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Abstract: Extreme droughts have a strong impact on agricultural production. In France, the 2003
drought generated records of yield losses at a national scale for grassland (more than 30%) and for
cereals (more than 10% for soft winter wheat and winter barley). These extreme events raise the
question of farm resilience in the future. Studying them makes it possible to adapt risk management
policy to climate change. Therefore, the objective of this paper was to analyze the frequency and the
intensity of extreme drought in 2050 and their impact on crop yield losses (grassland and cereals)
in France. We used the DOWKI (Drought and Overwhelmed Water Key Indicator) meteorological
index based on a cumulative water anomaly, which can explain droughts and their consequences on
agricultural yield losses at a departmental scale. Then, using the ARPEGE-Climat Model developed
by Meteo-France, DOWKI was projected in 2050 and grassland, soft winter wheat, and winter barley
yield losses were simulated. The results compare the frequency and intensity of extreme droughts
between the climate in 2000 and 2050. Our results show that the frequency of extreme droughts (at
least as intense as in 2003) doubled in 2050. In addition, the yield losses due to 10-year droughts
increased by 35% for grassland and by more than 70% for cereals.

Keywords: extreme droughts; climate change; modeling; crop yield losses; crop insurance

1. Introduction
1.1. Consequences of Climate Change on Agriculture

Agriculture in France represents an important economic activity (leading producer in
the European Union). In 2014, of the EUR 373 billion of gross agricultural products (GAP)
produced in the European Union, France produced EUR 67 billion, representing 18% of
the GAP [1,2]. France is the main producer of wheat and cattle in the European Union,
and these two activities cover a large part of its utilized agricultural land [3]. In 2003, a
severe drought caused a massive decrease in agricultural production and income (30%
of the production was lost [4]), despite the rise in prices that some crops experienced [5].
Grassland yields were also greatly reduced and public support (via the Calamity Fund
System) was necessary to allow farmers to get through the year, especially in the milk
production community. These elements indicate that despite technological progress, crop
production remains highly dependent on water resources and climatic conditions. In this
context, increasing our scientific knowledge of the intensity and frequency of these extreme
droughts is necessary to evaluate their impact on agricultural production.
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There is a global consensus in the scientific community that the climate will be very
different in the middle of the 21st century [6–9]. The main cause of climate change is the
increase in atmospheric concentrations of several greenhouses gases as a result of human
activity [10,11]. Several models are used in the community to study different scenarios
of climate change and its consequences on agriculture. The following studies highlight
several important points:

• Annual temperatures are expected to increase [12,13]. As a consequence, the crop-
growing period will be shorter and the grain protein concentration will decrease [14,15].
In addition, a high frequency of severe drought events during summer periods is
to be expected [7,11,16]. These events may cause crop yield reduction or stagnation
(depending on areas and species) [17,18]. Some studies show that in the Mediterranean
region, yields could greatly decrease compared to historical yield trends [2,19].

• A decrease in annual precipitation, especially in the Mediterranean region, such as the
South of France, will contribute to an increase in winter droughts [11].

• Many studies highlight that cereal crops (in particular wheat and corn, which are the
most studied crops) will experience a decrease in yield due to an increased number of
days above 30 ◦C [12,13,18,20–23].

• Other studies underline that high temperatures have direct and indirect negative
impacts on dairy production [24,25] by affecting animal health and grassland yields,
in particular.

Finally, several studies demonstrate that heat waves like the 2003 one, which particu-
larly affected crop yields, will be more frequent in the future [2,6,26–28].

Extreme drought events are difficult to study because there are by definition rare
events that occur very infrequently, so an archive of historical data may contain just a few
extreme events [29]. The IPCC defines the concept of “extreme” as “the occurrence of a
value of a weather or climate variable above (or below) a threshold value near the upper
(or lower) ends (‘tails’) of the range of observed values of the variable” [8]. Thus, the notion
of an extreme drought event is dependent on the value of the climatic index chosen to
characterize the climate. Therefore, the link between the climate index and the impact
on agriculture (yield losses) has to be explicit. However, annual yield losses are due to a
set of phenomena (diseases, climatic events, changes in cropping practices) and it is not
easy to assess the weight of one phenomenon independently. The best-known drought
indicators are:

1. Standardized Precipitation Index (SPI) developed by [30] and based on precipitation
data to determine the exact period and duration of meteorological droughts. The
values of the index are fitted to a log-logistic distribution for standardization.

2. Standardized Precipitation Evaporation Index (SPEI) developed by [31] and based on
the difference between precipitation and reference evapotranspiration (ET0).

