially the semantics that motivates
individual movement, e.g., periodic movement patterns [9] and location categories [10].
Nonetheless, simultaneously preserving both kinds of data utility on the condition of
ensuring location privacy is an intractable problem since there exist conflicts between
them [10]. For instance, AdaTrace [6] protects location privacy by differentially private
trajectory synthesis, which solely focuses on the geographical utility while neglects the
location semantics that motivates human movement. As a result, the data analysis tasks
such as semantic annotation suffer from low precision.

Second, existing location privacy protection algorithms cannot provide a strong pri-
vacy guarantee due to the negligence of privacy attacks using data utility as side channels.
For instance, the geographical utility could reveal the individual identity, so individuals
could be distinguished from each other, which is known as de-anonymization attacks,
e.g., four spatial–temporal points are enough to uniquely identify 95% of the anonymized
individuals [11]. Most of existing work cannot thwart the de-anonymization attacks be-
cause they protect the single location without a comprehensive consideration of whole the
trajectory. For example, MLCE [12] protects location privacy by independently perturbing
each actual location into a nearby location. In addition, the semantic utility could reveal
individuals’ sensitive locations such as home and workplace, resulting in location inference
attacks [3]. Figure 1 depicts an example where the periodic movement patterns and location
categories, two types of semantic utility, are used to deduce home and workplace. Exist-
ing work cannot provide a formal and provable privacy guarantee to thwart the privacy
attacks. For instance, Tian et al. [13] protects privacy by blurring the actual location into a
k-anonymous area. Since there is not provable correlation between the privacy parameter k
and the privacy guarantee, the data curator cannot determine k for a specific scenario.

In this work, given an actual trajectory dataset, we aim to address the following
problem, i.e., designing a location privacy protection algorithm for releasing an offline
and obfuscated version on the conditions that (a) simultaneous preservation of both geo-
graphical as well as semantic utility of the actual data, and (b) effective prevention from
the location inference and de-anonymization attacks. To tackle this issue, we propose a
utility-optimized and differentially private trajectory synthesis algorithm named UDPT,
which is composed of three sequential phases as follows. (i) To provide an effective de-
fense against the location inference attacks, locations in the actual trajectories are blurred
into regions by private location clustering. (ii) To simultaneously preserve both the geo-
graphical utility and semantic utility, we privately select a sequence of utility-optimized
candidate obfuscated location sets from the clusters. We model the selection as a multi-
objective optimization problem and tackle it with a differentially private genetic algorithm.
(iii) Based on the utility-optimized candidate obfuscated location sets, to defend against
the de-anonymization attacks, we construct an obfuscated trajectory synthesizer based on
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the Conditional Random Fields (CRF) and privately select the (final) obfuscated trajectories
by the sequence decoding of CRF. We conclude the contributions as follows:

• We propose a location privacy protection algorithm, UDPT. It enables the data curator
to release an offline trajectory dataset for data-mining purposes in a utility-optimized
and differentially private manner. The data analysis applications, e.g., semantic anno-
tation and trajectory prediction, which heavily rely on trajectory data geographical
utility as well as the semantic utility can be benefited.

• UDPT can preserve the data utility in terms of geography as well as semantics, simul-
taneously, by a multiple-objective optimization algorithm, so the released dataset can
improve the performance of numerous data analysis tasks.

• UDPT can provide a formal and provable privacy guarantee by differentially private
and generative trajectory synthesis. To our best knowledge, it is the first work which
ensures differential privacy and preserves both types of data utility.

• Extensive evaluations on real-world datasets demonstrate that UDPT not only can
outperform state-of-the-art works, in terms of multiple data utility metrics, but can
also effectively prevent the de-anonymization attacks and location inference attacks.

B

A

B

Figure 1. An illustrative example of the privacy threat caused by location semantics, where red points
represent the locations that an individual visited. Especially, two regions where points concentrate
are represented by red letters A and B respectively. We observe two periodic movement patterns,
i.e., leaving from A to B and returning periodical. Suppose that the categories of A and B are
residential district and business district, respectively. Then, A and B have a great chance to be home
and workplace, respectively.

The structure of this work is as follows. We summarize related work in Section 2.
Section 3 presents preliminaries, including problem statement and the differential privacy.
In Section 4, we elaborate on three main phases of UDPT. Experimental evaluations on
privacy and data utility are presented in Section 5. We conclude and discuss future work in
Section 6. Details of the implementation of UDPT are shown in Appendix A.

2. Related Work

We summarize the existing works related to location privacy from two aspects, namely
location privacy attacks and location privacy protection algorithms, where the latter are
further categorized into three classes below. We discuss relevant work under each category.
Table 1 presents a summary of the related location privacy protection algorithms.

2.1. Location Privacy Attacks

A location inference attack refers to an adversarial action where an attacker, e.g., a
curious data analyzer, tries to infer actual locations over the locations perturbed by location
privacy protection algorithms. For instance, Shokri et al. use a hidden Markov model
to capture individual mobility patterns in the obfuscated trajectory and infer the actual
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trajectory by solving the decoding problem of the model. Li et al. [3] argue that actual
locations could be revealed with spatial–temporal-social–semantic correlations as side
channels. For example, speed limit, a type of temporal correlation, could be used to exclude
the unreachable (dummy) locations at the next time instant if the adversary knew the
current actual location.

A de-anonymization attack, a.k.a., re-identification, refers to an adversarial action
where an attacker intends to deduce individual identity over anonymized trajectories.
Generally, the attacker is assumed to have access to the public trajectories of some target
individuals of whom the identities are known, together with a number of anonymized
trajectories containing private information such as sensitive locations. The aim of the attack
is to find a true match between the background trajectories and the anonymized ones
using individual mobility patterns, then the private information of the target individuals
would be revealed. For example, Montjoye et al. [11] find that 4 spatial–temporal points
are enough to uniquely identify 95% of the anonymized individuals. In the subsequent
work [14], Naini et al. propose a de-anonymization attack based on the visit frequency of
locations. Recently, Drakonakis et al. [15] show that Twitter individuals that do not provide
their full name could still be de-anonymized and their sensitive locations, such as home
and workplace could be deduced.

Table 1. Summary of related work in terms of location privacy protection.

Work Method Privacy Notion Privacy
Parameters Preserved Utility Thwarted Attacks

Oya 2017 [12] location
perturbation differential privacy ε

geographical
utility location inference

Tian 2021 [13] location
perturbation k-anonymity k geographical +

semantic utility location inference

Xu 2021 [16] location
perturbation

dummy location +
cache \ geographical

utility location inference

Huang 2022 [4] location
perturbation k-anonymity k geographical

utility location inference

Schlegel 2017 [17] cryptography order-retrievable
encryption \ geographical

utility location inference

Guan 2021 [18] cryptography oblivious transfer \ geographical
utility location inference

Qureshi 2022 [5] cryptography blockchain \ geographical
utility location inference

He 2015 [19] trajectory synthesis differential privacy ε
geographical

utility location inference

Bindschaedler
2016 [20] trajectory synthesis plausible

deniability k, δ
geographical +
semantic utility

location inference +
de-anonymization

Gursoy 2018 [6] trajectory synthesis differential privacy ε
geographical

utility
location inference +
de-anonymization

Tan 2020 [21] trajectory synthesis k-anonymity k semantic utility location inference

Sina 2021 [22] trajectory synthesis k-anonymity k geographical
utility location inference

This work trajectory synthesis differential privacy ε
geographical +
semantic utility

location inference +
de-anonymization

2.2. Location Perturbation

Location perturbation usually indicates perturbing an actual location by blurring it
into an area, replacing it with another location, or combining it with some indistinguishable
dummy locations. Location privacy protection algorithms based on location perturba-
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tion can be applied to the scenarios where individual locations are continuously released,
e.g., online location-based services. However, locations in the trajectory are perturbed inde-
pendently and the spatial–temporal correlations within the whole trajectory are neglected,
so privacy could be compromised by adversaries who have access to the correlations [23].

An implementation of location perturbation is to blur the actual location into an area.
For example, Tian et al. [13] investigate the problem of privately releasing location data
in an online manner. Given an actual location at some time instant, the authors blur the
location into an area containing other k− 1 locations, which have similar geographical and
semantic utility with the actual location. To improve the data utility, they model the trade-
off between privacy and data utility as an optimization problem and solve it by an improved
multi-objective optimization algorithm. However, the authors focus on the data utility of a
single location while neglecting that of whole the trajectory. In addition, independently
protecting each actual location without a comprehensive consideration of the correlations
in the trajectory was subject to location inference attacks and de-anonymization attacks [23].
Huang et al. [4] discover a specific applying scenario of location privacy protection, ride-
sharing. They propose a private-protecting location release scheme called pShare, which
applies a zone-based travel time estimation approach to reduce ride-sharing detouring
waste while hiding each rider’s actual location in the zone. However, changing the format
of location data from point to area could lead to modification of the data analysis interfaces.

Another implementation of location perturbation is to replace the actual location with
another location. For instance, Oya et al. [12] integrate the differential privacy with a
privacy metric called conditional entropy to decrease adversary’s correctness, together with
a utility metric named worst loss for ensuring data utility. A remapping based on both
metrics is appended to the output of the differential privacy, so obfuscated locations with
higher utility, as well as higher privacy levels, can be produced.

Instead of modifying the actual locations, another implementation of location pertur-
bation is to combine the actual location with some indistinguishable dummy locations.
For instance, to protect the actual locations of drivers on the internet of vehicles from being
revealed by road restriction, Xu et al. [16] propose a dummy-generation based location
perturbation methods. The perturbed location sent to the data analyzer is composed of the
actual location and several nearby fake locations following the road restriction, so it is hard
for the adversary to distinguish the actual location from the dummies.

2.3. Cryptography

The location privacy protection algorithms based on cryptography mainly exploit
encryption techniques to hide actual trajectories from untrusted analyzers. They are usually
used in scenarios such as online data releasing. The advantage is providing a provable
privacy guarantee. However, people usually need to develop ad hoc encryption protocols
for specific application scenarios. In addition, cryptography techniques usually bring about
high computation costs and network overhead.

