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Abstract: Crystalline particle properties, which are defined throughout the crystallization process
chain, are strongly tied to the quality of the final product bringing along the need of detailed
particle characterization. The most important characteristics are the size, shape and purity, which are
influenced by agglomeration. Therefore, a pure size determination is often insufficient and a deep
level evaluation regarding agglomerates and primary crystals bound in agglomerates is desirable
as basis to increase the quality of crystalline products. We present a promising deep learning
approach for particle characterization in crystallization. In an end-to-end fashion, the interactions
and processing steps are minimized. Based on instance segmentation, all crystals containing single
crystals, agglomerates and primary crystals in agglomerates are detected and classified with pixel-
level accuracy. The deep learning approach shows superior performance to previous image analysis
methods and reaches a new level of detail. In experimental studies, L-alanine is crystallized from
aqueous solution. A detailed description of size and number of all particles including primary crystals
is provided and characteristic measures for the level of agglomeration are given. This can lead to a
better process understanding and has the potential to serve as cornerstone for kinetic studies.

Keywords: crystallization; agglomeration; deep learning; image analysis; primary crystals in
agglomerates

1. Introduction

Crystallization is extensively used in the fine chemical and pharmaceutical industry
and represents a key process step towards the final product [1]. To achieve product charac-
teristics of high purity and reproducible defined particle size, the crystallization phenomena
must be understood and the process parameters must be tuned during crystallization based
on this knowledge. In addition to the primary crystallization phenomena of nucleation
and growth, secondary phenomena such as breakage and agglomeration must also be
considered. Agglomeration, which is caused by collision and subsequent cementation by
solid bridges [2], can have a significant and irreversible effect on the final product. In some
cases, e.g., spherical agglomeration, agglomeration is desired to improve processability [3].
In most cases, however, agglomeration should be prevented. By irreversibly assembling of
primary crystals to agglomerates the particle sizes and particle size distribution (PSD) are
affected in an undesired manner to larger particles sizes and a broader PSD impacting bio
availability and processing [4]. Additionally, by the interaction of different crystals, liquid
inclusions such as mother liquor entrapment is inevitable and can reduce purity [5].

Whereas nucleation and growth can be depicted quite well these days, agglomeration
is still challenging due to complex interactions [6]. Many influencing factors can impact
one of the three main steps of agglomeration, the collision, the formation of aggregates
by molecular interactions and finally the cementation by solid bridges. These levers
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can be influenced by various parameters: process parameters, such as agitation rate,
supersaturation, saturation temperature and solid content [6–8]; system properties, e.g.,
particle size [9], solvent and impurities [1,4,7]. For understanding the agglomeration
process and dependencies on parameters, first the challenge of measuring agglomeration
must be overcome.

Until now, agglomeration kinetics are determined by fitting PSD data without any
knowledge about the appearance of agglomerates and single crystals [10,11]. Image anal-
ysis is promising to characterize crystals’ shape and size on a microscopic scale. In the
literature there already exist publications, which distinguish between single crystals and
agglomerates [12,13], but a deeper crystal characterization up to the level of primary crys-
tals is desired to obtain important information for agglomeration behavior and kinetics of a
crystallization system. Primary crystals are all crystals that originated from nucleation. So
they sum up all single crystals and all primary crystals forming an agglomerate (pcag). The
main contribution of this work is that not only the agglomerates (ag) and single crystals (sc)
are determined, but also information about primary crystals (pc) are provided for the first
time. By recognizing the primary crystals in crystallization, the goal is to better characterize
the phenomenon of agglomeration and process parameters influencing agglomeration
so that the crystallization process can be optimized later on to gain high-quality, less
agglomerated products.

As basis for the detailed product characterization a sophisticated deep learning image
analysis is developed based on flow cell microscopy and the Mask-RCNN method [14].
Here, different variants of Mask-RCNN are elaborated and used for instance segmentation
identifying ag, sc, pcag on a pixel level. To compare the performance of image segmentation,
a comparison with an already existing image processing by Heisel et al. [15] is provided.
Only the differentiation between ag and sc are considered because the method of Heisel is
not capable of detecting pcag. The developed image analysis with the novelty of charac-
terizing primary crystals in agglomerates is then applied to batch cooling crystallizations
of L-alanine in aqueous solution under different process conditions. Images are taken
after the process with flow cell microscopy and are evaluated with the developed deep
learning approach. Besides the conventional methods of defining particle size and PSD of
all crystals, particular attention is paid to the subpopulations. Especially, the subpopulation
of agglomerates is characterized in detail with the new opportunity of quantifying the
primary crystals. The detected primary crystals are evaluated extensively. Conclusions are
drawn about the number and size of primary crystals in agglomerates and new charac-
teristic measures are developed based on these results to characterize the agglomeration
behavior of the model system.