These indicators characterize meteorological and hydrological droughts, which are not
necessarily similar to agricultural droughts. Although many indices have been developed
to analyze the evolution of droughts, the direct relation between these indices and crop yield
has not been frequently investigated. Some studies have been conducted in China, in the
United States, and in Europe comparing the SPEI, PDSI (Palmer–Drought Severity Index),
and SPI indices for the detection of agricultural droughts [32,33]. The best correlations
are obtained with SPEI. In addition, in Canada, a study was carried out to analyze the
correlation between grassland losses linked to droughts and certain agro-climatic indices
like PDSI and SPI. The results indicate that the coefficients of determination remained
very low with all indices [34]. Other drought indices have been developed for specific
territory, such as ARID to study the link between water stress and plant growth in the
United States [35]. Thus, some studies show that an index developed with the parameter of
precipitation alone, like SPI, is not sufficient to explain the variability in crop production
due to drought, particularly for extreme events like the one in 2003 [36,37], because this
drought was characterized by an increase in evapotranspiration rates [38]. At the French
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country scale, one indicator used to analyze the effect of the climate change on agriculture
is the Standardized Soil Water Index (SSWI) [39]. This indicator represents the useful
water reserve of the soil, or water availability for plants. Water deficit and temperature are
parameters commonly used to study the climate effect on agricultural crops [40,41].

1.2. Objectives of This Study

In the paper, we propose an evaluation of the frequency and intensity of extreme
droughts in current climate and future climate conditions (year 2050). Our methodology is
based on a simple drought index [42] correlated to crop yield losses that can be projected
into the future using a global climate model—for instance, the ARPEGE-Climat Model
from Meteo-France.

Based on this method, the objectives are to:

• Analyze the climate and its evolution between the years 2000 and 2050;
• Detect extreme events and analyze their frequency and intensity;
• Simulate their consequences on crop yield losses.

The model is applied to three crop categories: grasslands, soft winter wheat, and
winter barley.

This study aims to provide insight on the following issues:

1. Do the historic records contain the most extreme events and, if not, how can we
characterize them?

2. What is the probability of occurrence in the current climate conditions?
3. Will the intensity and/or frequency of these events evolve in the future?

2. Materials and Methods
2.1. Modeling Extreme Droughts and Their Consequences on Yield Losses
2.1.1. DOWKI Computation on the SAFRAN Reanalysis

We used the DOWKI, which characterizes extreme events of drought and excess water.
DOWKI is (1) simple to compute, (2) purely meteorological, and (3) independent of crop
categories. It can be compared to yield losses for several types of crops and on large areas.
DOWKI is a cumulative efficient rain anomaly, computed on a 10-day time step, between
the current year value and the historical average. It is computed for the growing period of
a given crop, and starts at 0 on 1 January. It is expressed in mm. Its equation for drought
event characterization is as follows:

ERNCi,n =
[
(Pi−1,n − PETi−1,n)−

(
Pi−1,P − PETi−1,P

)]
+

[
(Pi,n − PETi,n)−

(
Pi,P − PETi,P

)]
DOWKIdrought c, n = min ERNCi0→ij,c,n

where ERNCi,n is the cumulative rain anomaly computed in decade i for year n. P is the
precipitation and PET is the potential evapotranspiration.

(
Pi−1,P − PETi−1,P

)
represents

the average of the difference between P and PET computed for all i-1 10-day periods in
period P (historical period). DOWKI is an annual value and is computed by taking the
minimum of the values of ERNC for any 10-day period between i0 (first 10-day period) and
ij (final 10-day period).

In [42], DOWKI was computed for representative meteorological stations at the depart-
mental scale to match with available yield loss data, and we showed model uncertainties as
we simulated all the crops losses. One notable limitation is the climate measure at a single
point over the department. On the one hand, this measure is not necessarily representative
of the climate over the whole territory of the department. On the other hand, the crop
parcels were not necessarily located at the climate measuring point (meteorological station
point). In this second case precisely, this would mean that we measured the hazard but
not the agricultural risk. In this paper, we computed DOWKI on the SAFRAN-Grid—
8 km × 8 km over the French metropolitan area for two reasons:

1. To reduce the uncertainties of the model;
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2. To match with the output scale of the ARPEGE-Climat model using a quantile–quantile
downscaling method on the SAFRAN daily reanalysis data (1981–2010 for rainfall
and 1989–2018 for potential evapotranspiration).