For example, Guan et al. [18] propose an oblivious-transferring and k-nearest neighbor
query scheme based on the modified Paillier cryptosystem, in which the LBS server cannot
link two queries even if they are initiated by individuals at the same location. However,
the encryption protocols take a significantly long time to initialize queries and responses,
which makes them impractical to be deployed in mobile devices. Schlegel et al. [17] propose
a new encryption notion, order-retrievable encryption, to enable individuals to share their
actual locations without leaking any private information to the LBS server. Recently,
Qureshi et al. [5] propose a blockchain-based and privacy-preserving mechanism for the
Internet of vehicle networks, which allows drivers to hide their exact locations and takes
control of their data during the data communication and voting process.

Although the cryptography technique can be used to protect location privacy, it cannot
be directly compared with the location perturbation and trajectory synthesis techniques
because the privacy notions, attacker assumptions and models are different.
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2.4. Trajectory Synthesis

Trajectory synthesis is essentially an obfuscated trajectory generator, which fits the
mobility patterns of actual trajectories and generates obfuscated trajectories in a private-
protecting way. The location privacy protection algorithms based on trajectory synthesis
are often used in scenarios such as offline data releasing. To protect privacy, the synthesis
process will be perturbed under the guidance of some privacy notions such as k-anonymity
or differential privacy.

For example, He et al. [19] first propose an end-to-end trajectory data releasing solution
named DPT. It discretizes the area in which individuals move by a uniform grid and
aggregates actual trajectories to grid trajectories. Based on that, a trajectory generator using
a prefix tree is constructed and then a number of trajectories are generated. The advantage
of DPT is good preservation of geographical utility, especially the moving speed and
directions, due to the exploitation of multiple-level granularity grid (a.k.a. hierarchical
reference systems). The trajectory generator is perturbed by injecting random noise into
the prefix tree to ensure differential privacy. In subsequent work [6], Gursoy et al. argue
that solely relying on differential privacy cannot provide enough guarantee to thwart
privacy attacks such as de-anonymization, since the obfuscated trajectories generated
by previous works are still distinguishable. Therefore, they propose an attack-resilient
trajectory releasing method called AdaTrace. First, in contrast with the DPT’s uniform
grid, AdaTrace discretizes the moving area by a location-density-aware grid to capture the
complex spatial density and locality distributions, two types of the geographical utility.
Second, the authors exploit a Markov model to capture the location transition patterns in
actual trajectories. Third, a number of obfuscated trajectories are point-wisely sampled
from the grid trajectories, where the sampling is perturbed by random noise calibrated
by differential privacy. Finally, AdaTrace checks whether the indistinguishability of the
obfuscated trajectories satisfies the given requirement.

Except for the differential privacy, k-anonymity is also a widely used privacy notion
to thwart privacy attacks. For instance, Tan et al. [21] find that individual location privacy
could be compromised when the sensitive semantics of locations, e.g, hospitals, are derived.
To address this problem, the authors propose a k-anonymous privacy protection algorithm
for releasing semantic trajectory data, which blurs an actual location, together with other
k − 1 locations sharing similar semantics, into an anonymous area. The advantage is a
well preservation of semantic utility. However, it independently anonymizes each actual
location while taking into no consideration the data utility of whole the actual trajectory.
Sina et al. [22] propose to apply machine learning algorithms for clustering the actual
trajectories and randomly sample the obfuscated trajectories to ensure that every trajectory
in the obfuscated trajectory dataset is indistinguishable from at least k− 1 other trajectories.

Bindschaedler et al. [20] propose another privacy notion, statistical dissimilarity, mea-
suring the indistinguishability between trajectories, which can simultaneously preserve
data utility in terms of both geography and semantics. However, compared with differential
privacy, the proposed privacy notion cannot provide a formal and provable guarantee of
location privacy, so it will be hard for the data curators to determine a suitable privacy level
for a certain data releasing task. In contrast, the privacy level, ε, of the differential privacy
usually takes values in a widely-accepted interval, i.e., ε ∈ [0.1, 10], where less ε indicates a
higher privacy level.

Compared with the location perturbation and cryptography, trajectory synthesis
enables better preservation of data utility, especially the population mobility patterns, since
it takes into consideration the global features and spatial–temporal–semantic correlations
among locations in the actual trajectories. However, existing location privacy protection
algorithms based on trajectory synthesis consider only the geographical utility rather than
the semantic utility, resulting in low performance of emerging data analysis tasks such as
semantic annotation [8], trajectory prediction [9].
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3. Preliminaries

In this section, we present notations used in this paper, together with an introduction
to differential privacy. Table 2 shows the notations that are frequently used in this paper.

Table 2. List of notations.

Symbol Meaning

u individual
U set of individuals

T set of time instants

L geographical space

l trajectory

lt location record at the time instant t

DA actual trajectory dataset

DO obfuscated trajectory dataset

f location privacy protection algorithm

P( f ) privacy metric

Q( f ) utility metric

3.1. Problem Statement

Notations. Consider that a set of individuals U = {u1, u2, . . . }move in a geographic
space, which is denoted by a set of discrete geographical locations, L = {l1, l2, . . . }, where
a location is represented by a vector of GPS coordinates , e.g., (−73.989308, 40.741895).
The (actual) trajectory of any individual u ∈ U is represented by a sequence of location
records, l = (l1, l2, . . . , lt, . . . ), which u has visited over a period of time T = {1, 2, 3, . . . },
where lt records u’s location at the time instant t ∈ T , l1, l2, · · · ∈ L.

Problem to tackle. Suppose that a data curator , e.g., the New York City Taxi &
Limousine Commission [2], has collected a dataset of actual trajectories of the individuals,
DA = {lu|u ∈ U}. The data curator would like to publish the dataset to some (potentially
untrusted) analyzers, e.g., insurance companies and academic institutions, for facilitating
data-mining purposes. Meanwhile, it also hopes to keep individual whereabouts private
from the analyzers. To this end, the data curator employs a location privacy protection
algorithm to obfuscate actual trajectories DA, resulting in an offline dataset of obfuscated
trajectories DO. After that, DO is published to the data analyzers.

Design objectives. The data curator expects that the location privacy protection
algorithm should achieve the following two objectives. (i) Simultaneous preservation of
geographical utility as well as semantic utility. In other words, the obfuscated locations
should be close to the actual locations and have similar semantics to the actual location
as much as possible. (ii) Effective prevention from the location inference attacks and the
de-anonymization attacks. In other words, the chance that any actual location or individual
identity is derived by observing the released dataset DO should be restricted to some
magnitude specified by the data curator.

The location privacy protection algorithm, denoted by f : DA → DO, is a randomized
function that outputs the obfuscated trajectory dataset DO given the actual trajectory dataset
DA. In this work, the f is implemented by UDPT, a privacy-protecting and utility-optimized
trajectory synthesis algorithm. P( f ) measures the privacy security of the algorithm. The ob-
fuscation usually leads to a loss of data utility, denoted by Q( f ). The computation of
P( f ) and Q( f ) depends on specified metrics, which will be elaborated in our experimental
Section 5.
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3.2. Differential Privacy

Stemming from the area of statistical disclosure control, differential privacy [7] has
become a widely accepted privacy standard. In general, differential privacy requires that
the outcome of any query to a dataset is insensitive to the change (e.g., addition and
removal) of a single record in that dataset. The formal definition of differential privacy is
given as follows.

Definition 1 (ε-differential privacy). A privacy protection algorithm f can provide ε-differential
privacy if and only if any two neighboring datasets D1 and D2 differing on at most one record and
for any possible output O ∈ Range( f ):

Pr( f (D1) = O) 6 eε × Pr( f (D2) = O) (1)

where the possibility is taken over the randomness of f , Range( f ) denotes the set of possible outputs
of the mechanism, and ε is called the privacy budget.

In this work, f is the trajectory synthesis algorithm, UDPT, which takes an actual trajec-
tory dataset DA as input and outputs an obfuscated trajectory dataset DO, i.e., f (DA) = DO.
The any two neighboring databases D1, D2 are expressed as any two trajectory datasets
DA, D′A differing on at most one location record lt ∈ DA, i.e., (DA − D′A)

⋂
(D′A − DA) = {lt}.

The Range( f ) means the set of all possible outputs of f , and O the any possible output
in Range( f ). According to Equation (1), when the output of UDPT is insensitive to the
change of any single location record in the actual trajectory dataset, we say that UDPT is
ε-differentially private. In other words, untrusted analyzers cannot derive the existence
of any single location record, including the record on sensitive locations, e.g., home and
hospital, in the actual dataset DA by observing the obfuscated trajectory dataset DO, so
individual location privacy is protected.

In addition, ε is privacy budget of the data curator. Generally, a smaller ε leads to
larger randomness, which further results in a stronger privacy guarantee while a poor
preservation of data utility. Therefore, ε can be used to tune the trade-off between privacy
and data utility of UDPT.

3.3. Mechanisms and Properties of Differential Privacy

Note that the differential privacy is actually a goal of privacy protection, rather than
a specific privacy protection algorithm. To build a specific privacy protection algorithm,
e.g., the trajectory synthesis algorithm in this work, the differential privacy expresses
the algorithm’s access to the dataset as a series of queries on that dataset. For instance,
the private location clustering of UDPT, see Section 4.2, is essentially a series of queries on
the actual trajectory dataset with the objective function. Individual privacy is protected
by injecting random noise into the query results. There are mainly two types of queries,
namely, numeric queries and categorical queries. Previous studies have provided two
general-purpose and differentially private algorithms, namely Laplace mechanism [7]
and exponential mechanism [24], to generate random noise for a numeric query and a
categorical query, respectively. We introduce the two mechanisms as follows.