2. State of the Art

Image analysis consists of two major coupled steps, the image acquisition as well as
the image processing to determine the desired particle attributes. Images can be recorded
in various ways. On the one hand, offline measurements are conducted, which are charac-
terized by time- and labor-intensive sample preparation and potential change in particle
properties, e.g., size and agglomeration degree due to downstream processes [16,17]. In-
stead, automated measurements are aimed for fast dynamic image acquisition, which can
be implemented in the crystallization process later on. A detailed overview about applica-
tions and publications of image acquisition set ups during crystallization is provided by
Galata et al. [18] and is out of the scope for this work in such a detailed manner.

In-line set ups record images with a probe directly inside the crystallizer, such as
the PVM from Mettler Toledo or from outside the crystallizer, e.g., Chuo et al. [19] and
Huo et al. [20]. In-line acquisition is characterized by a very low up to no impact on the
crystallization, but often by a reduced image quality as well. High solid concentration,
which inevitably occurs in the course of crystallization, out of focus particles as well as
inconsistent blurry and noisy background have to be tackled in the image processing,
making it challenging [21].
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Better-quality images are recorded with flow cell microscopy. Suspension is pumped
directly from the crystallizer or storage tank through the flow cell where images are taken.
By adjusting the flow cell, e.g., cell depth, and the solid content by dilution, images are
acquired with uniform background, good contrast and adapted focus suitable for the
investigated crystals. In this way, images can be taken after the process or online during
crystallization. Nevertheless, it must be considered that flow cell microscopes coming along
with the expense of a periphery that can potentially disturb the process [12]. For cooling
crystallization, the periphery can only consist of a tempered sampling loop [7,22–26] or to
adjust particle concentration by an additional dilution system [12,13,27].

Image processing is the next inevitable step to obtain the desired quality attributes
of the product. It is by far not trivial and still many challenges have to be overcome,
especially image processing is limited for high solid concentrations and in the level of
detail regarding overlapping and agglomerated particles [28]. By identification of primary
crystals in agglomerates instance segmentation is necessary including the steps detection
of crystals and subsequent classification of the detected crystals.

To distinguish between objects and background, there are different segmentation
approaches, e.g., the simplest methods, thresholding and edge detection [29]. For a more
detailed characterization in terms of classification or identification of the crystal habit,
machine learning methods including feature extraction, encoding and classification can be
implemented. Based on extracted image features and the calculation of image descriptors
such as roundness, elongation and many more, discriminant function analysis (DFA) [7,30],
principal component analysis (PCA) [4,31,32] shallow neural nets [15,33,34] or support
vector machine (SVM) [32,35] can be applied to differentiate between single crystals and
non-single crystals. A more in detailed classification to distinguish between agglomerates
with different number of bounded primary crystals has been performed by Ålander and
Rasmuson [4] and by Ferreira et al. [7] by differentiating between medium and large
agglomerates. Frei and Kruis [34] apply neural nets to additionally estimate not only
the number but also the size of primary particles in agglomerated nano-particles. Other
methods focusing on segmentation to disassemble crystal complexes into primary crystals.
Either they are based on geometrical considerations [20,36–39] or take into account gray
values of the image [40]. The mentioned segmentation and classification methods consist
of multiple processing steps, many adjustable parameters and calculated features which
must be chosen by the operator accordingly.

Deep learning methods are emerging, which are capable of solving all these tasks in a
bundled and fast way. Depending on the application goal, different tasks from detection
to classification and segmentation can be solved separately or in combined fashion in an
end-to-end approach. The performance can often keep up with that of humans and even
outperformed them recently on image classification [41]. Convolutional neural networks
(CNNs) are on the rise in a wide variety of areas where image analysis is crucial and are also
beginning to gain importance in crystallization. In Bruno et al. [42] and Salami et al. [43]
images are classified into crystalline and precipitant products or undesired byproducts,
respectively. Further, image analysis using CNNs is used to monitor crystal growth dur-
ing crystallization [19,44,45]. Furthermore, the distinction of different particle shapes can
be accomplished by CNNs, no matter if it is a multi component system [46] or different
polymorphic forms with the expression of different habiti [45]. Efforts to segment overlap-
ping particles are also being addressed [47]. A similar task of identifying primary crystals
in agglomerates has been tackled for sintered and agglomerated silica nano-particles by
applying a CNN [48]. It shows promising results and outperforms conventional methods.

In this work, an CNN is applied to investigate agglomeration in cooling crystalliza-
tion. Detailed information about crystals are provided including primary crystals and
agglomerates so that a new level of particle characterization is reached.
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3. Material and Methods

In the following sections, the experimental as well as computational methods used in
this study are described in detail.

3.1. Experimental Set-Up and Procedure

The batch cooling crystallization experiments were carried out in a 1.2 L double
jacket crystallizer with the model system L-alanine (Evonik Industries, purity ≥ 99.7%)
and ultrapure water (Milli-Q Integral System, 0.05 µScm−1). Experiments with different
saturation temperatures (ϑsat = 40 °C/50 °C) were performed in triplicate, respectively.
In accordance to the solubility data [49]:

csat(ϑ)[gAla · g−1
sol ] = 0.11238 · exp(9.0849 · 10−3 · ϑ[◦C]) (1)

the components were weighed and transferred to the crystallizer. Then the crystallizer
was heated up to 10 K over the saturation temperature of the system and kept at the same
temperature for 1 h to ensure identical thermal history for each experiment. Afterwards it
was cooled down to 20 °C with a cooling rate of 0.3 Kmin−1. During the whole experiment
the stirring rate was set to 200 rpm.