After computing DOWKI on the SAFRAN grid, we crossed the SAFRAN reanalysis
grid with the Graphic Plot Register (GPR) shown in Figure 1. To compute an index value by
department, we calculated the DOWKI average values in each cell of the department where
the crop was present. This methodology allowed us to measure climate risk specifically
on crop production since we integrated the hazard parameter (DOWKI value) and crop
vulnerability (the DOWKI computation corresponds to on the crop vulnerability period
and the agricultural parcel location).
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2.1.2. Computing Yield Losses

We used the AGRESTE database (https://agreste.agriculture.gouv.fr, accessed date:
5 March 2019), which refers to yield by crop and department in the historical period
(1989–2018 for soft winter wheat and winter barley and 2000–2018 for grassland) with one
value by year and by crop produced and declared on a given surface. Yield losses for the
n-th year were computed by comparing the annual yield with a yield reference defined by
the Olympic average over 5 years. This methodology is used in agricultural public policies
like crop insurance [43]. The crop yield loss computation using the Olympic average is
presented here:

Yield lossc,n =
Yieldc,n − (∑n−1

n−5 yieldc −Max(∑n−1
n−5 yieldc)−Min(∑n−1

n−5 yieldc))

(∑n−1
n−5 yieldc −Max(∑n−1

n−5 yieldc)−Min(∑n−1
n−5 yieldc))

In which c is the culture and n is the year.
Figure 2 represents yield losses for soft winter wheat, winter barley, and grassland on

the French farm scale for the historical period 2000–2018. Over this period, yields were
affected by several events:

• The most significant soft winter wheat and winter barley yield losses were registered
for the 2016 excess water event (27% and 17%, respectively) and the 2003 drought (14%
and 16%, respectively).

https://agreste.agriculture.gouv.fr
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• The most important grassland yield losses were registered for the 2003 drought (32%)
and the 2011 drought (21%).
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Figure 2. Crop yield losses (%) for grassland, soft winter wheat, and winter barley at the national
scale computed over the historical period 2000–2018 with the AGRESTE database.

Cereals seem to be sensitive to two natural extreme hazards—excess water and
droughts—and grassland specifically to droughts. Over the historical period, there were
two extreme drought events: in 2003 and in 2011. These two years saw largescale severe
droughts, the worst droughts in 30 years. On average, these two events caused 25% crop
losses for grassland and 10% crop losses for soft winter wheat. In order to characterize the
extreme events in the future, we used these two extreme droughts as a reference.

2.1.3. Analyzing the Link between DOWKI and Yield Losses

DOWKI values and yield losses were computed for each department over the historical
period 2000–2018. This calibration matrix of 1800 values was used to study the statistical
relationships between the index value and the yield losses.

The index values were classified using 50 mm steps. For each class we calculated the
number of yield loss values exceeding 0% and the average yield loss value.

The parameters of the model were:

• The period over which the annual value of the index was computed. This period
corresponded to the vulnerability period of the crop and was different for each crop;

• The extreme event threshold at the departmental scale;
• The minimum cultivation area to be taken into account to rule out small areas in which

yields are very volatile.

These parameters were optimized using an experimental design, which consisted of
computing a high number of calibration processes with different values for each parameter.
The size of the experimental design was (pn), with p being the number of parameters (here,
p = 4) and n being the number of values for each parameters (here, n = 10). In our case
study, the number of calibration processes was pn = 10,000. The experimental design was
evaluated by analyzing the following parameters:

• Average error at the national scale over the entire historical period;
• Average error at the departmental scale over the entire historical period.

This experimental design allowed us to select the best parameters by minimizing
both errors. The best parameters are presented in Table 1. A specific experimental design
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with the same 4 parameters was run for each crop studied. Thus, a selection of the best
parameters for grassland, soft winter wheat, and winter barley was made. The following
table gives these parameter values.

Table 1. Best parameters used for the calibration of the model by crop.

Parameters Annual Index Period Computation Extreme Event Threshold Minimum Cultivation Area

Grassland 3rd 10 days in April–2nd 10 days
in September −200 mm 2 × 104

Winter barley 3rd 10 days in April–1st 10 days
in August −200 mm 2 × 104

Soft winter wheat
North of France

3rd 10 days in April–1st 10 days
in August −200 mm 9 × 104

Soft winter wheat
South of France

3rd 10 days in April–1st 10 days
in August −200 mm 1.1 × 104

For soft winter wheat, two climatic regions were defined—the North and South of
France—to improve the calibration results.