Laplace mechanism. Dwork et al. [7] proposed this mechanism which takes as inputs
a dataset D, a privacy protection algorithm f , and the privacy budget ε. Theorem 1
presents a formal definition It is designed for answering the numeric query whose output
is real. It added a Laplace noise to the actual query result f (D). The Laplace noise is
sampled from Laplace distribution Lap(b) with the probability density function Pr(x|µ, b) =
(2b)−1e−b−1|x−µ|, where µ is the location parameter and b is the scale parameter determined
by sensitivity ∆ f and desired privacy budget ε : b = ∆ f /ε. µ is usually assigned 0.
The sensitivity ∆ f indicates the maximum change of the actual query result f (D) when
removing or adding one record from the dataset D, which relies on the specific query.
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Theorem 1. For any privacy protection algorithm f : D → Rd, the following algorithm achieves
ε-differential privacy.

A(D) = f (D) + Lap(∆ f /ε) (2)

Exponential mechanism. For the query whose output is not real , i.e., the domain of
output is categorical, McSherry et al. [24] proposed the exponential mechanism. Theorem 2
presents a formal definition of the exponential mechanism. It defines a score function q
that assigns a real-valued utility score to each categorical output r ∈ R. The exponential
mechanism assigns exponentially higher probabilities of being selected to outputs of higher
utility scores. ε represents the privacy budget. The sensitivity of the score function ∆q
equals to the maximum change of the score function q when removing or adding one record
from the dataset D, which relies on the specific score function that we use.

Theorem 2. For any privacy protection algorithm f : D → R, choosing an output r ∈ R with

probability proportional to e
εq(D,r)

2∆q ensures the algorithm ε-differential privacy [24].

The properties of differential privacy define the composability between differentially
private algorithms, e.g., the Laplace mechanism and the exponential mechanism, and en-
ables the building of a complex algorithm. Given some differentially private algorithms
f1, f2, . . . , fn that satisfies ε1, ε2,. . . , εn-differential privacy respectively, the properties of
differential privacy also describe the relationship between the total privacy budget (indicat-
ing the overall privacy guarantee) and the privacy budget pieces of sub-algorithms. We
introduce the two properties as follows.

Theorem 3 (sequential composition [24]). Let the privacy protection algorithm fi each provide
εi-differential privacy, 1 ≤ i ≤ n, then running in sequence all algorithms over a dataset D provides
∑i εi-differential privacy.

The sequential composition indicates that a sequence of algorithms that each provides
differential privacy in isolation also provides differential privacy, but the privacy budget is
accumulated. In other words, the sequential execution of these mechanisms on a dataset
consumes ∑n

i=1 εi budget.

Theorem 4 (parallel composition [24]). Let the privacy protection algorithm fi each provide
εi-differential privacy, 1 ≤ i ≤ n, then applying each algorithm over a set of disjoint datasets Di
provides max{εi}-differential privacy.

The parallel composition means that if the sequence of privacy protection algorithms
is performed on disjoint datasets, the privacy budget is determined by the largest one of all
algorithms, i.e., max(εi), 1 ≤ i ≤ n.

In particular, post-processing the output of a differentially private algorithm does not
deteriorate the privacy, e.g., exploiting that output as an input to another algorithm or even
publicly releasing that output does not violate differential privacy [24].

4. Trajectory Synthesis

In this section, we describe the procedure of the trajectory synthesis with UDPT. First,
we provide an overview of the UDPT. Then, we elaborate on each phase.

4.1. Overview

Overall ideas. Recall the design objectives in Section 3.1. (i) One of the design
objectives is to achieve that the chance that any actual location or individual identity
is derived by observing the released dataset should be restricted to some magnitude
specified by the data curator, we employ the differential privacy as the privacy notion
of UDPT. An ε-differentially private algorithm can ensure that the output is insensitive
to the change of any location record in the actual trajectory, so the location inference
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attacks on actual locations can be thwarted. The privacy guarantee can be tuned by the
data curator with the privacy budget ε. However, the differential privacy cannot prevent
the de-anonymization attacks on individual identity [6]. Our remedy is to synthesize a
number of indistinguishable and obfuscated trajectories for each actual trajectory in a
generative manner, so the attacker cannot rebuild the linkage between individual identities
and obfuscated trajectories. (ii) The other objective is to achieve simultaneous preservation
of geographical utility as well as semantic utility. In other words, the obfuscated locations
should be close to the actual locations and have similar semantics to the actual location
as much as possible. To this end, we model the preservation of both types of utility as a
multiple-objective optimization problem.

In general, UDPT is a location privacy protection algorithm, which takes as input an
actual trajectory dataset of individuals, together with a (total) privacy budget ε, and then
produces an obfuscated trajectory dataset. It enables the trajectory data curator to release
an offline trajectory dataset to public or other analyzers for data-analysis purposes in a
privacy-protecting and utility-preserving fashion. Although the privacy protection will
obfuscate the actual data and thus deteriorate the data utility, the data curator can control
the trade-off between privacy and data utility by tuning the (total) privacy budget ε to
achieve the requirements of individuals and data analyzers. The pseudocode in Algorithm 1
presents a skeleton of UDPT. We also provide an illustrative example in Figure 2.

Algorithm 1 Utility-optimized and differentially private trajectory synthesis (UDPT).
Input: actual trajectory dataset DA, (total) privacy budget ε.
Output: obfuscated trajectory dataset DO.

1: Divide the total privacy budget ε into 3 pieces, namely, ε1, ε2, and ε3.
2: Let clusters {C1, C2, . . . } ←− Private location clustering with Algorithm 2, DA and ε1.
3: Let DO ←− Ø.
4: for each l in DA do
5: for each lt ∈ l do
6: Let L(opt)

t ←− Privately selecting utility-optimized candidate obfuscated loca-
tions for lt with Algorithm 3, clusters {C1, C2, . . . }, and ε2.

7: end for
8: Let L(opt) ←− (L(opt)

1 , L(opt)
2 , . . . ).

9: Let Lo ←− Privately select obfuscated trajectories with Algorithm 4, L(opt), and ε3.
10: Let DO ←− DO ∪ Lo.
11: end for
12: return DO.

UDPT is composed of three sequential phases, where each phase is a differentially
private sub-algorithm. In line 1, we divide the (total) privacy budget into three pieces and
each phase (or sub-algorithm) consumes one piece.

In the first phase, as shown in line 2, in order to defend against the location inference
attacks, locations that occur in the actual trajectory dataset DA are blurred into clusters by
the private location clustering algorithm 2. Since this sub-algorithm is essentially iteratively
updating a numeric objective function, UDPT exploits the Laplace mechanism to ensure
ε1-differentially private. The sub-algorithm finally produces a set of clusters {C1, C2, . . . }.

In the second phase, as given by line 3 to 8, to simultaneously preserve the geographical
utility as well as the semantic utility of each actual trajectory l ∈ DA, UDPT privately selects
a set of utility-optimized candidate obfuscated locations from the clusters {C1, C2, . . . }
for each actual location lt ∈ l. The selection is modeled as a multi-objective optimization
problem and then solved by a differentially private genetic algorithm. Since this sub-
algorithm is essentially a query which takes as input the clusters and the actual location
lt and then produces categorical outcomes, i.e., a number of location, UDPT employs the
exponential mechanism to ensure the sub-algorithm ε2-differentially private. After that,
a sequence of utility-optimized candidate obfuscated location sets L(opt) for each actual
trajectory l is produced, as shown in line 8.
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Figure 2. An example of releasing differentially private and utility optimized trajectories with
UDPT. We focus on two moving individuals, namely u1 and u2, represented by red and blue colors,
respectively. A location is denoted by a number. The yellow numbers represent the locations visited
by other individuals.

In the third phase, as shown in line 9, to defend against the de-anonymization attacks,
UDPT privately selects obfuscated trajectories with the Algorithm 4 and L(opt). Because the
sub-algorithm is essentially a categorical query which takes as input the actual trajectory l
and then produces discrete outcomes, UDPT exploits the exponential mechanism to ensure
ε3-differentially private. After that, the sub-algorithm produces a number of indistinguish-
able and obfuscated trajectories Lo, which share the most similar movement patterns to
the actual trajectory l, so l can be hidden from the de-anonymization attackers. In the end,
UDPT collects all the obfuscated trajectories into the dataset DO, as given by line 10.

Finally, the Algorithm 1 returns an obfuscated trajectory dataset DO. The data curator
can release it to public or any other data analyzers for data-mining purposes. We elaborate
on each phase (or sub-algorithm) as follows.
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4.2. Private Location Clustering

Since the location inference attacks aim to infer individuals’ actual (or precise) loca-
tions from obfuscated locations, a widely used remedy is to replace the actual locations
with blurred locations such as grids [6] or clusters [22]. The location privacy protection al-
gorithms based on grids split the geographical space where individuals move into uniform
and rectangular cells. The locations inside a cell are represented by the cell itself. However,
a careless setting of the cell size is likely to divide a place in nature into different cells, which
could lose original location semantics. In contrast, recent works have demonstrated that the
clustering has a more natural division on geographical space, so the neighboring locations
that share the same semantics have a greater chance to gather together [22]. Therefore,
despite defending against location inference attacks, another advantage of location clus-
tering is the better preservation of the semantic utility of individual trajectories. We apply
K-means as the fundamental clustering algorithm. It is easy to be extended for privacy
protection, especially for differential privacy, because of its efficiency in computing and
simplicity in parameter configuration. However, previous efforts showed that clustering
on individual data without any privacy protection measures could lead to a compromise
on privacy, e.g., the adversary could find out whether a given location is in a certain clus-
ter [25]. Therefore, we need to propose a differentially private location clustering algorithm.
Despite the clustering, a recent study [26] on private classification provides us with another
inspiration. We leave it as our future work.

The basic idea of location clustering is calculating the distance of pairwise (actual)
locations and then gathering those locations having shorter distances iteratively. To en-
sure the clustering is differentially private, the random noise generated by the Laplace
mechanism is injected into the objective function of K-means clustering. Finally, actual (or
original) locations are blurred into clusters, then each actual trajectory is translated into a
sequence of clusters, i.e., a cluster trajectory. The pseudocode of private location clustering
is presented in Algorithm 2.

Algorithm 2 Private location clustering.
Input: geographical space L, number of clusters K, privacy budget ε1, max number of
iterations p, sensitivity ∆.
Output: a set of clusters {C1, C2, . . . , CK}.

