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Abstract: Weeds are found on every cropland across the world. Weeds compete for light, water,
and nutrients with attractive plants, introduce illnesses or viruses, and attract harmful insects and
pests, resulting in yield loss. New weed detection technologies have been developed in recent years
to increase weed detection speed and accuracy, resolving the contradiction between the goals of
enhancing soil health and achieving sufficient weed control for profitable farming. In recent years, a
variety of platforms, such as satellites, airplanes, unmanned aerial vehicles (UAVs), and close-range
platforms, have become more commonly available for gathering hyperspectral images with varying
spatial, temporal, and spectral resolutions. Plants must be divided into crops and weeds based on
their species for successful weed detection. Therefore, hyperspectral image categorization also has
become popular since the development of hyperspectral image technology. Unmanned aerial vehicle
(UAV) hyperspectral imaging techniques have recently emerged as a valuable tool in agricultural
remote sensing, with tremendous promise for weed detection and species separation. Hence, this
paper will review the weeds problem in rice fields in Malaysia and focus on the application of
hyperspectral remote sensing imagery (HRSI) for weed detection with algorithms and modelling
employed for weeds discrimination analysis.

Keywords: rice plant; weed; hyperspectral imagery; remote sensing

1. Introduction

The agricultural sector provides significant economic growth by endowing food
sources, producing industrial raw materials as well as providing job opportunities for a
substantial number of individuals [1,2]. In Malaysia, the agricultural industry has endured
as one of the predominant sectors for socio-economic activity, contributing about 8.7% of
the annual gross domestic product (GDP) and 11.4% of the total employment [3]. The
major agricultural activities in Malaysia are dominated by rubber (Hevea brasiliensis (Willd.
Ex A. Juss) Mull. ARg), oil palm (Elaeis guineensis) and rice plant (Oryza sativa L.) [4].
The agricultural sector focuses on sustainable food production and proffering consistent,
high-quality and safe food products. In line with an increasing population, global food
production will need to significantly multiply in the next few years along with limited area
expansion [5]. However, there are several issues that have arisen regarding low crop yield
production such as uncertain weather conditions, insufficient labour power, unmaintained
agricultural instruments, a reduction in soil and seed quality, constraints on the use of new
technologies, etc. [4,6].
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In the agricultural ecosystem, weeds serve as a competitor with the actual crop for
obtaining light source, nutrients, moisture intensity and gaseous exchange which result in
a reduction in crop yield and product quality [3,7]. For crop production, the potential of
weed-induced deprivation refers to the type of weed, density, emergence time, and duration
intrusion including the simultaneous emergence of weeds along with crop-augmented
competition towards restricted growth resources that can trigger the risk of critical yield
loss [2,8]. This paper will review the weeds problem in rice fields in Malaysia and focus on
the application of hyperspectral remote sensing imagery (HRSI) for weed detection analysis.
As a result, researchers, particularly in developing nations, can apply their understanding
of decreasing weed presence and enhancing yield output. The focus of this work is on
weed detection in rice fields utilising a hyperspectral remote sensing platform. However,
hyperspectral remote sensing weed detection in other crops is also included in this review.

2. Methodology

This paper is a conventional review paper. Sources of articles and related research
papers were browsed and identified from several databases such as Google Scholar, Google
Book, Semantic Scholar, UPM EZAccess, MDPI, and ResearchGate. The primary keyword
‘hyperspectral remote sensing’ and its synonym paired with the secondary keyword ‘weed’
and the third keyword ‘rice plant’ was used as the source of content exploration. Each
database search made use of these keyword sets. A hand search was also performed to
ensure that no related articles were overlooked. The search was carried out in the fourth
quarter of 2021.

All search results were filtered using the following criteria: (1) the study must use
hyperspectral remote sensing imagery and platform as the primary data input, (2) the study
must dispute the application of hyperspectral remote sensing techniques in weed detection
analysis, (3) the document must have reported on the research undertaken, (4) the included
papers must have been published in the first quarter of 2021, and (5) the articles must be
written in English.

The articles were then reviewed by title and abstract to exclude those that did not
satisfy the requirements. Finally, the complete text of the remaining articles was scrutinised
to determine whether or not they fit the requirements. Finally, data from a number of articles
were taken and transferred into a spreadsheet. Citation information, study objectives,
hyperspectral remote sensing sensor, crop and weed types, methodologies and techniques
employed, accuracy evaluation, study implications, year of publication, and reference data
were all included in the details.

This paper is organized into seven sections. The first section describes the weeds
problem in agricultural crops. The approach for searching the scientific database for
relevant publications is explained in Section 2. Section 3 highlights the significance of
weeds presence in Malaysia’s rice fields. Section 4 elaborates on the hyperspectral remote
sensing system while the literature on several methodologies for handling remote sensing
datasets is presented in Section 5. Section 6 explains the weed detection analysis by using
hyperspectral remote sensing with the classification by using spectral reflectance and
utilization of the modelling and algorithm. Future directions of hyperspectral remote
sensing approaches and conclusions are presented in Section 7.

3. Weeds in Malaysia’s Rice Field

According to El Pebrian and Ismail [9], rice is one of Malaysia’s most widely grown
agricultural crops. According to the Department of Agriculture (DoA) Peninsular Malaysia,
this crop was grown on 679,239 acres in 2014, making it the third-largest crop in the country
after oil palm and rubber. Malaysia produced 2,848,559 metric tonnes of paddy with
such a large planted area. Yusof et al. [10] stated that Malaysian farmers produced 70%
of the country’s rice production while the rice industry’s role is not only to contribute
to Malaysia’s economy but also to ensure the country’s food security. The plantation of
rice occurs twice a year, for example: (i) Main season (October–March) and off season
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(April–September) with two types of methods implemented in rice cultivation known as
direct seeding and transplanting. Dilipkumar et al. [4] stated that 90% of the total rice crop
in Malaysia was planted using the direct-seeded method and 10% was transplanted.