2.2. Modelling Climate Scenarios with ARPEGE-Climat
2.2.1. General Methodology

Unlike most climatic projections, here the ARPEGE-Climat was not used to simulate a
continuous period between 2000 and 2050 but to simulate a 400-year-long time series with
year 2000 climate forcing and with year 2050 climate forcing under an RCP 8.5 scenario.
The objective was to collect a large panel of possible meteorological situations, but not ones
that necessarily occurred, for these two target years. These 400 years had to be interpreted
as possible realizations of a given targeted year. With 400 possible realizations for the year
2000 and the year 2050, we had at our disposal a large series of data. Then, it was possible
to analyze extreme events and to estimate probabilities of occurrence.

Meteorological data such as precipitations and potential evapotranspiration were the
outputs of this model for the climate in 2000 and the climate in 2050. The results were
analyzed on an 8 km × 8 km grid for the whole French territory.

2.2.2. Targeting the Year 2050

The year 2050 was chosen for this study as the target year for our climatic projections.
This mid-term target year, 30 years in the future, will allow us to analyze the consequences
of climate change on crop production and support public policy decisions. Under the
financial context, insurers are able to make projections of their market in 2050. The target
year 2100—widely used by climatologists to study the impact of climate change—is too
far in the future to make serious hypotheses on the evolution of agriculture, landscapes,
economy, and risk management policies.

2.2.3. Choice of RCP 8.5

The Representative Concentration Pathway 8.5 scenario (RCP 8.5) is characterized by
increasing greenhouse gas concentration levels (>1370 eq-CO2 in 2100). This scenario is the
most extreme and corresponds to a radiative forcing of +5 W/m2 in 2050 (only +4 W/m2

for RCP 4.5) [7]. The RCP 8.5 scenario represents a “pessimistic” or “conservative” vision
of what the climate could be like in 2050. In this scenario, the energy demand is high, with
the highest greenhouse gas emissions, corresponding to a high population and modest
technological improvements. In France, RCP 8.5 corresponded to a temperature increase of
2.2 ◦C in 2050 compared to the 1976–2005 period, and a temperature increase of 1.7 ◦C for
RCP 4.5 in 2050 [44,45]. According to the IPCC, RCP 8.5 corresponds today to historical
paths since 1992.
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2.2.4. ARPEGE-Climat Model Description and Parameterization

The numerical model ARPEGE is a global and spectral general circulation model de-
veloped for an “operational numerical weather forecast” by Meteo-France in collaboration
with the ECMWF (European Centre for Medium-Range Weather Forecasts). ARPEGE-
Climat became the atmospheric part of the CNRM earth-modelling system, which couples
different components of the climate system (atmosphere, ocean, land surface, sea ice).
The ARPEGE grid can be tilted and stretched by changing the position of the pole and
by increasing the horizontal resolution over an area of interest. This zoom ability allows
regional climate to be studied with ARPEGE-Climat.

In our case, ARPEGE-Climat had the pole in Germany (9.97◦ E, 50.00◦ N). The spatial
resolution over Europe was about 20 km. The time step of the model was 600 s (10 min).

The exchanges between atmosphere and soil were taken into account by the spe-
cific SVAT (Soil Vegetation Atmosphere Transfer) module SURFEX (V7) implemented
in ARPEGE-Climat.

The climate forcing allowed the climate to be kept stationary using fixed parameters:

• Fixed greenhouse gases concentrations accorded with the choice of Representative
Concentration Pathway (RCP) for the fixed year (here, 2000 or 2050);

• Stationary sea-surface temperature series (adapted to each RCP with a quantile map-
ping method);

• Fixed stratospheric ozone concentrations;
• Fixed aerosol concentrations.

2.2.5. Model Outputs

The archive held model outputs over Europe and North Africa at stretched and tilted
grid points in ARPEGE at an hourly step time for 36 near-surface parameters and at a
3-hour time step for 5 altitude parameters at 9 different levels. Then, data were generally
interpolated on user-specific grids.

2.2.6. Downscaling and Post-Processing

We needed precipitation and potential evapotranspiration for metropolitan France.
Precipitation could be directly extracted and interpolated on the 8 km × 8 km SAFRAN
grid. Potential evapotranspiration was computed at a daily step time according to the
Penman–Monteith formula, with 2 m temperature, sea level pressure, 2 m specific humidity,
10 m wind speed, surface downwards global short-wave radiation, and surface long-
wave radiation. These parameters were retrieved and interpolated on the 8 km × 8 km
SAFRAN grid.