1: Initialize cluster centroids c1, c2,. . . , cK ∈ L randomly.
2: for r = 1 to p do
3: Initialize each cluster Ck with Ø, k = 1, 2, . . . , K.
4: // Assign the locations in L to their closest cluster centroid.
5: for i = 1 to |L| do
6: k∗ := arg min

k=1,2,...,K
‖li − ck‖2, li ∈ L.

7: Add li into the cluster Ck∗ .
8: Let γi,k∗ ←− 1.
9: for k ∈ {1, 2, . . . , K} − {k∗} do

10: Let γi,k ←− 0.
11: end for
12: end for
13: Calculate the objective function g = ∑

|L|
i=1 ∑K

k=1 γi,k‖li − ck‖2 + Lap( p∆
ε1
).

14: if the objective function g converges, then
15: Break.
16: end if
17: // Update each cluster centroid with the mean of all locations in that cluster.
18: for k = 1 to K do
19: Let ck ←− 1

|Ck | ∑l∈Ck
l.

20: end for
21: end for
22: return {C1, C2, . . . , CK}.
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In line 1, we initialize K cluster centroids with the locations uniformly chosen from
the geographical space L at random, where L is actually the set of locations occurring in
the actual trajectory dataset DA. After that, we iteratively update the clusters until the
convergence. The steps in a single iteration are elaborated as follows.

In line 3, we initialize each cluster with an empty set. In line 5 to 12, we assign each
location in the geographical space L to their closest cluster centroid. Specifically, first,
in line 6, given a location li ∈ L, let k∗ denote the index of the cluster centroid which is
closest to li. In particular, if there were more than one closest centroids, we uniformly chose
one from them at random. Next, we add the location li into the cluster Ck∗ , as shown in
line 7. Then, to facilitate the calculation of objective function, we introduce an indicator of
the relation between locations and clusters, which is defined in Equation (3). Let γi,k = 1
indicate the fact that the location li belongs to the cluster Ck, and γi,k = 0 otherwise. In this
case, we have γi,k∗ = 1, as shown in line 8. We also have γi,k = 0 for k 6= k∗, as shown in
line 10.

γi,k =

{
1, if li ∈ Ck

0, otherwise .
(3)

In line 13, we calculate the objective function of the private location clustering, g,
which is defined in Equation (4), K the number of clusters, li the i-th location in L, ck

the k-th cluster centroid, Lap( p∆g
ε1

) the random Laplace noise generated by the Laplace
mechanism in Theorem 1.

g =
|L|

∑
i=1

K

∑
k=1

γi,j‖li − ck‖2 + Lap(
p∆g
ε1

) (4)

In Equation (4), the maximum number of iterations, p, is a hyperparameter of the
algorithm. A larger p theoretically results in a better performance of clustering. However,
since we need to divide the privacy budget ε1 into p pieces, a larger number of iterations
could inject larger noise to a single iteration. The iteration often ends in advance, i.e., the
actual number of iterations is likely less than p, so we can leave the unused privacy
budget to the following steps including the Sections 4.3 and 4.4. We will discuss this
hyperparameter in our experiments.

In addition, in Equation (4), ε1 represents the privacy budget allocated to the private
location clustering algorithm. It controls the trade-off between privacy and data utility,
where a smaller value indicates a stronger guarantee of privacy while a poor preservation
of data utility. Previous studies suggest that taking values in the interval [0.1, 10] often
brings about a reasonable trade-off between privacy and data utility [7].

In Equation (4), the Laplace noise, Lap( p∆g
ε1

), is actually a random variable following
the Laplace distribution, a.k.a., double exponential distribution. Its probability density
function is defined in Equation (5), where x represents a possible noise value, pd f (x)
means the probability density w.r.t. x, and ∆g is the sensitivity of the objective function.
According to the Laplace mechanism [7], the sensitivity indicates the maximum change
of ∑

|L|
i=1 ∑K

k=1 γi,j‖li − ck‖2 when removing or adding one location record from the actual
trajectory dataset DA. Therefore, we define the sensitivity ∆g as the maximum distance
between locations in the geographical space L; that is, ∆g = max{‖li − lj‖2 | ∀ li, lj ∈ L}.
In this case, we can ensure that the output of the private location clustering algorithm is
insensitive to the change of a single record in the actual dataset. In other words, we achieve
the differential privacy for our private location clustering algorithm.

pd f (x) =
ε1

2p∆g
exp(− ε1|x|

p∆g
), x ∈ R (5)

In line 14, we check whether the objective function g converges. If the change of
objective function values between consecutive iterations is not greater than some threshold,
we say that the objective function converges. The threshold is a hyperparameter that needs
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to be empirically determined. See the Section 5 and the Appendix A for a detailed discus-
sion. When g converges, we terminate the iteration and return the clusters {C1, C2, . . . , CK}.
Otherwise, in line 19, we update each cluster centroid ck with the mean of all locations in
that cluster, k = 1, 2, . . . , K.

4.3. Privately Selecting Utility-Optimized Candidate Obfuscated Locations

After private location clustering, the actual trajectory is translated into a sequence
of clusters, i.e., a cluster trajectory. Since most of the data utility of the actual trajectory,
e.g., location transition patterns [20], is still maintained, an intuitive way to synthesize the
obfuscated trajectory is to sample a trajectory, which preserves the data utility of the actual
trajectory to the most extent, from the Cartesian product of the clusters at all time instants
of the cluster trajectory. However, the number of candidate obfuscated trajectories is so
large that we cannot find the expected trajectory at an acceptable time cost. Alternatively,
a feasible remedy is to prune the sample space by shrinking each cluster to a small set of
candidate obfuscated locations maintaining the data utility of the actual location as much
as possible.

In this subsection, we select utility-optimized candidate obfuscated locations for
each actual location in the actual trajectory. Specifically, first, we model the simultaneous
preservation of both types of data utility as a multi-objective utility optimization problem.
Second, we solve the optimization problem with the genetic algorithm to select utility-
optimized candidate obfuscated locations, where the selection is perturbed by differential
privacy to prevent the actual locations from being deduced by observing the candidate
obfuscated locations.

4.3.1. Modeling Utility Optimization Problem

Given any actual location lt in the actual trajectory l, there are two objectives for
selecting candidate obfuscated location, namely, (i) preserving the geographical utility of
the actual location as much as possible, and (ii) maintaining the semantic utility of the
actual location to the most extent. On the one hand, in order to preserve the geographical
utility, a solution that has been proved feasible by existing work [12] is to select the location
nearby the actual location as the obfuscated location. In this work, we borrow this solution.
On the other hand, to preserve the semantic utility, we prefer to select the locations sharing
the same (or similar) semantics with the actual location as the obfuscated location.

However, there exist conflicts between the two objectives since nearby locations do not
always have similar semantics [10]. Therefore, an optimal decision needs to be taken in the
presence of trade-offs between the two conflicting objectives, which is known as a multi-
objective optimization problem. Generally, the way to solve the problem is formalizing the
objectives as functions and then finding the optimal solution over the objective functions
by optimization algorithms such as genetic algorithm. We formalize the two objectives
as follows.

The first objective, i.e., (i) preserving the geographical utility of the actual location as
much as possible, is defined as selecting M candidate obfuscated locations, denoted by
L(geo)

t , which are closest to the actual location lt. Equation (6) presents a formal expression,
which means minimizing the total Euclidean distance between M candidate obfuscated
locations and the actual location lt.

L(geo)
t = arg min

M

∑
i=1,li∈L

‖lt − li‖2 (6)

Before formalizing the second objective, we need to acquire the location semantics
and define the semantic distance measure. The acquirement of location semantics can be
achieved by the application programming interfaces (APIs) of many LBS providers, such as
Foursquare and Google Maps. Foursquare also provides a hierarchical tree representation
of location categories [27], which contains ten coarse-grained categories in the first level
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and hundreds of fine-grained ones in the second level. The path distance between two
category nodes in the tree indicates their discrepancy in semantics, which inspires us to
propose a graph-theory-based distance metric to measure the discrepancy between the
categories of the candidate obfuscated location lc and the actual location lt. We denote the
semantic distance by distsem(·, ·) and give its definition by Equation (7).

distsem(lt, lc) =
d(lt, lc)

d(root, lt) + d(root, lc)
(7)

where d(·, ·) denotes the length of the shortest path between the categories of two locations
on the semantic tree, root represents the root node of the tree. In particular, if two cate-
gories are equal, their semantic distance is 0, while if they have the same parent category,
the distance is 2. The semantic difference between two categories will be normalized by the
sum of the nodes’ depths; that is, the distance to the root node.

The second objective, i.e., (ii) maintaining the semantic utility of the actual location
to the most extent, is defined as selecting M candidate obfuscated locations, denoted
by L(sem)

t , which are most similar to the actual location l in terms of location semantics.
Then, the second objective is formulated as minimizing the semantic distances between the
candidate obfuscated locations and the actual location, which is given by Equation (8).

L(sem)
t = arg min

M

∑
i=1,li∈C

distsem(lt, li) (8)

Combining the above two objectives, the multi-objective utility optimization problem
is modeled as Equation (9) , where L(opt)

t represents the set of utility-optimized candidate
obfuscated locations corresponding to the actual location lt.

L(opt)
t = arg min{

M

∑
i=1,li∈L

‖lt − li‖,
M

∑
i=1,li∈C

distsem(lt, li)} (9)

4.3.2. Privately Selecting Candidate Obfuscated Locations

The solutions of the multi-objective optimization problem include particle swarm,
ant colony, and genetic algorithm [28]. Among these approaches, the genetic algorithm is
well-known for its high performance. It is based on a natural selection process that mimics
biological evolution. Recent work has demonstrated that accessing actual data without
taking any privacy-protection measures could lead to compromise on individual privacy,
so Zhang et al. [29] proposed a differentially private genetic algorithm. However, their
work is not designed for high-dimensional data, such as trajectory, so we made an adaption,
as follows, to support trajectory data.