Most farmers chose the direct seeding method due to labour insufficiency and expen-
sive cost in rice transplanting [11]. Direct-seeded rice systems implement three different
principal methods, for example, water seeding, wet seeding and dry seeding [4,12]. How-
ever, the substitution of this planting technique presents crucial weeds expansion in rice
crops. According to Hossain et al. [13], many studies have reported that the dominance
of particular weed species in rice cropping systems is significantly influenced by the crop
establishment method. According to Nagarde et al. [14], weeds are a severe danger to
rice, with yearly weed yield losses ranging from 15% to 21% worldwide. Due to massive
weed infestation, direct-seeded rice yields are predicted to be reduced by 60% and above.
Yield reductions of up to 48% in transplanted crops, 53% in direct-seeded crops (flooded
conditions) and 74% in direct-seeded crops (dry soils) have been documented. Different
types of grasses, broadleaf weed and sedges make up the weed flora in direct-seeded
rice (Table 1).

Table 1. Weeds species in Asia’s rice field.

Grassy Weeds Sedges Broadleaf Weeds

Digitaria setigera Cyperus iria Commelina benghalensis
Digitaria sanguinalis Cyperus difformis Caesulia axillaris

Digitaria ciliaris Cyperus rotundus Eclipta prostrata
Echinochloa colonum Fimbristylis miliacea Ipomoea aquatica
Echinoclhoa crus-galli Ludwigia octovalvis

Eleusine indica Ludwigia adscendens
Ischaemum rugosum Monochoria vaginalis
Leptochloa chinensis Sphenoclea zeylanica

Oryza sativa
Paspalum

Source: Nagarde et al. [14]

Direct-seeded rice systems bestow an aerobic environment for weed growth since they
are not flooded during the beginning growth stage of the rice plants and it is convenient
towards weed expansion [11,15]. The aerobic soil condition in the direct-seeded rice system
conserves water, while the weed problem in direct-seeded rice is exacerbated by the lack
of stagnant water and the lack of a ‘head start’ in rice seedlings over sprouting weed
seedlings [16]. Toriyama [17] explained that the extensive employment of the direct seeding
method with the frequent use of herbicide and a shortage of irrigation supplies accountable
on the transference of weed species populations in the rice field ecosystem, for example, the
grasses species: Echinochloa crus-galli, Echinochloa spp. (E. oryzicola, E. colona, E. staginina,
and E. picta), Leptochloa Chinensis, and Ischaemum rugosum, which were not dominant
in Malaysian rice fields, has previously become widespread afterwards (see Table 2).
Furthermore, Chauhan et al. [12] found that the density of grassy weeds in zero-tilled
direct-seeded rice was higher than in puddled transplanted rice. Sedges and broadleaves,
on the other hand, were less abundant. Broadleaves such as Sagittaria guayanensis Kunth,
Monochoria vaginalis (Burm. f.) C. Presl ex Kunth, Limnocharis flava (L.) Buchenau, Ludwigia
octovalvis (Jacq.) P.H. Raven, and Alternanthera sessilis (L.) R. Br. Ex DC. and Ammannia
baccifera L. also had expanded abundance in the puddled transplanted field.
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Table 2. Weed shift from transplanting to the direct-seeding method.

Irrigated Transplanting Extensive Direct Seeding Intensive Direct Seeding

Grasses

Isachne globose
Leersia hexandra

Echinochloa crus-galli complex
Lepthochola chinensis
Ischaemum rugosum

Oryza sativa (weedy rice)

E. crus-galli
L. chinensis
I. Rugosum

O. sativa (weedy rice)

Broadleaf weeds

Limnocharis flava
Monochoria vaginalis

M. minuta
Sphenoclea zeylanica

L. flava
M. vaginalis

L. hyssopifolia
M. minuta

L. flava a

S. guyanensis b

Sphenoclea zeylanica b

M. crenata b

Limnophila erecta a

Sedges

Scirpus grossus Cyperus iria
Fimbristylis miliacea

C. iria
F. milicea b

C. difformis
a Biotypes with herbicide resistance against 2,4-D and ALS-inhibitor herbicides. b Species/biotypes with herbicide
resistance against 2,4-D. Source: [17].

Weeds are one of the most significant causes of reducing rice productivity, resulting in
not only large financial expenditures but also crop quality difficulties. Crops can also be
affected by weeds present at any growth stage [18]. In Malaysia, weed-related production
losses range from 5% to 85%, depending on the planting method, season, region, major
weed flora, weed density, management practices and infestation length [4]. Issues regarding
weeds in crops are complex; meanwhile, to reduce their expansion and impacts on the crop,
the management strategy chosen must be synchronized in all aspects to make sure that
systematic guidance will be assembled to manage the existing weeds as well as to prevent
the spreading of new weeds [19]. A particular weed management proposition, for example,
mechanical, chemical, manual and biological control strategies were initiated for weeds
control in a crop field since these strategies came with certain constraints such as proper
climatic circumstances, location of farmers, labour availability and the capability to endure
with management expenses [20,21]. Early weed treatment not only reduces the occurrence
of pests and diseases but also reduces agricultural yield loss by up to 34%. Chemical
and non-chemical weed management strategies have been widely used in rice fields in
this scenario. Manual weeding is too time consuming, expensive, and inconvenient as a
non-chemical technique. Mechanical weed management is a non-chemical approach [18].