The imperfections of the models induced biases in the outputs and downscaling, and
interpolation is not a perfect method. Therefore, we removed the biases with 30 years of
the climatic reference database SAFRAN (SIM2 reanalysis).

The precipitation and the parameters used to compute the potential evapotranspiration
were generally corrected with the quantile mapping method. A specific method was
developed at Meteo-France for global radiation. Last, potential evapotranspiration was
corrected with the quantile-mapping method.

2.3. Uncertainty Analysis

The simulation results using a model chain like ours carried important uncertainties
that needed to be evaluated and taken into account in the confidence interval of the results.
Different uncertainties were contained in our model chain: climatic model uncertainties,
index uncertainties, and damage model uncertainties.

As seen in its definition above, the DOWKI index computation is deterministic with
no addition of uncertainties between the input data (P and PET) and index value. The
hazard uncertainties were thus contained in the values of P and PET provided by the
ARPEGE-Climat values and the downscaling process. To evaluate these uncertainties
contained in the input data, we relied on two hypotheses:
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• The simulation of 400 repeats of the same target year (years 2000 and 2050) will include
a large part of the climatic uncertainty;

• The comparison between the target year 2000 produced by ARPEGE-Climat and the
historical reanalysis of SAFRAN in the 2000–2018 period will complete this analysis.

The most important uncertainty lay in the crop yield loss simulations using DOWKI
values and the damage model. As seen during the calibration process, false positives and
false negatives induced model errors. We decided to take this uncertainty into account
in the confidence interval by simulating each climate year in the ARPEGE-Climat model
100 times: For each of the 100 repeats of the same year, a yield loss value was randomly
chosen within the index class at the department scale. This method allowed the confidence
interval (for example, quantiles 10 and 90) to be estimated for each year and department.

3. Results
3.1. Historical Reanalysis

The relationship between the DOWKI values and yield losses for grassland is illus-
trated in Figure 3. The damage model is the statistical relation between climatic index and
yield losses at the department scale. It is a combination of two predictive models:

• Prediction of the occurrence of a claim, i.e., yield loss exceeding 5% at the department scale;
• Prediction of the yield loss value at the department scale.
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Figure 3. Damage function for grassland yield loss simulations: frequency of claims, percentiles 10
and 90, and average of yield losses according to the DOWKI values.

When a DOWKI value exceeded −475 mm, the departmental yield loss was equal to
42% with a probability of occurrence close to 90%. For DOWKI values close to zero, the
probability of claims was significantly lower (~30%), as was the yield loss value (10%).

The calibration generated false positives and false negatives not explained by our
index. False positives are departments where the index indicated, for a given year, an
intense drought but without consistent yield loss. A false negative, on the contrary, is a
case where high yield loss could not be explained by the index value. Several hypotheses
were formulated to explain these errors (Table 2).
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Table 2. False positives and false negatives.

False Positives False Negatives

Adaptation of agricultural practices: modifying
the sowing period or harvest period, choice

of varieties
Development and propagation of disease

Protection measures (irrigation) Combination of several climatic events,
including droughts

To validate our damage model, back testing was performed by comparing, at the
national scale, the observed yield losses and the simulated yield losses (Figure 4).
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Figure 4. Average grassland yield losses at the national scale (%) computed in the AGRESTE database
and simulated by the model with DOWKI values.

The back-testing relative error at the national scale was 5.5% for grasslands (14.6% for
soft winter wheat and 20.4% for winter barley). The 2011 and 2003 intense droughts were
explained by the model with an underestimation of 24% (2003) and overestimation of 2%
(2011), but the highest simulated yield losses remained, as expected. The lowest yield losses
at the national scale (years 2000, 2001, 2002, and 2008) were overestimated by the model,
but the simulated yield losses were still the lowest in the distribution. The two droughts
in 2003 and 2011 were characterized by a lack of precipitation and an augmentation of
evapotranspiration rates. In addition, for the 2003 drought, record extreme temperatures
were experienced during the summer. The main difference between these two droughts
is that they did not begin at the same period of the year. The 2011 drought was a spring
drought and the extreme values of DOWKI were computed in June. For the 2003 drought,
extreme values of DOWKI were computed in August. The DOWKI values were more
extreme for grassland than for cereals because the drought lasted all of August and the
vulnerability period of cereals is shorter.

The most difficult issue with these model results is the case of the drought in 2018:
High yield losses due to an extreme drought that occurred in the northeast region of France
were not detected by our model. This was due to multiannual drought cycles. The DOWKI
index value was initialized at 0 on 1 January of each simulated year, whereas in 2017, the
soils were abnormally dry in December.