According to the multi-objective utility optimization problem defined in Equation (9),
we define the objective function of the genetic algorithm, given by Equation (10), where α
indicates the data curator’s preference on the geographical utility and 1− α the semantic
utility. For example, suppose that the released data were used for early LBS that relied
more on the geographical utility, e.g., points-of-interests extraction [30], then α should be
greater than 1− α, namely, α ∈ (0.5, 1.0). The geographical distance and semantic distance
in the equation are shifted and re-scaled so that they end up having the same range, [0, 1].

q(L(opt)
t ) = α

M

∑
i=1,li∈L(opt)

t

distsem(lt, li) + (1− α)
M

∑
i=1,li∈L(opt)

t

distsem(lt, li) (10)

In addition, in the genetic algorithm, there exist four operations, namely, encoding,
selection, crossover, and mutation. (i) The encoding operation represents the solution of
the optimization problem by a location set. (ii) The selection operation randomly chooses
one or more location sets that maximize the objective function from an intermediate set.
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(iii) The crossover operation randomly exchanges some locations in a location set with
the counterpart in another location set. (iv) The mutation operation randomly replaces a
location in a location set by another location. Note that the selection operation involves
access to actual (private) data, thus it should be perturbed by random noise to ensure
differentially private. In contrast, the other three operations only access the perturbed
results, so no extra perturbation is required according to the post-processing property
of differential privacy in Section 3. We formulate the procedure of privately selecting
utility-optimized candidate obfuscated location set by Algorithm 3.

Algorithm 3 Privately selecting utility-optimized candidate obfuscated locations.
Input: actual location lt, privacy budget ε2, size of candidate obfuscated location set M,
number of intermediate sets m, number of selected sets m′, number of iterations r, the cluster
C containing lt
Output: candidate obfuscated location set L(opt)

t
1: // encoding operation
2: Initialize the intermediate set Ω with m candidate obfuscated location sets randomly

sampled from the cluster C, where the size of each set is M.
3: for i = 1 to r− 1 do
4: // selection operation
5: Initialize the selected set Ω′ = Ø.
6: for each L(opt)

t ∈ Ω do

7: Compute Pr(L(opt)
t ) =

exp(
ε2q(L(opt)

t )

2r∆q )

∑
L(opt)′

t ∈Ω
exp(

ε2q(L(opt)
t )

2r∆q )

8: end for
9: Randomly sample m sets from Ω following Pr(L(opt)

t ) and put them into Ω′.
10: Set Ω = Ø.
11: for j = 1 to m′/2 do

12: Randomly select two sets L(opt)′
t , L(opt)′′

t ∈ Ω′.
13: // crossover operation

14: Randomly crossover L(opt)′
t and L(opt)′′

t .
15: // mutation operation

16: Randomly mutate L(opt)′
t and L(opt)′′

t .

17: Add L(opt)′
t and L(opt)′′

t into Ω.
18: end for
19: end for
20: for each L(opt)

t ∈ Ω do

21: Compute Pr(L(opt)
t ) =

exp(
ε2q(L(opt)

t )

2r∆q )

∑
L(opt)′

t ∈Ω
exp(

ε2q(L(opt)
t )

2r∆q )

22: end for
23: Randomly select a set L(opt)

t following Pr(L(opt)
t ) from Ω.

24: return L(opt)
t .

In line 1 to 2, we encode the solution of the optimization problem by a location set.
The intermediate location set is initialized with m sets of candidate obfuscate locations,
where each set is composed of M locations randomly selected from the cluster C. The ini-
tialization of the intermediate sets provides an initial direction for the optimal solution
searching of the genetic algorithm.

In lines 3 to 23, we select the utility-optimized candidate obfuscated location set in a
differentially private and iterative manner. We uniformly divide the privacy budget ε2 into
r pieces, each iteration consumes ε2/r.
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In line 4, we employ the selection operation to choose m candidate obfuscated loca-
tion sets that preserve the geographical and semantic utility to the most extent. Since the
selection involves access to the actual trajectory data, we exploit the exponential mecha-
nism to provide a differentially private guarantee, where the probability of the candidate
obfuscated location set L(opt)

t being chosen is proportional to its objective function value,

q(L(opt)
t ). In line 7, the sensitivity ∆q of the exponential mechanism equals 1. In line 9,

we randomly sample m location sets without replacement from the intermediate sets Ω
following the probability distribution Pr(L(opt)

t ), which can be achieved by constructing an
unbalanced roulette.

In line 11, we randomly select m′/2 pairs of location sets from the selected set, ω′,
and put them into the intermediate set, Ω. To this end, first, we randomly select two

location sets, L(opt)′
t and L(opt)′′

t , from Ω′. Next, we crossover these two location sets by

randomly exchanging part of locations in L(opt)′
t with the counterparts in L(opt)′′

t . Then,

we randomly mutate the location set L(opt)′
t (and L(opt)′′

t ) by replacing a location in L(opt)′
t

(and L(opt)′′
t ) by another location in the cluster C. Finally, we put L(opt)′

t and L(opt)′′
t into the

intermediate set Ω.
In line 20, the iteration ends. We randomly choose a candidate obfuscated location

set from the intermediate set, Ω, following the probability distribution Pr(L(opt)
t ) as the

algorithm output. The relation between m and m′ is determined empirically. 10m ≤ m′ ≤
20m often results in good performance.

We generate the candidate obfuscated location set, L(opt)
t , for the actual location

at each time instant, lt, of the actual trajectory l with Algorithm 3. Then, we obtain a
sequence of candidate obfuscated location sets corresponding to l, denoted by L(opt) =

(L(opt)
1 , L(opt)

2 , . . . , L(opt)
t , . . . ), which will be used for the synthesis of obfuscated trajectories

of l. We do the same for each actual trajectory l in DA.

4.4. Privately Synthesizing Obfuscated Trajectories

A common idea of existing trajectory synthesis methods is to build a trajectory genera-
tor that has learned the population movement patterns and then produce the obfuscated
trajectory dataset DO in a generative manner. However, individual movement patterns
could be destroyed, so numerous data analysis tasks that rely on individual-level data
utility, e.g., periodic patterns mining [9] could suffer poor performance. To tackle this
issue, we synthesize the obfuscated trajectories for each individual, i.e., each actual trajec-
tory, independently. In this case, the privacy budgets consumed by all individuals do not
accumulate according to the differential privacy’s parallel composition property. In other
words, when the total privacy budget is fixed, we can spare a larger privacy budget for
the trajectory synthesis of a single individual, resulting in less noise injection and thus
better preservation of data utility. In addition, to defend against the de-anonymization
attacks, for each actual trajectory, we privately synthesize more than one indistinguishably
obfuscated trajectories that share the most similar data utility with the actual trajectory.

In the previous section, for any actual trajectory l, we obtained a sequence of candidate
obfuscated location sets. To privately synthesize obfuscated trajectories for l, first, to pre-
serve the geographical and semantic utility, we capture individual movement patterns
by the CRF. Second, we synthesize a set of candidate obfuscated trajectories by the CRF
sequence decoding based on the sequence of candidate obfuscated location sets. Then,
some candidates are privately selected as the (final) obfuscated trajectories. Since the
obfuscated trajectories maintain similar data utility with the actual trajectory, they cannot
be distinguished from each other, providing a defense against de-anonymization attacks.
We formalize the aforementioned steps by the pseudocode in Algorithm 4.
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Algorithm 4 Private synthesizing obfuscated trajectories.

Input: sequence of candidate obfuscated location sets L(opt), actual trajectory l, sensitivity
∆ Pr, number of (final) obfuscated trajectories N.
Output: a set of (final) obfuscated trajectories Lo.

1: Construct the obfuscated trajectory synthesizer with l.
2: // Produce a number of candidate obfuscated trajectories.
3: Lc = Ø.
4: for i = 1 to N do
5: < l(i)c , Pr(l(i)c |l) >←− Produce the i-th most probable candidate obfuscated trajec-

tory and its probability with Viterbi, L(opt) and the synthesizer.
6: Add < l(i)c , Pr(l(i)c |l) > into Lc.
7: end for
8: // Privately select the (final) obfuscated obfuscated trajectories from the candidates.
9: for i = 1 to N do

10: Calculate the probability of l(i)c being selected as the (final) obfuscated trajectory,
i.e., Pr(l(i)c ), with Equation (11).

11: end for
12: Lo ←− Randomly sample bN/2c candidate obfuscated trajectories from Lc following

its probability distribution without replacement.
13: return Lo.

4.4.1. Constructing Obfuscated Trajectory Synthesizer

CRF is a discriminative undirected graphical model that supports auxiliary depen-
dency within a sequence and performs well over many problems, such as sequence infer-
ence [31]. Recent works have shown that CRF can capture individual movement patterns
from spatial, temporal, and semantic aspects, even though the trajectory data are sparse [23].
In particular, CRF is good at learning the transition patterns between locations, bringing
about good preservation of data utility, such as periodic movement patterns.

In this work, we consider the most important example of modeling sequences, i.e., a
linear chain CRF, which models the dependency between the actual trajectory and a
mobility feature sequence. We consider the following mobility features concerning each
actual location l in the actual trajectory; that is, the time when the individual visits l, the day
of the week when the individual visits l, the time elapsed since the previous time instant,
and the category of l. We extract the mobility features for each actual location in the actual
trajectory to obtain the mobility feature sequence.

As shown in line 1 of Algorithm 4, the obfuscated trajectory synthesizer is essentially
the CRF trained over the actual trajectory l. The way to train the CRF is following our
previous work [23]. The idea is as follows. First, we split both the actual trajectory and
the corresponding mobility feature sequence into a number of sub-sequences by one
week to enrich the training data. Then, we train the CRF by estimating the parameters
that maximize the probability of the actual trajectory conditioned on the mobility feature
sequence. After the training, the individual movement patterns of the actual trajectory l
have been “remembered” by the parameters of CRF.