Partel et al. [22] created and constructed a smart sprayer that could distinguish be-
tween weeds and non-weed objects using machine vision and artificial intelligence. This
targeted approach was combined with a revolutionary precision spraying system that
included a state-of-the-art weed detecting technology and a weed mapping system for
precise spraying. When compared to traditional broadcast spraying techniques, which
often cover the entire field, the results showed that using this system lowered the number
of agrochemicals necessary. Huang et al. [23] and Yao and Huang [24] mentioned that
agricultural remote sensing has been established and utilised for monitoring crop field
conditions such as growth status, soil variability, crops stress from weeds, pests, water and
nutrition insufficiency in providing data and information towards the efficient operation.
Unmanned aerial vehicle (UAV) technology provides a desirable precision agriculture data
gathering platform that is highly flexible and simple to use while collecting high spatial
resolution data in a timely way. Due to their geographical and temporal resolution capabil-
ities and cost-effectiveness, UAVs are a better platform for crop monitoring activity [25].
Currently, in conjunction with the evolving transducer technology and sensor, remote
sensing approaches were upgraded for weed detection and control particularly with the
emergence of hyperspectral sensing and imaging [23].
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4. Hyperspectral Remote Sensing: A Brief Overview

According to Weiss et al. [26], agriculture monitoring from remote sensing is a vast
subject that has been widely addressed from multiple perspectives, sometimes based on
specific applications (e.g., precision farming, yield prediction, irrigation, weed detection),
remote sensing platforms (e.g., satellites, unmanned aerial vehicles—UAVs, unmanned
ground vehicles—UGVs), or sensors (e.g., active or passive sensing, wavelength domain)
or specific locations and climatic contexts (e.g., country or continent, wetlands or drylands).
Campbell and Wynne [27] defined remote sensing as the application of acquiring informa-
tion regarding the Earth’s land and water surface by utilising images obtained from an
overhead perspective, implementing electromagnetic radiation in one or more regions of
the electromagnetic spectrum, reflected or emitted from the Earth’s surface. Hyperspectral
remote sensing involves extracting information from the objects or scenes that lie on the
Earth’s surface due to radiance obtained by airborne or spaceborne sensors [28,29].

Generally, hyperspectral imaging is an incorporation of the modern imaging system
and traditional spectroscopy technology [30,31]. According to Govender et al. [32], the
evolution of airborne and satellite hyperspectral sensor technologies has overcome the
restraint of multispectral sensors since hyperspectral sensors assemble several narrow
spectral bands from the visible, near-infrared (NIR), mid-infrared, and short-wave infrared
portions of the electromagnetic spectrum. The hyperspectral sensor collects about 200 or
more spectral bands, each only 10 nm wide [27] which allows the construction of continuous
spectral reflectance signatures while the narrow bandwidths element of hyperspectral data
enable in-depth examination of Earth surface characteristics which would disappear within
the relatively coarse bandwidths acquired with multispectral data. Hyperspectral data are
usually assigned as hypercubes (see Figure 1) that contain two spatial dimensions and one
spectral dimension, regarding the characteristics of each hyperspectral image, comprising
many channels since there were bands—in contrast to grayscale or RGB images—that
included only one or three channels, respectively [33].

The hyperspectral data cube in Figure 1 explained that Figure 1a A push-broom sensor
on an airborne or spaceborne platform acquire spectral data for a one-dimensional row
of cross-track pixels named as scanline; Figure 1b Sequential scan lines including spectra
for each row of cross-track pixels are pilled to obtain a three-dimensional hyperspectral
data cube which in this illustration the spatial details of a scene are constituted by the x
and y dimensions of the cube, while the amplitude spectra of the pixels are projected to
the z dimension; Figure 1c the three-dimensional hyperspectral data cube can be analysed
as a stack of two-dimensional spatial images whereas each is equivalent to a particular
narrow waveband. Usually, hyperspectral data cubes contain hundreds of stacked im-
ages; Figure 1d the spectral samples can be marked for each pixel and discrimination
of the features in the spectra deliver the primary mechanism for detection and classifi-
cation in a scene [34,35]. Qian [31] stated that there were about three different methods
in obtaining the hyperspectral data regarding the type of imaging spectrometers such as
dispersive elements-based approach, spectral filters-based approach and snapshot hyper-
spectral imaging. In order to collect the hyperspectral images with different spatial and
temporal resolutions, the sensors used can, for example, be mounted on different platforms.
Unmanned-aerial vehicles (UAVs), airplanes, and close-range platforms [36]. Table 3 shows
the comparison of different types of hyperspectral imaging platforms. Kate et al. [37] men-
tioned that hyperspectral sensors were utilised for providing information such as airborne
visible/infrared imaging spectrometer (AVIRIS), Hyperion, Hymap (from HyVista Castle
Hill, Australia), and airborne imaging spectroradiometer for applications (AISA). Table 4
below shows different types of hyperspectral sensors used which are usually mounted on
the aircraft and satellite [38].
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Table 3. Comparison of hyperspectral imaging platforms [36].

Parameters Satellites Airplanes Helicopters Fixed-Wing
UAVs

Multi-Rotor
UAVs

Close-Range
Platforms

Operational Altitudes 400–700 km 1–20 km 100 m–2 km <150 m <150 m <10 m

Spatial coverage 42 km × 7.7 km ~100 km2 ~10 km2 ~5 km2 ~0.5 km2 ~0.005 km2

Spatial resolution 20–60 m 1–20 m 0.1–1 m 0.01–0.5 m 0.01–0.5 m 0.0001–0.01 m

Temporal resolution Days to weeks Depends on flight operations (hours to days)

Flexibility Low (fixed by
repeating cycles)

Medium (depend on availability of
aviation company) High

Operational
complexity

Low (provide final
data to users)

Medium (depend on users or
vendors)

High (operate by users with setting
up the hardware and software)

Applicable scales Regional–global Landscape-regional Canopy–landscape Leaf–canopy

Major limiting factors Weathers Unfavourable flight height/speed,
unstable illumination conditions

Short battery endurance,
flight regulations

Platform design
and operation

Image acquisition cost Low to medium High (typically need to hire an
aviation company to fly) Large (due to area coverage)
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Table 4. Type of hyperspectral sensors on aircraft and satellites [38].