As shown in Figure 4, the back testing of the model showed its capacity to simulate
extreme drought events and predict the national yield loss.
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3.2. Agro-Climatic Model Results in 2000 and 2050
3.2.1. Comparison of DOWKI Distributions between 2000 and 2050

Using ARPEGE-Climat, two event sets of 400 years (2000 climate and 2050 climate)
were computed. The first issue was to determine whether these distributions were signifi-
cantly different. The numerous repeats in each target year allowed us to use a statistical
test to answer this first question.

We compared the distributions of the annual average national scale DOWKI values
with a Wilcoxon–Mann–Whitney non-parametric test commonly used to compare medians
of two samples that do not follow a Gaussian distribution. The test rejected the null
hypothesis that the two distributions were samples from continuous distributions with
equal medians. The p-value was equal to 0.027.

3.2.2. National Analysis

In this first approach, we analyzed the frequency of extreme droughts with an intensity
equal or superior to 2003 and 2011 at the national scale. In the current climate distribution,
29 drought events were identified. A quick estimation of the return period of these extreme
droughts in current climate was 13 years. This first result is consistent with the 30 years of
available historical data (1989–2018), with two extreme droughts (2003 and 2011), giving an
empirical return period of 15 years. In the 2050 scenario, 57 extreme drought events were
identified with a return period of seven years.

On average, these droughts affected 81.7% of utilized agricultural land (UAL) in 2000
and 86.1% in 2050. All these events were systemic, with a minimum of 61.8% (2000 climate)
and 52.7% (2050 climate) of UAL affected by drought.

The annual DOWKI value at the national scale decreased by 40% (DOWKI was equal
to −78 mm for the climate in 2000 and −110 mm for the climate in 2050) when comparing
the 2000 and 2050 distributions.

At the national scale, the effect of climate change on the frequency of extreme droughts,
considering 2003 as the reference, will increase significantly (+100%) between 2020 and
2050, according to the ARPEGE-Climat simulations. These events will remain systemic in
the climate in 2050, with at least 50% of the UAL affected by drought.

Beyond the average, Figure 5 illustrates the yield losses (%) at the national scale for
soft winter wheat (a), winter barley (b), and grassland (c) with respect to their return period
in the current climate and in 2050.

A lot of information can be extracted from Figure 5. When integrating the model
uncertainties (percentile 10–90), the empirical cumulative distribution functions (ECDF
curves) between the 2000 climate and the 2050 climate did not overlap over 10 years,
showing a significant increase in yield losses between 2000 and 2050 for all return periods.

First, the annual average loss will increase in 2050 by:

- 40% for grasslands;
- 47% for winter barley;
- 45% for soft winter wheat.

The yield losses due to 10-year droughts will increase by:

- 35% for grassland;
- 75% for soft winter wheat;
- 79% for winter barley (Table 3).

The results show a more important yield loss increase for cereals than grassland
(Table 3) due to 10-year droughts. The whole of France would be impacted by a significant
increase in risk in 2050, but the evolution would be even more significant in the northern
half of France, where straw cereals are cultivated. Indeed, we analyzed the DOWKI values
of 10-year droughts between the 2000 climate and the 2050 climate: A critical increase in
the water balance anomaly (30–50%) was registered in the North of France, particularly
where cereals are cultivated [46]. In the South of France, for 10-year droughts an increase in
the water balance anomaly of 10–30% was recorded [46].
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Table 3. Average yield losses at the national scale for soft winter wheat, winter barley, and grassland
for 10-year droughts for the climate in 2000 and the climate in 2050.

10-Year Droughts
Average Yield Losses at the

National Scale—Climate
in 2000

Average Yield Losses at the
National Scale—Climate

in 2050

Soft winter wheat 4.2% 7.4%
Winter barley 5.3% 9.5%

Grassland 18.5% 25.0%

The return period of the highest losses (50-year return period at current climate) will
become every 19.6 years for grasslands and winter barley and every 26.1 years for soft
winter wheat.

In terms of output and income losses, these droughts will affect the agricultural
economy with a loss of:

- 4.5 million metric tons and a deficit of EUR 745 million (with an average price of EUR
168/T) for soft winter wheat;

- 1 million metric tons and a deficit of EUR 163 million (with an average price of EUR
164/T) for winter barley;

- 8.8 million metric tons of dry matter and an indirect deficit of EUR 1.3 billion (with an
average price estimated at EUR 150/T of dry matter).

3.2.3. Regional Analysis

Were the evolutions highlighted at the national scale consistent with a geographical
study at the departmental scale?