4.4.2. Privately Selecting Obfuscated Trajectories

As given by line 2 to line 6 of Algorithm 4, with the obfuscated trajectory synthesizer,
we produce the (final) obfuscated trajectories by sequence decoding of the synthesizer.
The sequence decoding refers to finding the most probable trajectories corresponding to
a given mobility feature sequence, which can be solved by the Viterbi algorithm. An im-
proved version [32] can produce a number of most probable trajectories that share similar
movement patterns, which inspires us to produce a number of indistinguishably obfuscated
trajectories to prevent de-anonymization attacks. The trajectories produced by Viterbi are
called by candidate obfuscated trajectories, represented by Lc. Let N denote the number of
candidate obfuscated trajectories, thus we have Lc = {l(1)c , . . . , l(N)

c }. The Viterbi algorithm
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can be further improved by restricting the sample space to the Cartesian product of the
candidate obfuscated location sets in L(opt), because the locations that cannot well preserve
the data utility of the actual locations have been pruned after the utility optimization in
Section 4.3.2. As shown in line 5, we exploit the improved Viterbi algorithm to produce
the i-th most probable candidate obfuscated trajectory l(i)c , together with its probability
Pr(l(i)c |l), where i = 1, 2, . . . , N.

Pr(l(i)c |l) represents the possibility that Viterbi regards l(i)c as the actual trajectory l,
which also indicates to what extent l(i)c can preserve the movement patterns in l. The prob-
ability can be directly calculated by the improved Viterbi algorithm. We omit the computa-
tional details, which can be found in [32]. In line 6 of Algorithm 4, we collect the produced
candidate obfuscated trajectories with the set Lc i, where |Lc| = N.

The Viterbi algorithm is essentially a query that takes as input L(opt) and the syn-
thesizer, and then produces categorical outputs, i.e., a number of candidate obfuscated
trajectories. Note that the above synthesizer is constructed based on the actual trajectory l
without any privacy-protecting measure. In this case, the query result is sensitive to the
change of a singe location in the actual trajectory l. A location inference attacker could
derive the actual location by observing the query result. To tackle this issue, we exploit
the exponential mechanism to perturb the outputs of the Viterbi algorithm. Recall the
exponential mechanism in Theorem 2, the idea is to consider the probability Pr(l(i)c |l) as
the score of the candidate obfuscated trajectory l(i)c , and then to select the (final) obfuscated

trajectory l(i)o from the candidates Lc with the probability proportional to exp( ε3 Pr(l(i)o |l)
2∆ Pr ).

The normalized probability over all possible outputs is defined in Equation (11).

Pr(l(i)o ) =

exp
(

ε3 Pr(l(i)o |l)
2∆ Pr

)
∑l(i)o ∈Lc

exp
(

ε3 Pr(l(i)o |l)
2∆ Pr

) (11)

where ε3 is the privacy budget of the exponential mechanism, which is determined by the
data curator, as shown in line 1 of Algorithm 1. ∆ Pr represents the maximum change of
the score when removing or adding a single location from the actual trajectory l, according
to the definition of differential privacy. Since the probability Pr(l(i)o |l) takes values in [0, 1],
we have ∆ Pr = 1.

As show in line 8 to 12 of Algorithm 4, we randomly sample bN/2c candidates from
Lv without replacement to constitute the set of final obfuscated trajectories, Lo following
the probability distribution in Equation (11). The reason that we choose bN/2c (final)
obfuscated trajectories from Lv is in two aspects. On the one hand, a larger number of
obfuscated trajectories can increase the indistinguishability between the trajectories to
prevent the de-anonymization attacks, because it is more difficult for the attacker to find
the correct linkage between the numerous obfuscated trajectories and individual identities.
On the other hand, a less number of obfuscated trajectories indicates that less candidate
obfuscated trajectories, which have dissimilar movement patterns with the actual trajectory,
are chosen as the (final) obfuscated trajectories. Therefore, bN/2c is a moderate trade-off
between the above two aspects.

Let Lo denote the final obfuscated trajectory set. For each actual trajectory l ∈ DA,
we independently select the obfuscated trajectories Lo with the same privacy budget
ε3. According to the parallel composition property of differential privacy in Theorem 4,
the privacy budgets do not accumulate. In the end, we merge all of the obfuscated trajectory
sets into a single set, i.e., the obfuscated trajectory dataset DO.

5. Experimental Evaluations

In this section, we evaluate the utility of UDPT compared with competitors. UDPT
was implemented in Python 3.8. All experiments were performed on a desktop computer
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with an Intel i7 CPU and 16 GB of main memory. We ran each group of the comparative
experiment 10 times and took the average. Parameter setting is listed in Appendix A.2.

5.1. Evaluation Setup

Datasets. Three real-world datasets were used for the experimental evaluations in
this section. (i) The GeoLife [30] dataset contains a large number of moving trajectories
collected from 182 mobile individuals over three years. (ii) The Gowalla dataset contains an
undirected social network and check-ins collected by the Stanford Network Analysis Project
(SNAP) from Gowalla, a popular location-based social network (LBSN), throughout 2008-
2010 [33]. The social network contains friendships among individuals. A check-in (also
called a record of location visit) is composed of an identity number, a location represented
by the GPS latitude and longitude coordinates, the date and time when the individual visits
that location. (iii) Another dataset, Brightkite, with a similar structure, was collected from a
popular LBSN (Brightkite) [34] between 2009 and 2011.

Data preprocessing. Note that there is a broad spread of locations as well as a long
period in all datasets. To avoid a dramatic increase of time and memory overhead caused
by high sparsity, we took the following steps to obtain a subset from each dataset. First,
we restricted our evaluations to check-ins taking place in Beijing for GeoLife, Stockholm
for Gowalla, and San Francisco for Brightkite. Then, only the individuals with at least
20 check-ins, whom we considered as active individuals, were retained. We present the
statistical characteristics of the datasets after preprocessing in Table 3.

Table 3. Statistical characteristics of datasets after preprocessing.

Dataset GeoLife Gowalla Brightkite

City Beijing Stockholm San Francisco

Time span April 2007– September 2009– April 2008–
August 2012 August 2011 October 2010

# of individuals 177 4337 474

# of check-ins 18,204,931 996,028 53,624

Average # of 102,852.7 229.7 113.1check-ins per individual

Competitors. We compare UDPT with two state-of-the-art location privacy protection
algorithms. (i) AdaTrace is a differentially private publishing mechanism for trajectories [6].
It leverages an exponential mechanism to probabilistically merge locations based on loca-
tion distances and then releases synthesized trajectories in a differentially private manner.
Compared with other algorithms based on trajectory synthesis, such as [19,20], AdaTrace
claimed better preservation of multiple kinds of geographical utility including query er-
ror and trajectory length, so we choose it as our competitor. (ii) MLCE is a mechanism
combined with loss and conditional entropy [12]. It prefers choosing locations nearby
actual locations as the obfuscated locations. Based on ε-differential privacy, MLCE adds
a remapping to the mechanism’s output. Since the remapping is guided by two metrics,
worst-case quality loss and conditional entropy, the authors of MLCE argue that higher
utility and stronger privacy guarantee can be achieved, thus we choose it as our competitor.

5.2. Privacy Analysis

We now theoretically analyze the privacy guarantee of UDPT. Since UDPT is composed
of three sub-algorithms, we first analyze the privacy of each sub-algorithm and then analyze
UDPT as a whole.

In Algorithm 2, the only access to the actual dataset is updating the objective function,
which has been perturbed by adding Laplace noise with the privacy budget ε1. Subsequent
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operations do not consume any privacy budget. Consequently, according to the Theorem 1,
the Algorithm 2 ensures ε1-differential privacy.

Algorithm 3 has one step accessing the actual trajectory, namely, the selection oper-
ation of the genetic algorithm, which has been perturbed by the exponential mechanism.
The privacy budget consumed by the mechanism is ε2. We independently select candidate
obfuscated locations for the actual location at each time instant of each actual trajectory
in DA. According to the parallel composition theorem in Theorem 4, the overall privacy
budget consumption over DA does not accumulate. Consequently, Algorithm 3 ensures
ε2-differential privacy.

Algorithm 4 also has one step accessing the actual trajectory, namely, privately selecting
the (final) obfuscated trajectories, which has been perturbed by the exponential mechanism
with the privacy budget ε3. Since we generate obfuscated trajectories for each actual
trajectory independently, the trajectory of each individual can be considered a disjointed
subset of the entire trajectory dataset DA. Thus, according to the parallel composition
theorem in Theorem 4, Algorithm 4 ensures ε3-differential privacy.

UDPT is a sequential combination of above three differentially private sub-algorithms,
where their privacy guarantees have been proved as ε1, ε2, and ε3, respectively. Let ε = ε1 +
ε2 + ε3. According to the sequential composition theorem in Theorem 3, we can derive that
UDPT ensures ε-differential privacy.

5.3. Utility Metrics

We evaluate the utility Q( f ) in terms of semantics and geography, respectively.
A larger Q( f ) indicates higher data utility.

5.3.1. Semantic Utility Metrics

(i) Periodic pattern Jaccard coefficient. Periodic patterns are required by numerous
semantic mining tasks [9] for providing personalized services, where a periodic pattern is
represented by a series of locations that repeatedly occurs in a trajectory dataset, e.g., (school,
apartment, school). Given the actual dataset DA and its obfuscated version DO, we find
out top-k periodic patterns PP(DA) and PP(DO) from each dataset, respectively. Then,
the semantic utility of the private protection algorithm Q( f ) is evaluated by the Jaccard
similarity coefficient over the two sets of periodic patterns, as shown in Equation (12).
A greater coefficient indicates a higher utility in terms of semantics. Particularly, for Ada-
Trace, the geographical space of DO may be different from that of DA, PP(DA), and PP(DO)
may be incomparable. To tackle this issue, trajectories in DA and DO are discretized to grid
trajectories following [6], where the number of grids is 400.