Types of Sensors Producer Number of
Bands Spectral Image (µm)

Satellite mounted hyperspectral sensors

FTHSI on
MightySat II

Air Force Research
(OH, USA) 256 0.35–1.05

Hyperion on EO-
NASA Guddard

Space Flight Center
(Greenbelt, MA, USA)

242 0.40–250

Aircraft-mounted hyperspectral sensors

AVIRIS
(airborne visible
infrared imaging

spectrometer)

NASA Jet Propulsion
Lab. (Pasadena, CA,

USA)
224 0.40–2.50

HYDICE
(hyperspectral digital

imagery collection
experiment)

Naval Research Lab
(Washington, DC,

USA)
210 0.40–2.50

PROBE-1
Earth Search Sciences

Inc. (Kalispell, MT,
USA)

128 0.40–2.50

CASI
(compact airborne

spectrographic
imager)

ITRES Research
Limited (Calgary, AB,

Canada)
Over 22 0.40–1.00

HyMap Integrated
Spectronics 100 la 200 Visible to thermal

Infrared

EPS-H
(environmental

protection system)
GER Corporation

VIS/NIR (76),
SWIR1 (32),
SWIR2 (32),

TIR (12)

VIS/NIR (0.43–1.05)
SWIR1 (1.50–1.80)
SWIR2 (2.00–2.50)

TIR (8–12.50)

DAIS 7915
(digital airborne

imaging spectrometer)

GER Corporation
(geophysical and

environmental
research imaging

spectrometer)

VIS/NIR (32),
SWIR1 (8),
SWIR2 (32),

MIR (1),
TIR (12)

VIS/NIR (0.43–1.05)
SWIR1 (1.50–1.80)
SWIR2 (2.00–2.50)

MIR (3.00–5.00)
TIR (8.70–12.30)

DAIS 21115
(digital airborne

imaging spectrometer)
GER Corporation

VIS/NIR (76),
SWIR1 (64),
SWIR2 (64),

MIR (1),
TIR (6)

VIS/NIR (0.40–1.00)
SWIR1 (1.00–1.80)
SWIR2 (2.00–2.50)

MIR (3.00–5.00)
TIR (8.00–12.00)

AISA
(airborne imaging

spectrometer)
Spectral Imaging Over 288 0.43–1.00

5. Hyperspectral Remote Sensing Imagery (HRSI) Data Processing and Analysing
5.1. Data Preprocessing

According to Weng and Xiaofei [39], due to the high-dimensional nature of hyperspec-
tral data, as well as the resemblance between the spectra and mixed pixels, hyperspectral
image technology still confronts a number of issues, the most pressing of which are the
following: (1) Hyperspectral image data have high dimensionality. Because hyperspectral
images are created by combining hundreds of bands of spectral reflectance data gathered
by airborne or space-borne imaging spectrometers, the spectrum information dimension of
hyperspectral images can also be hundreds of dimensions; (2) missing labelled samples. In
practical applications, collecting hyperspectral image data is rather simple, but obtaining
image-like label information is quite challenging. As a result, the categorization of hyper-
spectral pictures is sometimes hampered by a shortage of labelled samples; (3) variability



Appl. Sci. 2022, 12, 2570 8 of 19

in spectral information across space. The spectral information of hyperspectral images
changes in the spatial dimension as a result of factors such as atmospheric conditions,
sensors, the composition and distribution of ground features, and the surrounding envi-
ronment, resulting in the ground feature corresponding to each pixel not being single; and
lastly (4) image quality which is the interference of noise and background elements during
the acquisition of hyperspectral pictures which has a significant impact on the quality of the
data collected. The categorization accuracy of hyperspectral images is directly influenced
by the image quality.

Hyperspectral images obtained by various platforms and sensors are usually pre-
sented in raw format which requires them to be pre-processed (for example, atmospheric,
radiometric, and spectral corrections) to rectify detailed information [36]. Assembling
hyperspectral data is more intricate than multispectral and RGB sensors because its radio-
metric and atmospheric calibration workflows are more involuted [40]. Therefore, several
steps were required for the hyperspectral imaging processing procedure in order to obtain
precise output [33]. The processing of hyperspectral imaging signifies the utilisation of
computer algorithms. It includes tasks such as extracting, storing and falsifying infor-
mation from visible near-infrared (VNIR) or near-infrared (NIR) hyperspectral images.
It also provides different information on processing and data mining assignments (for
example, analyse, classify, target detection, regression, and pattern identification) [41,42].
Hyperspectral imaging includes extensive data collection stored in pixels while each data
particularly correlates to their neighbours [43]. Hyperspectral imaging also comprises the
spectral-domain signal as each of the image pixels contains the spectral information; thus,
specific tools and approaches have been amplified for processing both spatial and spectral
information [42]. This magnitude of data has led to the integration of chemometric and visu-
alisation equipment to competently mine for significant and detailed information [11]. The
ordinary hyperspectral image preprocessing procedure is delineated in Figure 2 below [42].
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Figure 2. Hyperspectral image preprocessing workflow [42].