We analyzed the intensity and frequency of extreme droughts at the local level using
DOWKI values computed at an 8 km × 8 km scale and crop yield losses simulated at the
departmental level.
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The results presented in Figure 6a illustrate that the increase in the water deficit will be
more significant on average in the South of France (southwest and Mediterranean region).
Overall, we observed a worsening water deficit of 30% to 50% throughout France and
above 50% in the south.
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Brittany, Normandy, and the coastal northern regions showed the lowest evolution of
drought index (<30%). In these areas, yield losses for grassland will increase by 30 to 50%
on average.

The translation of the DOWKI values in terms of yield losses showed the following
results: the northeastern and southeastern parts of France will incur high yield loss increases
for straw cereals. Depending on the department, Figure 6b,c shows that the yield losses
will increase by 30% to 100% in 2050 for straw cereals. For grasslands, the whole of France
will be affected by a significant increase in yield losses of between 30% and 75%.
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4. Discussion
4.1. Comparison of the Results with Others Studies

This study shows that significant droughts from the recent past generated high yield
losses at the national scale with a systemic impact on the French territory. More extreme
events were computed under the current climate in terms of hazard and yield losses. Their
probability of occurrence was estimated by our model to be 13 years. Our results show
that the frequency of these extreme events will increase in the future to a return period of
seven years.

These results are consistent with the ClimSec project [39]; with the study of IPCC [7,44],
which focuses on extreme events; and with other European studies using EUROCORDEX
models [47–50]. Climatic projections indicate that droughts will have a severity never
before registered in terms of spatial extension and intensity. Other studies point out that the
frequency of extreme drought events will strongly increase in the future, leading to a crop
yield decrease, including grasslands under the RCP 8.5 scenario in all French territory [26].
In addition, studies focusing on specific countries and analyzing the evolution of droughts
using climatic indices show an increase in severe drought in Greece [51], and a decrease in
wheat yield due to drought severity [52] and an increase in drought frequency and severity
in Spain [53], as well as in others areas like in China [54,55] and the United States [56].

Many studies show that the Mediterranean region appears to be very exposed to
droughts in the future [57,58]). Indeed, the different models used at the regional scale
(RCM models) to measure the impact of climate change on drought events agree that
the droughts will be more intense in southern Europe, especially in the Mediterranean
region [7,57,59]. Extreme heat wave studies show that the Mediterranean region will
therefore probably record a cumulative water deficit anomaly, but this is, however, more
widely throughout France, where the evolution between the climate in 2000 and in 2050
will be the most marked [60–63].

These extreme events are the most worrying for the sustainability of agricultural
production systems because they generate very significant losses at the country level,
affecting food security. For example, the extreme drought in 2011 was responsible for losses
of more than USD 1 billion for animal production in United States [64]. In the European
Union, losses due to the 2003 drought are estimated at EUR 13 billion, including EUR
4 billion for France [65]. Nowadays it is well documented that in many rural areas, small
farms do not have the financial capacity to cope with systemic climate shocks [66]. In the
future, climate change will increase extreme drought frequency [8,67], which raises the
question of the resilience of farm income. The improvement of risk knowledge supports
the assessment of the risk management systems currently in place and their sustainability
in the context of climate change.

4.2. Limits of This Study

The first limit to this work is the use of a single climate model. It was important for the
authors to question the reliability of this climate model. The specificity of our approach was
to simulate 400 years of steady-state climate under the conditions of the years 2000 and 2050.
Was the variability of other CORDEX-Drias models contained in these 2 × 400 years event
sets? CORDEX-Drias simulations between 1985 and 2005 (current climate) and 2040–2060
(climate in 2050) for six different models were compared with ARPEGE-Climat. It appears
that the current climate, future climate, and evolution ratio of the six models at the French
scale were included in ARPEGE-Climat 400-year outputs, as shown in Figures A1 and A2
in Appendix A. After this validation was complete, it was obvious that obtaining extreme
event values was tougher when mixing a short-scale event set from six different models
than with the use of ARPEGE-Climat model. This study highlights the relevance of using
large-scale event sets to represent the variability of climate, especially for extreme values.