Images were taken after crystallization, when the end temperature of 20 ◦C is reached,
to determine the product quality. To reduce the influence of downstream processing the
suspension was harvested and transferred to a self-constructed filter tower [30]. By starting
the vacuum pump (Laborport N 840 G) the mother liquor is removed and the crystals are
further humidified for 1 min. After the filtration step, the crystals were resuspended in
saturated solution and fractionated in a sample divider (Fritsch, Laborette 27) to obtain
representative subsamples. For ϑsat = 40 °C and for ϑsat = 50 °C, amounts of 1

8 and
1

32 of the crystal mass, respectively, are transferred to a collecting vessel. The sample
was further diluted to approximately 1 L to obtain an optimal optical density on the
image of 2–5% for dynamic image acquistion using the QICPIC equipped with the LIXELL
wet dispersing system (Sympatec, QICPIC R02). In this work, grayscale images (camera
resolution: 2048× 2048 pixels; camera pixel size: 5.5 µm× 5.5 µm; measurement module
M6: 2:1 magnification) were recorded in a flow cell with cell gap depth 2 mm. An exemplary
image is shown in Figure 1. The background is constantly grey and the crystals appear
dark with a decisive contrast to the background.

Figure 1. Exemplary image taken with the QICPIC equipped with LIXELL wet dispersing system of
the model system L-alanine/water.

3.2. Image Processing

Image processing is an essential part of characterizing the recorded crystals. In this
work, the crystal’s size and class, i.e., whether the crystal is a single crystal (sc), agglom-
erate (ag) or a primary crystal, which is part of an agglomerate (pcag), is determined.
Within this work, this will be referred to as the three-class task. For comparison to previous
methods, a restricted variant of this task, differentiating only between single crystals and
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agglomerates, is considered as well. Consequently, this will be referred to as the two-class
task.

In the approach presented, this task is accomplished based on the Mask-RCNN
method [14] performing object detection and semantic instance segmentation on the images
captured. Object detection denotes the task of locating object instances within a given
image. This routinely also includes classification, i.e., assigning a class from a given set
of classes to each detected object. Semantic instance segmentation additionally performs
pixel-wise classification, aiming to provide pixel-accurate masks of objects.

In detail, a Mask-RCNN [14] with ResNet-50 Backbone [50] and Feature Pyramid
Network (FPN) [51] was used. The implementation deployed here was based on Detec-
tron2 [52]. Training was performed with a manually annotated image data set consisting
of 80 images with 5034 annotated instances in total (2362 single crystals, 660 agglomerates
and 2012 primary crystals in agglomerates). The images are from previous experiments
performed according to Section 3.1. The sizes of the crystals in the data set varied in the
range of deq = 7.6 µm to deq = 1441.7 µm where deq is the equivalent sphere diameter. This
broad range of expected crystal sizes led to a diverse data set (Table A1), which is important
because it has already been shown that scale variation can lead to a loss of accuracy [47].

The data set was split in a ratio of 0.8/0.1/0.1 for training, validation and testing,
respectively. For reduced effort in computation and training time, while simultaneously
increasing detection accuracy, transfer learning was used in the training process. With trans-
fer learning, the network at hand is pre-trained on (usually more general) data from another
domain, before it is finally trained on the domain-specific data.

Here, a network pre-trained on the COCO-dataset [53] as provided with the Detectron2
implementation is used as a basis. The actual training was then performed for 30,000 itera-
tions, with a learning rate of η = 4 · 10−4. To increase the variance of the underlying data
set, several augmentations were applied in the training process in a randomized fashion.
These augmentations comprise transformations (mirroring), as well as filtering operations,
including a change of brightness and contrast. To simulate possible noise in the image
acquisition process, Gaussian noise of varying intensity was added to the images. As the
particles are not always equally within camera focus, also random blurring and sharpening
were applied as part of the augmentation. Further details are given in Table A3.