According to Burger and Geladi [44], numerous amounts of raw data produced from
hyperspectral imaging devices contain lots of errors that can be rectified by calibration.
Spatial calibration is one of the steps that correlates each image pixel to known units
or features, bestowing information about the spatial dimensions and also rectifying the
optical aberrations (smile and keystone effects) [42]. However, three conditions could
prevail which invalidate calibration models which are: (1) chemical or physical substi-
tution in samples, (2) change of equipment due to inherent uncertainty or ageing parts
and, (3) environment/weather condition, for example, temperature or humidity [14]. Lu
et al. [36] mentioned that hundreds of bands are common in hyperspectral photographs,
and many of them are highly connected. As a result, dimension reduction is an important
step to consider while pre-processing hyperspectral images. Dimensionality reduction is a
crucial pre-processing step in hyperspectral image classification that reduces HSI’s spectral
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redundancy, resulting in faster processing and higher classification accuracy. Methods
for reducing dimensionality convert high-dimensional data into a low-dimensional space
while keeping spectral information [45]. Hence, pre-processing is an important step in
increasing the quality of hyperspectral images and preparing them for subsequent analysis.

Basantia et al. [46] stated that hyperspectral imaging generates extensive data col-
lection from a single sample and with thousands of samples that require daily analysis.
According to Tamilarasi and Prabu [47], in contrast to other statistical techniques, hy-
perspectral image analysis uses physical and biological models to absorb light at certain
wavelengths. For example, air gases and aerosols could absorb light at specific wave-
lengths. Dispersion (adding an outside light source to the sensor region of perspective)
and absorption are examples of atmospheric diminution (radiance denial). As the outcome,
a hyperspectral sensor could not differentiate the radiance recorded with the imaging
generated at other times or locations. Hyperspectral image analysis techniques are derived
from spectroscopy, which relates to the distinct absorption or patterns of reflection of the
context at different wavelengths of a certain material’s molecular composition. This image
must be subjected to appropriate atmospheric correction techniques in order to compare
each pixel’s reflection signature to the spectrum of known material; in laboratories and in
“library” storage areas, known spectral information of materials include soils, minerals and
vegetation types.

5.2. Hyperspectral Image Classification

Hyperspectral imaging (HSI) is classified as supervised, unsupervised, and semi-
supervised based on the nature of available training samples. The supervised technique
uses ground truth information (labelled data) for classification whereas the unsupervised
technique does not require any prior information [48]. According to Wenjing and Xi-
aofei [39], support vector machines, artificial neural networks, decision trees and maximum
likelihood classification methods are examples of commonly used supervised classification
methods. The basic process is to first determine the discriminant criteria based on the
known sample category and prior knowledge and then calculate the discriminant function.
Therefore, in supervised classification, Freitas et al. [49] stated that support vector machines
can produce results that are similar to neural networks but at a lower computing cost and
faster rate, making them ideal for hyperspectral data analysis.

Unsupervised classification refers to categorization based on hyperspectral data spec-
tral similarity, for example, clustering without prior knowledge. As stated by Wenjing
and Xiaofei [39], unsupervised classification can only assume beginning parameters, build
clusters through pre-classification processing, and then iterate until the relevant parameters
reach the permitted range since no prior knowledge is employed. Examples of unsuper-
vised classification are K-means classification and the iterative self-organizing method
(ISODATA). Lastly, is the semi-supervised classification which trains the classifier using
both labelled and unlabelled data. The semi-supervised learning paradigm has been suc-
cessfully utilized beyond hyperspectral imaging [50]. It compensates for the lack of both
unsupervised and supervised learning opportunities. On the feature space, this classifica-
tion approach uses the same type of labelled and unlabelled data. Because a large number
of unlabelled examples may better explain the overall properties of the data, the classifier
trained using these two samples has superior generalisation. Examples of semi-supervised
classification are Laplacian support vector machine (LapSVM) and self-training [39].

Therefore, hyperspectral imaging can be one of the potential techniques for automatic
discriminations between crops and weeds. These sensing technologies have been utilized
in smart agriculture and made substantial progress by generating large amounts of data
from the fields. Machine learning modelling integrating features has also accomplished
reasonable accuracy in order to identify whether a plant is a weed or a crop. Table 5 shows
the application of hyperspectral imaging for the discrimination of crops from weeds by
using machine learning.
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Table 5. Hyperspectral imaging for discrimination of crops from weeds using machine learning
(adopted from Su. [51]).

No. Crop Weed Model Optimal
Accuracy Reference

1. Rice Barnyard grass,
weedy rice RF, SVM 100% Zhang

et al. (2019)

2. Maize

Caltrop, curly dock,
barnyard grass,
ipomoea spp.,

polymeria spp.

SVM,
LDA >98.35% Wendel

et al. (2016)

3. Soybean, cotton Ryegrass LDA >90% Huang
et al. (2016)

4. Wheat Broadleaf weeds,
grass weeds PLSDA 85% Hermann

et al. (2013)

5. Broadbean, wheat Cruciferous weeds ANN 100% De Castro
et al. (2012)

6. Sugar beet

Wild buckwheat,
Field Horsetail,
Green foxtail,
Chickweed

LDA 97.3% Okamoto
et al. (2007)

7. Wheat Musk thistle SVM 91% Mirik et al.
(2013)

8. Maize C. arvenis RF >90% Gao et al.
(2018)

RF—random forest; SVM—support vector machines; LDA—linear discriminant analysis; ANN—artificial neural
network; PLSDA—partial least square discriminant analysis.