Another limitation is the computation of crop yield losses using the Olympic average.
This method allowed us to integrate a certain variability of yields over time. However,
the crop yield loss computed was annual and was a sum of different factors, and this
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explains, in part, the errors in the model. Moreover, crop yields are not stable over time
and many authors have shown that the cereal yield in France increased until 1996 and then
stagnated or decreased [68,69]. However, the results contrast depending on geographical
locations. Many studies have been done to eliminate bias introduced by non-climatic
factors in the computation of yield losses [70,71], and it would be interesting to apply this
kind of methodology. However, other factors may arise the same year, such as several
climatic events. This was the case in 2003. A significant frost occurred in the central region
of France, which contains 20% of the cultivated area for soft winter wheat [72]. The effects
of frost accumulated with those of drought, which partly explains the significant crop losses
and our difficulty in simulating it using a drought index.

Finally, this study was conducted with other elements being equal by definition. It did
not take into account agricultural adaptation to climate change. The cultivated area for each
crop modeled was the same in 2050. Our methodology was to project yield losses based
on the relation between index values and historical yield losses. Therefore, cultivation of
resistant varieties to extreme drought were not included in these results.

5. Conclusions

This paper analyzed the intensity and frequency of extreme agricultural droughts in
2050. For this purpose, the analysis focused on three crops: soft winter wheat, winter barley,
and grassland. A new meteorological index was developed, which represents a cumulative
water anomaly and is correlated to the yield losses. The model created simulated the crop
yield losses at the departmental scale from the index values. Then, the index was projected
in 2050 using the ARPEGE-Climat model from Meteo-France. The results compared the
intensity and frequency of extreme droughts between the climate in 2000 and the climate in
2050 and show that the yield losses due to 10-year drought increased by 35% for grassland
and by more than 70% for cereals.

Within the frameworks of both (1) the new CAP program (2023–2027) and (2) the
French risk management scheme reform, these numbers are useful to alert and inform
political stakeholders to the consequences of climate change, at the national and regional
scale, on grassland and cereals. Our results show that to calibrate a risk management
scheme and to be able to estimate the national farm exposure in the mid-term, the evolution
of climatic extremes has to be taken into account. Insurers, reinsurers, public funds, and
farmers (individually and globally) are exposed at different levels to the increase in climatic
events in the next 30 years.

Insurance and reinsurance solvability is linked to the capacity to face extreme losses
and, by definition, to the capacity to model the frequency/intensity curve. Nevertheless,
as shown in this paper, this frequency/intensity curve cannot be considered stationary
over the next 30 years. Under this condition, pricing treaties to allow loss balance in the
mid-term have to integrate a mix between current and future losses.

The next step will be to integrate risk management scenarios in our model and to esti-
mate the losses for the different stakeholders. A public–private partnership is a promising
route to face systemic extreme events when insurance mutualization is to be reconsid-
ered. Today, in France, the crop insurance diffusion rate is 30% for cereals and less than
2% for grasslands [73]. In this respect, after the occurrence of an extreme event at the
national scale, the State must intervene to support farmers’ resiliency. A significant in-
crease in the diffusion rates is one way to achieve sustainable agriculture in the context of
increasing risks.

Agriculture has always been able to adapt to the changing climate. However, consider-
ing pessimistic scenarios like RCP 8.5 and the fast increase in extreme droughts, risk manage-
ment policies must support national agricultural production during the adaptation period.
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Appendix A

Using a single climatic model can generate bias in the results. This section presents
the multi-model study. To analyze it with an objective approach, the data from five climatic
models were downloaded (IPSL-CM5A, CNRM-CERFACS-ALADIN, NCC, MPI, MOHC-
HadGEM2) using:

• The years 1985–2005 for the current climate;
• The years 2040–2060 for the future climate according to RCP 8.5.

The parameters we analyzed were the annual average DOWKI values for the French
territory and the evolution of the annual average between 2000 and 2050 for each model.

To compare the DRIAS models with ARPEGE on the same basis, we randomly chose
a set of 20 years in the current climate and 20 years in the future climate 100 times in the
ARPEGE event set.

The distribution of the 100 values for ARPEGE for the annual average values and the
evolution of the annual average values were compared. As shown in Figures A1 and A2
below, we can see that the 400 years of ARPEGE simulations contained the annual average
values of the five models and their evolution.
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Figure A2. Distribution of the evolution between the climate in 2000 and the climate in 2050 of the
annual average values of DOWKI from ARPEGE-Climat in black. The limits of the boxplot represent
percentiles 10–90 and the error bars represent percentiles 5–95. The average of the 100 values is also
represented by a bar in the boxplot. The evolution of the average annual DOWKI values between the
climate in 2000 and the climate in 2050 computed in 5 other climate models are represented in color.

We can thus consider that ARPEGE, with a long-range simulation of 400 years, takes
into account more uncertainties than the five DRIAS models.
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