Based on this method, several Mask-RCNN-based approaches, which are more adapted
and refined to the detection task at hand and its application in the process of crystallization,
are developed and tested in this study (see Figure 2). For the three-class task, this comprises
three different methods. Firstly, a plain Mask-RCNN is trained on the three-class task. This
will be referred to as M3_1 in the following. The second variant (M3_2) consists of two
separate Mask-RCNNs, the first of them (M2_1) being trained on the two-class task, detect-
ing and differentiating only between single crystals and agglomerates, while the second
one being trained for only detecting primary crystals in agglomerates. It is to be noted
that the two-class Mask-RCNN M2_1 is also used separately, as detailed below, and thus
explicitly labeled, while the other one is not. These two Mask-RCNN are then applied
consecutively and the individual results are combined to form a solution to the three-class
task. Thirdly, this approach is further complemented by a post-processing step in order to
incorporate prior knowledge into the detection process. As pcag are by definition always
part of ag, this information is used to improve the detection results further. This method
is referred to as M3_2PP. For the two-class task, which mainly serves as a point of direct
comparison to the approach of Heisel et al. [15], a Mask-RCNN is directly trained on this
task, without any modification. This variant will be referred to as M2_1. In addition to the
Mask-RCNN approaches, the method of Heisel et al. that is only applicable to the two-class
task is represented in Figure 2 by the box labeled Feature Extraction+ANN. The method of
Heisel et al., not being based on deep learning techniques, conceptually differs from the
Mask-RCNN approaches. In a first step, crystals are detected on binary images and image
descriptors (features) are calculated, which serve as input for an ANN for classification in a
second step. To obtain binary images of the recorded grayscale images, a binarization is
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performed [23]. Reinforced by image enhancement and dynamic background subtraction,
differences in contrasts between crystals and background are used by global thresholding
(Otsu method [54]). The detected crystals are further processed by morphological closing
and region filling, before they are passed to the classification. For classifying single crystals
and agglomerates in total 19 different image descriptors, e.g., circularity, convexity and
solidity, are calculated and ranked based on proportional similarity identifying the most
striking ones to distinguish between single crystals and agglomerates. These image de-
scriptors are the input of a shallow artificial neural net (ANN) capable of classifying the
crystals. The detailed inputs and the architecture of the ANN are given in Table A2.

Figure 2. Overview and systematics of methods developed or evaluated in this study.

The classical approach is directly compared to the two-class task implementation of the
CNN differentiating between single crystals and agglomerates. As a basis of comparison
and further evaluation of the developed deep learning approaches, all results are evaluated
with respect to the COCO-metrics [53]. The principal measure is the mean average precision,
mAP or just AP, for short. This measure is an extension of the precision/recall-scheme of
binary classifiers for the task of object detection and semantic instance segmentation [55].
Along with the main AP measure, the AP50 variant is considered here, as well. In the AP50
measure, a 50% overlap of detection and ground-truth is sufficient for positive evaluation,
meaning that it is usually more tolerant with respect to inaccurate location. Furthermore,
COCO-metrics can be evaluated grouped by object size for small, medium-sized and large
objects, this leads to APs , APm, and APl for our application. Table 1 gives a more detailed
overview of the ranges and associated sizes. Finally, the resulting AP are also given for
every class (sc, ag, pcag). All metrics are derived for the pixel-wise segmentation masks
(“segm”) of the detected objects.

Table 1. Size categories of COCO-AP-metric and corresponding actual sizes.

Size (px) Size (µm2) deq (µm)

APs <322 <7744 <99.3
APm 322 to 962 7744 to 69,696 99.3 to 297.9
APl >962 >69,696 >297.9

Besides the COCO-metrics also the target parameters agglomeration degree Ag and
the average number of primary crystals in agglomerates pc/ag are evaluated. Ag is the
ratio of the number of agglomerates to the total number of crystals including agglomerates
and single crystals and pc/ag is the number of primary crystals in agglomerates divided
by the number of detected agglomerates. Thus, Ag and pc/ag characterize the material
systems in terms of agglomeration.

4. Results

This section is divided into three parts. In Section 4.1, the Mask-RCNN approach is
evaluated with respect to the extended three-class task. This comprises all the variants
developed and investigated in this study, as described in Section 3.2. The post-processing,
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which is carried out on the raw output of the Mask-RCNN, is described in detail. This
allows for integrating additional theoretical knowledge to avoid false positives.

Following, in Section 4.2 the plain results of the detection with the Mask-RCNN
method are evaluated and compared to the results of the approach by Heisel et al. [15]
(“the classical pipeline”) by applying both to the two-class task. For all tasks and methods
evaluated, also the role of particle size and the impact of applying a threshold of equivalent
diameter to detection results is investigated.

In Section 4.3, the image analysis is applied to batch cooling crystallization of L-alanine
from aqueous solution as model system. Detailed particle characterization is performed
for the product crystals, including information up to the level of primary crystals in
agglomerates. On basis of size calculation and characterization of agglomerates insights in
the agglomeration behaviour are gained.

4.1. Mask-RCNN Applied to Three-Class Task

The three-class task is addressed by use of the Mask-RCNN method. Since this is a
complex semantic segmentation with high demands concerning accuracy, different methods
are developed to achieve the best result possible.

Figure 3 shows a comparison of the resulting COCO metrics of the different Mask-
RCNN methods used and developed in this paper: direct application of Mask-RCNN
(M3_1), combined use of two Mask-RCNNs, one detecting only ag and sc, and the other
one detecting pcag (M3_2), and the latter variant with additional post-processing (M3_2PP).
Table 2 evaluates the different methods regarding the target variables of agglomeration.

Figure 3. Comparison between Mask-RCNN-based methods developed in this paper.