Q( f ) =
|PP(DA)

⋂
PP(DO)|

|PP(DA)
⋃

PP(DO)|
(12)

(ii) Semantic annotation is a trajectory data analysis task in many emerging LBS such as
location recommendation [10]. It represents the process of attaching category tags such as
shopping and nightlife to locations in a trajectory dataset. A common process of semantic
annotation is to train a classifier over a dataset where semantic tags are given. We represent
the category tags by Foursquare location categories [27]. In our experiments, we acquire
category tags for each location in the obfuscated trajectory dataset DO from Foursquare
and then split DO into training and test subsets with a ratio of 9:1. A widely used semantic
annotation approach [8] is exploited to train the classifier over the training subset and
predict the semantic tags of the test subset. Specifically, first, it extracts population features
and temporal features, e.g., distribution of check-in time, to express the category tag of
locations in training data. Second, the relatedness among locations, a.k.a, the regularity
of individual check-ins to similar locations, e.g., co-occurrence, is extracted by a related
locations network. Finally, the category tags of locations in the test subset can be derived
from their related locations in the training subset. Generally, the effectiveness of the
semantic annotation task can be measured by Accuracy, which is defined as the ratio of
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the number of correctly annotated locations to the total number of locations. A higher
accuracy indicates better performance of the semantic annotation, which further implies
higher utility in terms of semantics.

5.3.2. Geographic Utility Metrics

(i) Negative Hausdorff distance is widely used to measure the similarity of two sets of
points. It is the negative of the greatest of all the distances from points in one set to the
closest point in the other set. Equation (13) presents the definition of negative Hausdorff
distance between the actual dataset DA and obfuscated DO:

Q( f ) = −max{h(DA, DO), h(DO, DA)} (13)

where h(DA, DO) = maxl∈DA{minl′∈DO
{dist(l, l′)}}, dist(·, ·) is a distance measurement

method, e.g., Euclidean distance. A larger Q( f ) indicates a higher utility in terms of geog-
raphy.

(ii) Negative query error refers to the negative value of the query error, where a query
is to retrieve the number of trajectories passing through a certain region R. Let q denote
a query and q(D) its answer on a trajectory database. The query error is defined as the
ratio of the difference of query result on DA and that on DO to the query result on DA.
We generate 1000 random queries Q by randomly choosing the region from the map and
taking the negative average of all query errors, as shown in Equation (14). A larger Q( f )
implies a higher utility in terms of geography.

Q( f ) = − 1
|Q| ∑

q∈Q

|q(DA)− q(DO)|
q(DA)

(14)

Note that the reason for using negative values of the query error and the Hausdorff
distance is that they can vary with the semantic utility in the same direction.

5.4. Privacy Metric

Location privacy attacks metric. As we summarized in Section 2, location inference attack
and de-anonymization attack are two of the most common attacks in the literature con-
cerning location privacy protection. A common objective of both attacks [3,35] is to infer
individual actual locations from obfuscated locations. Before the attack, for any location
l ∈ L, especially a sensitive location such as a hospital or workplace that the adversary is
interested in, he or she has a prior probability distribution Pl regarding the individuals who
visit l. Since the distribution represents the preference of population on l, it is assumed to
be accessible to the adversary. After observing the obfuscated trajectories DO, the adversary
could derive a posterior probability distribution Pl|DO

through the attack. It represents the
preference of the individuals in DO on l, which is assumed to be inaccessible to the adver-
sary before the attack. The difference between Pl|DO

and Pl indicates how much knowledge
concerning the actual location l the adversary has obtained by observing the obfuscated
dataset DO. It also implies the location privacy protection algorithm’s vulnerability to
both the location inference attacks and the de-anonymization attacks. A larger difference
indicates a weaker privacy guarantee. We measure the difference by Jensen–Shannon
divergence JS(Pl ||Pl|DO

), a widely used measurement of the difference between two proba-
bility distributions. 10% locations are randomly chosen from DA uniformly at random and
regarded as sensitive locations, denoted by S . We calculate the location privacy attacks
metric, P( f ), by taking the negative average of JS(Pl ||Pl|DO

) over all sensitive locations,
as given by Equation (15). A larger P( f ) indicates a stronger privacy guarantee.

P( f ) = −
∑l∈S JS(Pl ||Pl|DO

)

|S| (15)



Appl. Sci. 2022, 12, 2406 23 of 31

5.5. Comparative Evaluations

Three groups of empirical evaluations are conducted to compare UDPT with its
competitors, which are shown in Figures 3–5, respectively. An in-depth analysis by studying
the experimental results under the utility metrics one by one is shown as follows.
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Figure 3. Comparison of UDPT against existing works in terms of semantic utility under different
privacy budgets on three datasets. A higher ordinate indicates a better utility.

5.5.1. Evaluation on Semantic Utility

The semantic utility of three location privacy protection algorithms is evaluated
by periodic pattern Jaccard coefficient and semantic annotation accuracy, respectively.
Experimental results are shown in Figure 3. We summarize the experimental results about
the semantic utility in terms of the periodic pattern Jaccard coefficient and then explain
the reasons.

As shown in Figure 3, (i) we observe that UDPT always performs better than its com-
petitors, especially in terms of semantic annotation accuracy. (ii) In most cases, the semantic
utility increases when a larger privacy budget is used. (iii) In particular, in the strictest
privacy setting of ε ∈ [0.1, 1.0], all of the location privacy protection algorithms provide
poor performance. (iv) All of the location privacy protection algorithms provide a better
semantic utility on denser trajectory datasets, such as GeoLife, while performing poorer
on sparser trajectory datasets, such as Gowalla and Brightkite. Our explanations of the
experimental results are as follows.
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Figure 4. Comparison of UDPT against existing works in terms of geographic utility under different
privacy budgets on three datasets. A higher ordinate implies a better utility.
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Figure 5. Comparison of UDPT against existing location privacy protection algorithms in terms of
location privacy attacks metric under different privacy budgets on three datasets. A larger ordinate
indicates a stronger prevention from attacks.

(i) The outperformance of UDPT against its competitors can be attributed to the good
preservation of periodic patterns as well as location categories. First, the CRF model that
UDPT exploits is good at capturing the movement patterns implied in the actual trajectory,
especially the long-term and periodic patterns. However, AdaTrace considers only the
one-step transition patterns instead of the long-term patterns of the whole trajectory. Hence,
periodic patterns cannot be well preserved by AdaTrace. Similarly, MLCE also performs
poorly in terms of periodic patterns since it independently obfuscates each actual location
and neglects the preservation of movement patterns of the whole trajectory. In addition,
the reason for UDPT’s significant outperformance is that, besides the good preservation of
periodic patterns, temporal features that many semantic annotation tasks rely on are also
well contained. In [8], the semantic annotation tasks exploit individual mobility features
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in geographical and temporal aspects, e.g, individuals’ co-occurrence, visit frequency of
locations, the temporal distribution of check-in time in one week and one day, to capture the
relatedness among locations. However, the temporal features are destroyed by AdaTrace, so
the semantic annotator could learn the wrong match between the locations and the category
tags, which further leads to low accuracy of the semantic annotation. Although MLCE
holds the temporal features, other mobility features such as visit frequency of locations
that the semantic annotator depends on are still lost. Consequently, MLCE performs a low
semantic annotation accuracy.

The result in (ii) is expected, because, according to the definition of differential privacy
in Section 1, a larger budget usually brings about less noise and thus better data utility.
Nonetheless, the noise will significantly increase when the privacy budget is smaller,
especially for the ε ∈ [0.1, 1.0], which explains the result in (iii). The reason for (iv) is
that, on the one hand, a trajectory dataset with numerous check-ins usually contains more
enriched movement patterns, especially frequent and long-term patterns. In contrast,
a sparse dataset, e.g., Brightkite, of which the average number of check-ins per individual is
only 113, contains only sporadic visits, rather than repeated transitions between locations.
Consequently, we observe that the evaluation of GeoLife performs best among all the
datasets. On the other hand, a denser dataset can provide a larger volume of training data
for the semantic annotator, resulting in a more in-depth capture of relatedness between
locations, together with a more accurate prediction of the category tags.

5.5.2. Evaluation on Geographic Utility

We compare UDPT’s geographic utility with AdaTrace and MLCE in terms of two
metrics, namely, negative Hausdorff distance and negative query error.

As shown in Figure 4, (i) in general, UDPT has better geographical utility than its com-
petitors in terms of negative Hausdorff distance. (ii) UDPT shows a poorer performance in
terms of negative query error compared with AdaTrace. (iii) All location privacy protection
algorithms perform better on dense datasets, such as GeoLife, than on the sparse datasets,
such as Gowalla and Brightkite. The analysis of the experimental results is as follows.

(i) UDPT’s outperformance, in terms of negative Hausdorff distance, is due to its pref-
erence of selecting the obfuscated locations nearby the actual locations. Although AdaTrace
can also well preserve the density features, i.e., preferring to choosing nearby obfuscated
locations, it still performs a little poorer than UDPT in terms of negative Hausdorff distance.
The reason mainly lies in AdaTrace’s randomness during selecting the obfuscated locations
from the grid. In the last phase of AdaTrace, an obfuscated trajectory would be randomly
synthesized based on a grid trajectory, where each obfuscated location would be uniformly
chosen from a grid at random. However, if the grid was larger, AdaTrace might choose an
outlier that is distributed nearby the boundary of the map as the obfuscated location. In this
case, the Hausdorff distance would be larger. Consequently, AdaTrace shows a worse
performance in terms of negative Hausdorff distance than UDPT. In contrast, the MLCE
errors stem from the independent noise injected into the obfuscated trajectory. Compared
with UDPT and AdaTrace, the locations generated by MLCE will be more widely and
randomly distributed in the map, which leads to a larger distance discrepancy (or lower
negative Hausdorff distance) between the actual dataset and the obfuscated one.

(ii) AdaTrace’s outperformance, in terms of the negative query error, can be attributed
to its good preservation of mobility features of the population. The query error implies
to what extent the density features over the whole dataset are preserved. AdaTrace’s
density-adaptive grid can preserve the density features of the actual trajectory dataset as
much as possible. In contrast, UDPT pays more attention to the utility preservation of each
individual than to the population. Consequently, we observe that UDPT shows a little
poorer performance in terms of negative query error than AdaTrace.

(iii) A denser trajectory dataset indicates that more places nearby the actual locations
can be chosen as the obfuscated locations, resulting in better preservation of geographical
utility. In addition, the map of GeoLife is smaller than those of Gowalla and Brightkite,
which further increases the impact of data density on the geographical utility.
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5.5.3. Evaluation on Privacy

In this subsection, we evaluate location privacy protection algorithms’ privacy guar-
antee by the location privacy attacks metric. Experimental results are shown in Figure 5.
A larger ordinate indicates less knowledge that the adversary obtains after observing the
obfuscated trajectory dataset, which further implies a stronger defense against privacy
attacks. We summarize the results and analyze the reasons, respectively.