6. HRSI Application in Weed Detection Analysis
6.1. Weed Classification Using the Spectral Reflectance

Weed classification is important in precision farming because weeds are pests to crops
and compete for space, nutrients, water, and light, and obstruct the growth of crops in the
field [52]. Effective weed management is vital in smart agriculture as weeds can trigger
major environmental and economic problems in agriculture [53]. According to Su [51],
smart agriculture may utilise intelligent technology to precisely monitor weed dispersion in
the field and undertake weed control chores at specific locations, which not only improves
pesticide effectiveness but also increases the economic benefits of agricultural products. The
most significant aspect of an automatic weed removal system within crop rows is the use
of dependable sensing technology to accomplish accurate weed and crop discrimination
at specified points in the field. Therefore, the application of remote sensing employed in
agricultural research was established for the interaction between electromagnetic radiation
and plant materials on the Earth’s surface [54,55]. Hyperspectral imaging has been sug-
gested as the most suitable instrument for food quality assessment and safety investigation
that has been exerted on an array of spectral imaging modalities, for example, NIR, fluo-
rescence, and Raman hyperspectral imaging [46,56]. Hyperspectral images captured by
UAV platforms has lately emerged as a significant tool in agricultural remote sensing, with
considerable potential for weed detection and species differentiation [57].

To obtain detailed spectrum information, hyperspectral imaging sensors frequently
use more and narrower bands. Hyperspectral images have comprehensive spectrum infor-
mation in each pixel, which has been used for a number of agricultural applications [37].
According to Pott et al. [58], spectral bands can be utilized for differentiating plants from
other non-targets. Plant pigments, such as chlorophyll (chlorophyll a and b), carotenes
and xanthophylls, are primarily affected by visible light reflection in plant leaves and
canopies [35]. The red-edge band reflectance is affected by a mixture of chlorophyll, in-
tense light scattering and internal cellular plant structure. Internal leaf structure and
many leaf layers influence the reflectance qualities of the canopy in the near-infrared (NIR)
band [37,58].
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Paap [19] stated that plants’ spectral reflectance is identified based on the cellular
and biochemical leaf structure and leaf canopy. Figure 3 represents a typical spectrum
reflectance and transmitted wavelength of green leaf. The contrast of the reflectance and
transmittance spectra depend upon absorption which is in the visible spectrum range
400–700 nm, the spectra are controlled by absorption of various pigments and primarily
chlorophylls. In near infra-red (NIR), the reflectance spectra are high which is close to 50%
and flat while above 1300 nm, the reflectance declines because of the water absorption
present in the leaf.
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Further contemplation in the vegetation mapping procedure is the size of the objects
to be mapped. Higher spatial resolution imagery is frequently used for mapping narrow
vegetation objects which are acquired from airborne sensors [60]. Weeds compete with
crops and are difficult to distinguish because of their similar colour, shape, and size [61].
However, a previous study on dispersing reflectance spectra of crop and weed leaves
found the potential of weed detection with reflectance measurements. Zhang et al. [62]
mentioned that due to the considerable absorption by chlorophylls, a plant leaf typically
has a low reflectance in the visible spectral range and a comparatively high reflectance in
the near-infrared spectral area due to internal leaf scattering and no absorption. Therefore,
according to Thenkabail et al. [63], plant leaf area index and biomass are more sensitive to
the red band at roughly 680 nm, while plant moisture status is more sensitive to the NIR
near 950 nm. The correlation among the plant pathology has been employed by the remote
sensing technique in contemplation to discover the discrete plant characteristics from their
spectra reflectance.

The application of hyperspectral remote sensing is comprehensively used for dif-
ferent weed detection analysis studies, for example, weed discrimination in maize [64],
discrimination of grassweeds in winter cereal crops [65], in early detection of spotted
knapweed (Centraurea maculosa) and babysbreath (Gypsophila paniculate) with hyperspectral
sensor [66], herbicide-resistant weeds classification [67], identification of (Ranunculus acris
[giant buttercup] and Cirsium arvense [Californian thistle]) by Li et al. [53] and spectral
features extraction from hyperspectral images to differentiate weedy rice and barnyard
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grass [68]. Singh et al. [57] stated that hyperspectral imaging application has also been used
to identify between crop types, for instance, the utilization of satellite-based hyperspectral
sensors to distinguish mustard, potato, sugarcane, sorghum, and wheat in the range of
700–750 nm. The efficacy of hyperspectral sensors for plant species characterization has
been documented in a number of different studies, which is included in Table 6 below.

Table 6. Published reports/study on crop and weed species classification using hyperspectral
imagery [57].

Crop/Weed Mixture Reflectance Wavelength (nm)

Wheat system
Wheat (Triticum aestivum) 0.42–0.45 720–850

Broadleaved weeds 0.6–0.8 720–850
Grass weeds 0.55–0.6 720–850

Wheat stubbles 0.2–0.3 1425–2250
Wheat stubbles heavily grazed 0.3–0.4 1425–2250

Cruciferous weeds 0.65–0.7 750–900
Wheat 0.4–0.5 720–900

Soybean system
Soybean (Glycine max) 0.85–0.90 750–900

Prickly sida (Sida spinosa) 0.78–0.82 750–900
Pitted morning glory (Ipomoea lacunosa) 0.6–0.65 750–900

Sicklepod (Cassia obtusifolia) 0.52–0.55 750–900

Cotton system
Cotton (Gossypium hirsutum) 0.48–0.52 400–600

Cogongrass (Imperata cylindrica) 0.5–0.6 400–750
Johnsongrass (Sorghum halepense) 0.45–0.52 400–750

Sicklepod (C. obtusifolia) 0.21–0.3 400–800

Sorghum system
Sorghum (Sorghum bicolor) 0.55–0.6 720–1000

Common lambsquarters (Chenopodium album) 0.39–0.41 720–1000
Pigweed (Amaranthus spp.) 0.48–0.52 720–1000

Barnyardgrass (Echinochloa spp.) 0.35 72–1000
Mallow (Malva spp.) 0.42–0.44 720–1000