The plain Mask-RCNN variant (M3_1) achieves detection accuracy of AP = 49.2
and AP50 = 66.9. Notable differences can be spotted in per-class AP, with the value of
APag = 74.2 for ag being significantly higher than both APpcag = 38.5 and APsc = 34.8 for
sc and pcag, respectively. This indicates that size distribution across object classes correlates
with detection and classification accuracy. Agglomerates are larger on average and score
highest in detection accuracy, while the smallest particles are usually single crystals scoring
at lower values. Primary crystals in agglomerates achieve low accuracy, which is most likely
due to the higher complexity of detection. As primary crystals merge in agglomerates, they
overlap or at least touch each other by forming the agglomerate leading to the challenge
of identifying the contours even in the annotation phase. Often the details in the images
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are insufficiently pronounced, so the more detailed the annotations, the more subjective
they are.

Table 2. Agglomeration degree (Ag) and number of primary crystals per agglomerate (pc/ag) for the
test set; manual annotations compared to the results of different Mask-RCNN approaches.

Ag pc/ag

Annotations 0.27 3.08
Mask-RCNN M3_1 0.28 2.42
Mask-RCNN M3_2 0.28 2.91
Mask-RCNN M3_2PP 0.28 2.73

To further complicate matters, on the one hand, the distinction between single crystals
and primary crystals in agglomerates is tricky. Both, sc and pcag, belong to the primary
crystals formed by nucleation. The only difference is that sc are free in solution while pcag
are bound in agglomerates and therefore touch or overlap with others. On the other hand,
primary crystals in agglomerates are always part of the agglomerate, so there is a lot of
overlap, ideally even by 100% making it difficult to determine the object borders. This
results in a underestimation of pc/ag whereas single crystals and agglomerates agrees well
in terms of Ag (see Table 2).

As a first attempt reducing these dependencies, the second variant (M3_2) uses a
separate Mask-RCNN network specifically to detect pcag. This network is of course also
trained separately on the relevant subset of the original training data.

Evaluation of the second variant shows that the use of two separate Mask-RCNN
networks gives an improvement over using only one network. Both, AP = 51.6 and
AP50 = 72.1, show higher detection accuracy over the first variant, and per-class APs are
increased as well, although not uniformly, with APsc = 38.1 and APpcag = 39.1 being
increased more significantly than APag = 77.6. Furthermore, pc/ag of 2.91 approaches the
ground truth of 3.08, since more pcag are detected for M3_2PP.

Since the CNN learns on image features and does not recourse to theoretical knowl-
edge, the results can be further improved by the use of post-processing. Analogously,
the knowledge about pcag forming agglomerates and consequently having to be part of an
agglomerate are implemented separately. For that purpose the pairwise intersection over
union (IoU) of all detected pcag and ag is calculated and the sum of all IoUs of one primary
crystal is calculated. All pcag with a sum ≥ 0 are part of an ag and will be kept, the others
are identified as false positives and are withdrawn. Since there is a high semantic similarity
of single crystals and primary crystals in agglomerates, false positive primary crystals can
be identified and deleted. This additional post-processing step added to the two-network
variant M3_2 constitutes the third variant M3_2PP.

Evaluation of the third variant shows that post-processing of the results within M3_2PP
does not yield a further improvement in numbers over the variant without post-processing
(M3_2). In fact, it is mostly on par (except APpcag = 39.1). That means, that for AP the
false positives are not strongly decisive; however, the pc/ag decreases to 2.73, indicating
that there are false positives. Since the intersections of pcag and ag are needed for later
calculation in Section 4.2, the post processing is kept.

Common to all variants is the dependence of accuracy on particle size. This is reflected
in the class-specific values, which are high for agglomerates, i.e., larger particles on average,
and lower for pcag and sc. Even more specifically, it also confirmed by size-specific metrics
as shown in Figure 4. The larger the particle, the better the shape and further details can be
reproduced, which facilitates the classification.

It is essential to mention that all training and evaluation is performed for the original
image size (2048× 2048 px). This is in contrast to Mask-RCNN/Detectron2 default settings,
which result in a down-scaling of image size, which is usually set to 800× 800 px. As to
be expected, down-scaling of the input images results in a significant drop of detection
accuracy (AP = 37.9; APpcag = 29.1; APag = 65.0; APsc = 19.6). Especially the small
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crystals are detected worse due to resizing, since they do not consist of enough pixels
to reflect shape accurately. By ISO-13322-1 [56] for the original image size the minimal
equivalent diameter must be larger than 25.4 µm (deq,1) for compliant detection. For the
resized images, this would be accordingly less. In order to improve the results the size
threshold of 25.4 µm (deq,1) is investigated. Additionally a second threshold based on
annotated unknown objects is defined. All particles the annotators were not certain whether
they were a crystal, dirt or even artifact are subsumed under unknown. By a size analysis of
the unknown objects shown in Figure 5, it is highlighted that with 90% of the unknown
objects are smaller than the size class of 50.8 µm. To avoid the influence of particles of an
uncertain class, a second size threshold of deq,2 = 50.8 µm is chosen.

Figure 4. Size-dependent AP for M3_2PP.

Figure 5. Class unknown (644 labeled objects): example images and size characterization.