As depicted in Figure 5, (i) generally, the location privacy guarantee increases with the
decrease of privacy budget ε. (ii) UDPT performs better than its competitors. The reasons
for the experimental results are as follows.

(i) According to the definition of differential privacy, a smaller privacy budget usually
brings about more noise, a.k.a, larger randomness, being injected into the mobility features
of the obfuscated trajectory dataset DO. Consider the worst case where the privacy budget
was the smallest. The trajectories in DO would be highly random, and the mobility features
in DO would converge to population averages rather than maintaining the data utility in
the actual trajectory dataset DA. However, recall the description of the privacy metric in
Section 5.4, the adversary was assumed to have already obtained the mobility features of
population average as a prior belief before observing DO. Therefore, in this case, the ad-
versary gained no extra knowledge after observing DO, which indicated that the strongest
guarantee of privacy was provided. On the contrary, if the privacy budget were largest,
the adversary would gain much knowledge after observing DO, which indicated that the
privacy guarantee was weakest. This explains the observation that the location privacy
guarantee increases with the decrease of privacy budget ε.

(ii) AdaTrace generates obfuscated trajectories based on grid trajectories, where each
obfuscated location would be uniformly chosen from the grid at random. Since the grid is
a plane having infinite locations, the obfuscated locations have a great chance to be unique
locations that only appear in DO rather than DA. Therefore, the posterior probability
distribution Prl|DO

regarding the individuals who visit the sensitive location l ∈ S might
have a larger difference from the prior probability distribution Pl . A larger difference
implies a more serious threat of location privacy attacks, in other words, a lower privacy
guarantee of AdaTrace. In contrast, UDPT’s generation of obfuscated locations is guided
under the multi-objective optimization algorithm as well as the Viterbi algorithm, which
brings much less randomness to the obfuscated trajectory dataset than AdaTrace. This is
the reason for the observation that UDPT performs better than its competitors in terms of
privacy metrics.

6. Conclusions and Future Work

Releasing individual trajectories with high utility is a challenging task. On the one
hand, lots of existing data analysis tasks heavily rely on both the geographical utility and
semantic utility of the released trajectories. On the other hand, semantic utility could be
used as side channels to conduct de-anonymization attacks and location inference attacks.
Existing location privacy protection studies merely focus on the geographical utility and
neglect the preservation of location semantics. As a result, not only did numerous data
analysis tasks suffer poor performance, but individual identity and sensitive locations could
also be disclosed. To remedy this problem, we propose a utility-preserving and differentially
private mechanism for publishing trajectories (UDPT) with two novel features. First, it
enables simultaneous preservation of both geographical and semantical utility by solving
an optimization problem. Second, it provides a formal and provable privacy guarantee to
thwart location inference attacks and de-anonymization attacks. To our best knowledge, it
is the first work that ensures differential privacy and preserves both types of data utility.
Extensive experiments in real-world datasets demonstrate UDPT’s outperformance against
two state-of-the-art competitors in terms of both data utility and privacy.

Our findings will promote the sharing of big trajectory data and improve the perfor-
mance of the data analysis applications, e.g., semantic annotation and trajectory prediction,
which heavily rely on trajectory data geographical utility as well as the semantic utility.
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In the meantime, the findings will also shed more light on the study of location privacy
protection.

In the future, we plan to extend our work from the following aspects. (i) The trade-
off between geographical utility and semantic utility is an open problem. In this work,
the data curators can express their preference for either type of utility by the weight
parameter α in Equation (10) and then manually intervene the trade-off. Inspired by the
automated model tuning and hyperparameter optimization in machine learning, in the
future, we plan to develop an automated parameter tuning mechanism for finding an
optimal trade-off between the two types of data utility. Similarly, the tuning of differential
privacy budget is also an open problem, which is worth an in-depth study in the future.
(ii) Recently, more cases of privacy disclosure, e.g., the Facebook–Cambridge Analytica
data scandal in 2018, have suggested that data curators, such as location-based social
networks, should take measures to protect individual privacy (https://en.wikipedia.org/
wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal, accessed on 16 February
2022). A potential direction is to develop privacy tools for helping the curator to comply
privacy protection regulation when releasing individual data. For example, Pereira et al.
recently proposed a privacy tool for helping companies to comply with the general data
protection regulation [36]. In the future, we plan to extend our work to a privacy-protecting
trajectory data releasing middleware between the curators and the analyzers.
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Appendix A

In this section, we provide detailed explanations of how we conducted our experi-
ments for reproducibility, including location semantics acquirement, parameter setting,
and implementations of the Laplace mechanism and the exponential mechanism.

Appendix A.1. Location Semantics Acquirement

In this work, a location is represented by a vector of GPS coordinates, e.g, (40.74224,
−73.99386). The semantics of the location is represented by the Foursquare category
tag corresponding to the location’s GPS coordinates. Foursquare defines a hierarchical
taxonomy of category tags. There are 10 parent category tags and hundreds of children in
the taxonomy. In this work, we only use the 10 parent category tags, as shown in Table A1.
Moreover, Foursquare provides developers with an application programming interface
(API) named “Place Search” [27]. Given the GPS coordinates of a location, the API can
returns the parent category tag of the location. Note that the developers need to apply a
Foursquare account as well as an authentication key before calling the Foursquare APIs.
There could be charges and rate limits.

https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
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Table A1. Foursquare category tags.

Arts and entertainment

Business and professional services

Community and government

Dining and drinking

Event

Health and medicine

Landmarks and outdoors

Retail

Sports and recreation

Travel and transportation

Appendix A.2. Parameter Settings

Parameters in our experiments are listed in Table A2. (i) In Algorithm 1, the (total)
privacy budget of UDPT takes values in the interval [0.1, 10], which is a widely-accepted
convention in the literature. The division of the (total) budget is 1/3 : 1/2 : 1/6 for Algo-
rithm 2, 3 and 4, respectively. Note that a larger privacy budget (piece) usually brings about
better preservation of data utility. We allocate larger budget piece to Algorithms 2 and 3,
because their iterations consume more budgets for noise injecting. In particular, we allocate
the largest budget piece to Algorithm 3 for simultaneously preserving the geographical
and semantic utility as much as possible. (ii) In Algorithm 2, we set the number of cluster
as 100. In this case, the diameter of a single cluster is around one to two kilometers, which
can represent a real-world point-of-interest, e.g., a hospital. The maximum number of
iterations in clustering, p, depends on the experimental datasets. In this work, [20, 50] is
a suitable interval for p. (iii) In Algorithm 3, we set the number of candidate obfuscated
locations, M, as 6. A larger value results in better data utility while larger time cost. In our
experiments, M = 6 can achieve an acceptable trade-off between the time cost and data
utility. The previous work [29] related to genetic algorithm has demonstrated that without
domain-specific information, the setting of m = 200, m′ = 10, and r ∈ [20, 40] generally
leads to good results. We follow this setting in our experiments. The weight of geographical
utility, α, indicates the data curator’s preference for the geographical utility compared with
the semantic utility; thus, it actually should be determined by the data curator. In this
work, to demonstrate that UDPT’s outperformance, in terms of semantic utility, we tune
α until UDPT achieves similar geographical utility with its competitors. In this case, α is
around 0.5. (iv) In Algorithm 4, the number of candidate obfuscated trajectories is set as 10.
Since UDPT synthesizes N obfuscated trajectories for each actual trajectory in DA, the data
curator can exploit N to control the size of DO. In this work, 10 is a moderate value for N.
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Table A2. Parameters in the Experiments.

Symbol Value Meaning

ε [0.1, 10] (total) privacy budget of UDPT

ε1 ε/3 privacy budget piece allocated to Algorithm 2

ε2 ε/2 privacy budget piece allocated to Algorithm 3

ε3 ε/6 privacy budget piece allocated to Algorithm 4

K 100 number of clusters

p [20, 50] maximum number of iterations in clustering

M 6 number of candidate obfuscated locations

m 200 number of intermediate sets

m′ 10 number of selected sets

r [20, 40] maximum number of iterations in Algorithm 3

α 0.5 weight of geographical utility in Equation (10)

N 10 number of candidate obfuscated trajectories

Appendix A.3. Implementation of Laplace Mechanism and Exponential Mechanism

Recall the Theorem 1, the Laplace mechanism is essentially a continuous random
variable following the Laplace distribution with the location parameter µ = 0 and the
scale parameter b = ∆ f /ε. The sensitivity ∆ f is a property of the query, which relies
on the specific query that we used. ε is the privacy budget defined by the data curator.
When employing the Laplace mechanism to ensure a location privacy protection algorithm
ε-differentially private, we first construct the Laplace distribution with µ = 0 and b = ∆ f /ε.
Then, we randomly sample a real-value noise following the Laplace distribution and add it
to the real query result. The above two steps can be easily implemented by the standards
library of programming language, e.g., the method “numpy.random.laplace” in Python
with the parameters loc = 0.0 and scale = ∆ f /ε.

Similarly, recall the Theorem 2, the exponential mechanism is essentially a discrete
random variable following the discretized exponential distribution, of which the the proba-
bility of any realization r of the random variable is proportional to exp( εq(D,r)

2∆q ). q is a score
function defined by the location privacy protection algorithm and q(D, r) represents the
score of a categorical outcome r of the algorithm based on the dataset D. The sensitivity
∆q is a property of the score function. When employing the exponential mechanism to
ensure the location privacy protection algorithm ε-differentially private, we first construct
a categorical probability distribution of all the possible outcomes by normalizing the pos-
sibilities exp( εq(D,r)

2∆q ) for all outcomes Range(q). Then, we randomly sample one or more
outcomes following the distribution. The above two steps can also be implemented by the
standard library of programming language, e.g., the method “numpy.random.choice” in
Python with the parameters r = Range(q) and p the probability distribution.
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