Purple nutsedge (Cyperus rotundus) 0.28–0.30 720–1000

6.2. Algorithms and Modelling for Weed Detection Analysis

For various agricultural applications, several remote sensing approaches, such as hy-
perspectral data from airborne, satellite platforms using multispectral and optical imagery
have been proposed [69,70]. A Study conducted by Felegari et al. [71] looked into the draw-
backs and benefits of using a combination of radar data and optical images to determine the
types of crops in the Tarom region (Iran) in which the Sentinel 1 and Sentinel 2 images were
utilised to generate a map for the selected research area. Hyperspectral sensing, which mea-
sures reflectance from visible to shortwave infrared wavelengths, has allowed vegetation to
be classified and mapped at a variety of taxonomic scales, often down to the species level.
To reduce the dimensionality of the data to a level suitable for the creation of a classification
model, hyperspectral measurements recorded by narrowband spectroradiometers or imag-
ing sensors have typically required some type of spectral feature selection [72]. Therefore,
the remote sensing method can detect the existence of non-crop plants between rows, such
as the recognition of weeds within rows, whereas segregating weeds from crops and iden-
tifying weed species emerging from proximal sensing research has utilized both spectral
reflectance and leaf shape analysis for identification [73]. According to Lan et al. [74], to
examine the datasets generated by these methodologies, proper and effective sophisticated
algorithms as well as high-power computation are required. Genetic programming was
utilized by Nguyen et al. [75] to distinguish between rice and other leaf groups. They also
employed a scanning window of 20 × 20 pixels on a test image to evaluate the classifier,
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attaining a 90% accuracy by applying the classifier to each pixel of the window based on a
colour threshold.

Therefore, several automatic classification techniques have been employed to classify
remote sensing data and plant monitoring procedures, for example, the machine learning
method [74]. According to Dadashzadeh et al. [18], machine vision based on image pro-
cessing has been used to collect data in two different ways: Two-dimensional (2D) vision
and three-dimensional (3D) vision. When using 2D cameras, machine vision systems based
on two-dimensional (2D) image processing have some drawbacks. First, differences in
external illumination have an impact on the quality of images captured by 2D cameras;
thus, the camera’s field of view must be covered. Second, the overlap of different plant
components can make distinguishing weeds from crops difficult.

According to Perez-Ortiz et al. [76], most standard classifiers in machine learning are
based on learning a discriminant function from labelled data (i.e., supervised learning).
However, obtaining tagged data, as opposed to unlabelled data, can be time consuming and
costly. Liakos et al. [77] stated that machine learning (ML) has risen to prominence with big
data technology and high-performance computers to open up new avenues for unravelling,
quantifying, and understanding data-intensive processes in agricultural operations. ML
is characterised as a scientific subject that allows machines to learn without being strictly
programmed, among other things. Examples of ML modelling include artificial neural
networks (ANNs), Bayesian models (BM), deep learning (DL), dimensionality reduction
(DR), decision trees (DT), ensemble learning (EL), instance-based models (IMB) and support
vector machines (SVMs).

Dadashzadeh et al. [18] investigated site-specific weed management in the rice field
using two metaheuristic algorithms: The bee algorithm (BA) and particle swarm optimisa-
tion (PSO), in order to improve the neural network’s ability to identify the most effective
characteristics and classify different types of weeds. Because of their abundance in the
chosen region, this study focused on a rice cultivar (Tarom Mahali) and two common types
of weeds (narrow-leaf weeds (Echinochloa crus-Galli, Paspalum distichum, and Cyperus dif-
formis) and wide-leaf weeds (Alisma plantago-aquatica and Eclipta prostrata) while a stereo
camera was used to collect the necessary data in the form of stereo videos, with different
channels of each frame extracted. The proposed stereo vision technique, which averaged
the related points on various channels and the proposed hybrid ANN-BA classifier for
better classification accuracy, proved to have promising capabilities. Zheng et al. [78]
created and evaluated a new classification algorithm based on colour indices and support
vector data description (SVDD). In the first, second and third years of a three-year case
study, overall accuracies of 90.19%, 92.36%, and 93.8%, respectively, were achieved. Kamath
et al. [79] looked at how to categorize paddy crops and weeds from digital images utilizing
several classifier systems developed with support vector machines (SVM) and random
forest classifiers (RFs) in which the dataset included paddy plants and weeds from the
seedling stage (1-leaf seedling) to the flowering stage. The results with an accuracy of
91.36% showed that multiple classifier systems were shown to outperform single classifier
systems and the extracted features are good for paddy crops and weeds classification.

Li et al. [53] studied weed identification by using hyperspectral data images trained
on three classification models, namely partial least squares discriminant analysis, support
vector machine and multilayer perceptron (MLP) with an overall accuracy range of about
70–100%. The analysis was run by using the whole plant averaged (Av) spectra and
superpixels (Sp) averaged spectra from four different weed samples which comprised
two types of grass (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass])
and two broadleaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense
[Californian thistle]). Results showed that using both Av and Sp spectra were able to
identify the four weeds’ species. To solve the challenge of forecasting the pre-planting risk
of Stagonospora nodorum blotch (SNB) in winter wheat, Mehra et al. [80] used machine
learning approaches such as artificial neural networks (ANNs), category and regression
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trees, and random forests (RFs). They created risk assessment models that could help with
disease control decisions before planting the wheat crop.

Research conducted by Chen et al. [81] combined the application of multi-feature
fusion and support vector machine (SVM) to detect corn seedlings and weeds for limiting
crop damage with an average recognition accuracy of about 97.50%. The dataset included
a small database of corn seedlings and weed and actual field images. The results of the
experiments revealed that the fusion feature of rotation invariant local binary pattern (LBP)
feature and grey level-gradient co-occurrence matrix based on an SVM classifier accurately
detected all types of weeds and corn seedlings. This provides information about weed
and crop positions to the spraying herbicide, allowing for exact spraying and fertilising.
Chou et al. [82] used a wavelet packet transform paired with a weighted Bayesian distance
based on crop texture and leaf data to identify the crop. The dataset needed for this
study included field crop images captured with a digital camera with a resolution of
640 × 480 pixels. To discriminate plants, they estimated energy coefficients in multiple
frequency bands produced after the change. The crop identification achieved an accuracy
of 94.63% by using the decision distance in different climates over three consecutive days
of photography.