Figure 6 shows results for M3_2PP with the different area thresholds applied. Exclud-
ing objects below the chosen threshold further increases detection accuracy, which, for the
principal AP-measure, rises from 51.6 without any threshold to 53.4 and 59.3, for deq,1 and
deq,2, respectively. Whereas the annotators do not identify many crystals below deq,1 manu-
ally (see Table A1), an increased accuracy for deq,2 is achieved because fewer artifacts and
poorly depicted objects are analyzed. Examples for the final results are given in Figure 7.
For the exemplary image in Figure 1 the detection of single crystals and agglomerates (see
Figure 7a) as well as primary crystals in agglomerates (see Figure 7b) are presented. It
can be seen that the differentiation between single crystals and agglomerates is success-
fully implemented and also the primary crystals can be depicted by segmentation masks.
The semantic segmentation is highly sensitive as it can be seen in Figure 7c. The sizes
of pcag in one agglomerate can vary significantly, e.g., one big pcag and one very small
one forming an ag, which is hardly identified even by the human eye. Furthermore, the
contours are sometimes depicted as clearly that overlapping is depicted accurately even
for more complex agglomerates. However Figure 7d also illustrates that not all contours
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of primary crystals in agglomerates are identify exactly. That is why a large difference
between the AP and AP50 is observable for pcag. Further, in accordance to the identified
underestimation of pcag it is seen that not all primary crystals in agglomerates are detected.

Figure 6. Comparison of different size thresholds for Mask-RCNN M3_2PP.

4.2. Comparison of Mask-RCNN and Classical Approach

For direct comparison to the classical method of Heisel et al. [15], the plain Mask-
RCNN approach and the classical method are both applied to the two-class task and
evaluated with respect to the COCO-metrics. The Mask-RCNN is trained directly and
without any modifications on the two-class training dataset, i.e., the original dataset reduced
to sc and ag. In effect, this is equal to the Mask-RCNN of the M2_1 approach detecting
only sc and ag. Figure 8 shows the comparison between Mask-RCNN and the classical
pipeline, either one with a threshold of deq = 50.8 µm applied. It can be seen that Mask-
RCNN outperforms the classical pipeline in overall detection accuracy and in per-class
accuracy. As shown in Figure 8a, the Mask-RCNN approach wins by a significant margin
in either category.
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(a) (b)

(c) (d)

Figure 7. Visualization of the three-class task using M3_2PP. (a) Single crystals (purple) and agglom-
erates (green) detected from Figure 1, (b) Primary crystals in agglomerates (random color for each)
detected from Figure 1, (c) Exemplary agglomerates: Selected segmented agglomerates (random
color for each primary crystal in agglomerate) at the top and the corresponding cropped original
agglomerates at the bottom, (d) Insufficiently detected contours of primary crystals in agglomerates.

(a) (b)

Figure 8. Comparison of results for Mask-RCNN and classical approach. (a) Default AP, (b) Size-
dependent AP.

In both methods, overall accuracy increases with increasing object size, as shown by
size-dependent values AP{s,m,l} in Figure 8b, indicating that both detection and discrimina-
tion accuracy decrease with decreasing particle size. The detection of agglomerates yields
higher AP than single crystal for both methods, with Mask-RCNN being significantly more
accurate. For small particles, APs scores 30.4 for Mask-RCNN and only 8.1 for the classical
approach. The gap in accuracy gets smaller for medium-sized particles, with APm = 66.5
for Mask-RCNN vs. APm = 39.1 for the classical approach, and more so for large particles
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(Mask-RCNN: APl = 84.5, classical: APl = 76.3). Even though accuracy is dependent on
object size for the Mask-RCNN approach as well as the classical one, and though the differ-
ences in accuracy become smaller with increasing object size, in summary, the Mask-RCNN
approach gives an enormously large improvement over the former method, especially for
small- and medium-sized particles.

4.3. Application to Crystallization

As described in Section 3.1 crystallization experiments with different saturation tem-
peratures (ϑsat = 40 ◦C/50 ◦C) are performed. After crystallization, the product crystals
are recorded by dynamic image acquisition and a detailed crystal characterization of the
product crystals is performed by image processing. According to the image processing
methods developed, the two-net variant consisting of one Mask-RCNN for single crys-
tals and agglomerates and an additional one for primary crystals in agglomerates with
post-processing (M3_2PP) is chosen for image processing. Additionally, a size threshold
for single crystals and agglomerates of deq ≥ 50.8 µm is set. Below this size limit, no
appropriate differentiation of particle shapes is ensured and artifacts further complicate the
analysis (see Figure 5). Nevertheless, no size threshold is assigned for the primary crystals
in agglomerates because even an agglomerate of deq = 50.8 µm must consist of at least two
primary crystals in theory. As the result of image analysis, every crystal on the images is
detected pixel-wise and classified into single crystals, agglomerates and primary crystals in
agglomerates. This allows for the determination of characteristic measures to describe and
quantify agglomeration.

In Figure 9, the particle size distributions (PSD) of the performed experiments with
different saturation temperatures are shown. By classifying single crystals and agglom-
erates, as shown in Figure 7a, besides the overall number density distribution q0 of all
crystals, the total crystals can also be split into the subpopulations of single crystals and
agglomerates. When calculating the PSD for the given subpopulation, e.g., single crystals,
the single crystals in a given size class are considered in relation to the total crystals. If the
subpopulations of the single crystals and the agglomerates are combined, the PSD of the
total crystals is obtained again [57].