Bakhshipour and Zareiforoush [83] used integrate decision tree (DT) and fuzzy logic
techniques to establish a fuzzy model for differentiating the peanut plant from broadleaf
weeds with the overall accuracies on training and testing datasets being, respectively, 92%
to 96%. On the input dataset, two feature selection approaches were utilised: Principal
component analysis (PCA) and correlation-based feature selection (CFS), and three decision
trees (DTs) were used to distinguish between distinct plants: J48, random tree (RT), and
reduced error pruning (REP). Another study by Bakhshipour et al. [84] is on texture features
recovered from wavelet sub-images to detect and describe four species of weeds in a sugar
beet field, while neural networks (NN) were run as a classifier. Images were taken from
sugar beet fields with a resolution of 96 × 1280 pixels when the plants had six to eight
leaves with significant occlusion and a height of about 80 mm to 160 mm. The research
found that even at a stage of beet growth greater than six leaves, the application of wavelets
proved to be effective for weed detection. Two-dimensional Gabor filters were employed
to extract the features in a study conducted by Tang et al. [85], and an artificial neural
network (ANN) was utilized to categorize broadleaf and grass weeds. The seeds of the
selected broadleaf weed species were planted and the image was captured four weeks
after seeding. The Gabor wavelet/ANN system was created to use texture features to
classify weed images into broadleaf and grass categories. Their findings revealed that joint
space–frequency texture properties might be used to classify weeds.

Furthermore, in agricultural research, deep learning combined with advancements in
computer technology, particularly graphical processing units (GPU) embedded processors,
has produced remarkable results for image classification and objection detection [86,87].
According to Alom et al. [88], deep learning (DL) algorithms have many advantages over
traditional machine learning approaches for image classification, object detection and local-
ization. To build a feature extractor from raw data, traditional machine learning techniques
necessitate extensive domain knowledge [89,90]. The DL approach, on the other hand,
employs a representation-learning method in which a machine can automatically discover
discriminative features from raw data for classification or object detection problems. DL
methods can effectively extract discriminative features of crops and weeds due to their
strong feature learning capabilities. Furthermore, as data sets have grown larger, the per-
formance of traditional machine learning approaches has become saturated. When large
datasets are used, DL techniques outperform traditional machine learning techniques [88].

Hosseini et al. [91] stated that convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are two commonly used architectures in DL. Although CNNs
are used for other types of data, the most common application of CNNs is to analyse and
classify images. The term convolution refers to the filtering process. CNN is based on
a stack of convolutional layers. Each layer receives input data, transforms or convolves
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it, and outputs it to the next layer. This convolutional operation eventually simplifies
the data so that it can be processed and understood more easily [89]. Mentioned by Bah
et al. [92], convolutional neural networks (CNNs) have advanced primarily as a result of
their successful use as a method in the ImageNet Large-Scale Vision Recognition Challenge
2012 (ILSCVR12) and the creation of the AlexNet network in 2012, which demonstrated that
a large, deep convolutional neural network can achieve record-breaking results on a highly
challenging dataset using purely supervised training. Therefore, a deep convolutional
neural network (DCNN) system for plant recognition based on plant leaf features and
patterns was also documented by Lee et al. [93] based on the leaf’s shape, texture, and
venation while they presented new hybrid models taking advantage of the correspondence
of different contextual information of leaf features.

7. Direction for Future Work and Conclusions

In most situations, removing weeds in agricultural areas requires the use of large
amounts of chemical pesticides, which are damaging to the environment regardless of
how effective they are at enhancing crop output. Precision spraying might be explored to
optimise herbicide application in crop fields, thanks to recent advances in image sensors.
In this paper, we have reviewed the situation of weeds in rice crops, the background of
hyperspectral imaging and techniques for processing hyperspectral data. This study is
interdisciplinary and experts from various disciplines, such as agronomy (weed science),
remote sensing, computing, and engineering are collaborating. Hyperspectral remote
sensing technology is an important component in precision farming and is being used by a
growing number of scientists and agricultural researchers. The capacity to properly and
reliably distinguish weeds from crops is a vital step in controlling or eradicating weed
infestations in agricultural crops. Due to the abundance of spectral information sensitive to
distinct plant biophysical and biochemical properties, hyperspectral imaging offers a lot of
potential for applications in agriculture, especially precision agriculture. Hyperspectral
remote sensing technology uses the difference in spectral reflectance qualities between
weeds and crops to identify weeds in crop stands and aids in the compilation of weed maps
in the field, allowing for the application of site-specific and need-based herbicides for weed
management.

Hyperspectral imaging data with high spatial resolution along with machine learning
algorithms in remote sensing showed good potential in agricultural studies. In the recent
decade, sensing technologies and machine learning approaches have grown at a breakneck
pace. These advancements are expected to continue to provide more cost-effective and com-
prehensive datasets, as well as more advanced algorithmic solutions, allowing for better
crop and environment status estimates and decision making. For more intricate hyperspec-
tral picture classification, existing theories and algorithms still have some limitations. As a
result, future research efforts will focus on developing more tailored hyperspectral image
classification systems. Therefore, in order to successfully use the information on weeds and
crop monitoring for economic benefit, a state or district level information system based on
existing information on diverse crops produced from this hyperspectral remote sensing
approach is required. Governments can use hyperspectral remote sensing data to make
critical decisions about which policies to pursue and how to address agricultural concerns.
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