(a) (b)

Figure 9. PSD including total crystals (black) and subpopulations of single crystals (green) and
agglomerates (magenta) after crystallization for ϑsat = 40 ◦C on the left (a) and ϑsat = 50 ◦C on the
right (b). The error bars are calculated according to the three replicated crystallizations for each
saturation temperature.

As expected, the increased saturation temperature shifts the PSD to larger particles.
On the one hand, this is due to concentration difference from the beginning to the end of
crystallization promoting growth. This is also indicated by the shift of the subpopulation
of single crystals to the right. On the other hand, the tailing for bigger crystals is due to the
subpopulation of agglomerates. Therefore, the dominant phenomenon for large crystals
exceeding 250 µm is agglomeration.
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The probability for agglomeration at the higher saturation temperature is increased
because the formed crystals remain longer in the system due to the same end temperature.
Thus, by continuing agglomeration, crystals exceed to larger sizes and the Ag is increased
as well (see Table 3). In addition, the raising solid content promotes the particle collisions.
This observation of a higher degree of agglomerated products has also been reported in the
literature [7].

Table 3. Agglomeration degree (Ag) and number of primary crystals per agglomerate (pc/ag) for
different saturation temperatures in batch cooling crystallization. The end temperature is 20 ◦C each.
The error bars are calculated according to the three replicated crystallizations for each saturation tem-
perature.

Ag pc/ag

ϑsat = 50 ◦C 0.697± 0.016 2.78± 0.15
ϑsat = 40 ◦C 0.666± 0.009 2.11± 0.04

The progression of agglomeration is not only depicted by the agglomeration degree
but can also be traced on a more detailed level of primary crystals in agglomerates. A first
measure is the average number of primary crystals per agglomerate (pc/ag) in Table 3.
For the saturation temperature of ϑsat = 40 ◦C, pc/ag slightly exceeds the minimum limit
of two and increases to 2.8 for ϑsat = 50 ◦C. Based on the size-dependent accuracy of the
method, but also due to the wide range of agglomerate sizes, a size-dependent evaluation is
useful. In Figure 10, the pc/ag in dependency of the agglomeration size is depicted. In the
evaluation of the experiments agglomerates smaller than 161 µm do not obtain the limit
of two pc/ag which indicates an underestimation for small crystals in particular and also
lead to the low overall pc/ag just above 2.

However, regardless of size the agglomerates rarely consist of more than four pc/ag,
showing that the material system tends to agglomerate only moderately with few pc/ag
in general. For larger particles, the pc/ag even starts to decrease again, indicating that
larger primary crystals do not form stable aggregates, which reduces the formation of
agglomerates.

Generally, the image analysis possibly underestimates the primary crystals due to the
reduction of the spatial crystals to a 2D image. Especially, when small primary crystals
are attached to large ones, the probability is high that the small primary crystals are
obscured by the orientation of the agglomerate on the image and therefore do not appear
in the evaluation.

In addition to an averaged number of primary crystals in agglomerates, primary
crystals in an agglomerate are characterized in more detail by distributions of size and
number of primary crystals in agglomerates (Figure 11). Similar to a PSD, the characteristic
value pc/ag instead of the size can be plotted against the fraction of primary crystals within
a specified class of pc/ag [4]. In Figure 11a, it is shown that 72% (ϑsat = 40 ◦C) and 57%
(ϑsat = 50 ◦C) of the agglomerates consist of maximally two primary crystals and less
than 10% of agglomerates constitute of more than four pc/ag no matter what saturation
temperature and agglomerate size. Again, a slight underestimation can be assumed based
on the trends shown in Figure 10. However, in connection with Figure 10 and the exemplary
images in Figure 7 it is shown that L-alanine crystallized from aqueous solution appears
to form agglomerates containing only a few primary crystals per agglomerate and their
number does not vary much, mainly between two to four.
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Figure 10. The average number of primary crystals per agglomerate (pc/ag) as function of agglom-
erate size for ϑsat = 40 ◦C in bright and ϑsat = 50 ◦C in dark red. The error bars are calculated
according to the three replicated crystallizations for each saturation temperature.

Besides number of primary crystals per agglomerate, the size of primary crystals in
agglomerates are characterized in Figure 11b. All in all, the primary crystals in agglom-
erates reflect the subpopulation of single crystals, which means that the primary crystals
grow equally in solution and in agglomerates, whereas it is still difficult to identify small
primary crystals in agglomerates, larger ones are usually fully imaged. The contours can
be estimated successfully so that overlapping does not impact the size calculation. Further,
segmentation is facilitated by the moderate agglomeration, since the agglomerates are not
very clumpy and mostly they only touch each other without much overlapping.

(a) (b)

Figure 11. Number based and particle size distribution of primary crystals in agglomerates for
ϑsat = 40 ◦C in bright and ϑsat = 50 ◦C in dark red. (a) Number distribution of primary crystals per
agglomerate, (b) Particle size distribution of primary crystals in agglomerates.

We conclude that agglomeration takes place during the entire process and no tenden-
cies can be determined whether there are preferred particle sizes that agglomerate with
each other. There are agglomerates which consist of primary crystals of the same size as
well as those which are composed of primary crystals of different sizes (see also Figure 7).
Here a measurement during the process would be helpful to determine the influences
regarding time point and particle size of the agglomeration.

5. Summary and Outlook

Deep learning methods show high potential for application in crystallization. They do
not only outperform classical image processing methods based on hand-crafted features in
connection with machine learning methods, they also enable a more detailed description
of the particles. Beside a pixel-wise detection of crystals and classification into single
crystals and agglomerates, CNNs also enable the quantification of primary crystals bound
in agglomerates. This is not done by a regression or classification task anymore, instead also
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the primary crystals can be detected and classified on a pixel-level. The characterization of
the agglomeration can be extended to a deeper level this way.

For the detection of the three crystal classes, a combination of two Mask-RCNNs
has proven to be promising to be able to detect the primary crystals in agglomerates as
precisely as possible. Especially big crystals can be evaluated accurately and also the
main portion of primary crystals in agglomerates is quantified in a satisfying manner.
The limitations of the methods mainly concern strongly agglomerated crystals and small
particles in general. These challenges during image processing are not exclusively due to
the method itself. After all, it is a very complex task that poses challenges even for the
human user. The more detailed the image evaluation is and the more small particles are
processed, the more subjective the assessment of the annotation becomes. To counteract
the challenges, the image acquisition plays an important role. The particle characterization
can be significantly improved by an adapted resolution and a better representation of the
crystals where the contours of the individual primary crystals are more clearly visible.

For characterization of agglomeration and quantification of primary crystals in agglom-
erates the method was applied for L-alanine crystallized from aqueous solution successfully.
An increased saturation temperature leads to a longer crystallization time and higher solid
content promoting agglomeration throughout the whole crystallization time. This is not
only depicted by an increasing agglomeration degree, but also the level of agglomeration
by an enhanced number of bounded primary crystals in agglomerates. Especially for bigger
agglomerates the bounded primary crystals can be identified pixel-accurately. The primary
crystals bound in an agglomerate are predominantly less lumpy and usually consist of
fewer than five primary crystals, regardless of size.

As it can be seen, this method can be used to describe the agglomeration behavior in
detail and to build up a better understanding. Previously flow cell microscopy has already
been integrated in a batch crystallization showing the evolution of crystals in the course of
crystallization for a different model system adipic acid/water [12,13]. Difficulties result in
the operation, e.g., an influence on nucleation has been observed. Consequently further
work will focus on integrating the image analysis into the process without interfering it
and incorporating the deeper findings into modeling.
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Ag Agglomeration Degree
ag Agglomerate
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AP Average Precision
CNN Convolutional Neural Network
COCO Common Objects in Context
DFA Discriminant Factor Analysis
FPN Feature Pyramid Network
IoU Intersection over Union
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M2_1 Method 1 (two-class task)
M3_1 Method 1 (three-class task)
M3_2 Method 2
M3_2PP Method 2 with Post-Processing
pcag Primary Crystals in Agglomerates
PSD Particle Size Distribution
RCNN Region-based Convolutional Neural Network
sc Single Crystal
SVM Support Vector Machine

Appendix A

Table A1. Characteristics of dataset.

Data Set (Total) Training Set Validation Set Test Set

Number[−] 5034 3879 616 539
x10,0 [µm] 27.9 28.0 29.2 26.1
x50,0 [µm] 57.2 57.1 61.5 50.8
x90,0 [µm] 450.2 444.9 354.9 565.2

Ag 0.22 0.22 0.17 0.26

Table A2. ANN based on [15]: architecture, training data and performance. The images were
taken with QICPIC/LIXELL wet dispersing system (Sympatec, QICPIC R02, camera resolution:
2048× 2048 pixels; camera pixel size: 5.5 µm × 5.5 µm; measurement module M6: 2:1).

Net architecture
MATLAB (R2015a) function patternnet
(one hidden layer with 10 neurons,
2 outputs: Single Crystal/Agglomerate)

Image descriptors used Scaled maximum concavity depth, solidity,
equivalent diameter, circularity

Particle sizes for Training deq = 11.6 to 234.5 px (32.4 to 645 µm)

Training set size 650

Performance Index 0.92± 0.03

Table A3. Augmentation methods used and their respective parameters. All values are sampled
uniformly within their respective ranges in each training iteration.

Augmentation Parameter Range Remarks

brightness intensity [0.5, 1.2] <1: reduce; =1: preserve; >1: increase
contrast intensity [0.5, 1.2] <1: reduce; =1: preserve; >1: increase

mirroring apply {yes, no} –

blur/sharpen method {b, s} Either Gaussian-based blur (b)
σ (intensity) [0.8, 2.9] or sharpening (s) is applied

noise per-channel {yes, no} Additive Gaussian noise is applied either
σ (intensity) [0, 50] individually or uniformly across channels
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