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Abstract: High rates of inappropriate use of surgical antimicrobial prophylaxis were reported in many
countries. Auditing the prophylactic antimicrobial use in enormous medical records by manual review
is labor-intensive and time-consuming. The purpose of this study is to develop accurate and efficient
machine learning models for auditing appropriate surgical antimicrobial prophylaxis. The supervised
machine learning classifiers (Auto-WEKA, multilayer perceptron, decision tree, SimpleLogistic,
Bagging, and AdaBoost) were applied to an antimicrobial prophylaxis dataset, which contained
601 instances with 26 attributes. Multilayer perceptron, SimpleLogistic selected by Auto-WEKA,
and decision tree algorithms had outstanding discrimination with weighted average AUC > 0.97.
The Bagging and SMOTE algorithms could improve the predictive performance of decision tree
against imbalanced datasets. Although with better performance measures, multilayer perceptron
and Auto-WEKA took more execution time as compared with that of other algorithms. Multilayer
perceptron, SimpleLogistic, and decision tree algorithms have outstanding performance measures for
identifying the appropriateness of surgical prophylaxis. The efficient models developed by machine
learning can be used to assist the antimicrobial stewardship team in the audit of surgical antimicrobial
prophylaxis. In future research, we still have the challenges and opportunities of enriching our
datasets with more useful clinical information to improve the performance of the algorithms.

Keywords: antimicrobial prophylaxis; machine learning; Auto-WEKA; multilayer perceptron; decision
tree; bagging; SMOTE

1. Introduction

The incidence of surgical site infections (SSIs) is estimated to be ~2–5% in patients un-
dergoing surgery [1]. SSIs are SSI are associated with increased rates of morbidity and mor-
tality. The financial impact of SSIs is the highest among all healthcare-associated infections.
The annual cost of SSIs in the United States of America is estimated to be $3.5–10 billion [2].
About 40–60% of SSIs are preventable by the interventions with evidence-based mea-
sures [1,2]. The interventions include antimicrobial prophylaxis, preoperative bathing and
showering, glucose control, skin preparation, intraoperative normothermia, and wound
closure [1,3–5].

Appropriate antimicrobial prophylaxis is the most important and strongly recom-
mended measure to reduce the SSI rates [2,3,6]. To achieve these goals, appropriate prac-
tices of preoperative-administration timing, choice and dosing of antimicrobial agents, and
duration of antimicrobial prophylaxis are the most important approaches [7]. However,
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previous studies showed that nonadherence to the guidelines of antimicrobial prophylaxis
is a worldwide problem and ranges from 20% to 50% [5,8,9].

Antimicrobial stewardship is an emerging global action plan on antimicrobial resis-
tance. Antimicrobial stewardship implements a series of strategies and interventions to
improve appropriate use of antimicrobial agents in healthcare settings [10,11]. The in-
terventions include formulary restriction, audit and feedback, education for prescribers,
clinical guidelines, and clinical decision support systems provided by information tech-
nology. Audit is the most common intervention of all antimicrobial stewardship strategies.
However, the processing and analysis of enormous medical data for the manual audit is
time-consuming and labor-intensive. Therefore, it is helpful to develop efficient models by
machine learning to analyze the big medical data associated with antimicrobial prophylaxis.

Machine learning creates new and promising opportunities in processing enormous
volume of data to provide data classification, clustering, outlier or anomaly detection, and
real-time prediction [12]. Machine learning can help clinicians to diagnose infectious dis-
eases, evaluate severity of the diseases, and decide the choice of antimicrobial agents [13,14].
In a narrative review of 60 articles of machine learning for clinical decision support sys-
tems, 37 (62%) articles focused on bacterial infections, 10 (17%) on viral infections, and
13 (22%) on other kinds of infections. Among the 60 articles, four (7%) articles addressed
the prediction of antimicrobial resistance, and three (5%) addressed the selection of an-
timicrobial agents [13]. The popular supervised machine learning algorithms, multilayer
perceptron and decision tree, were applied to the antimicrobial susceptibility dataset to
predict the resistant profile of bacteria, thereby aiding the clinicians in selecting empiric
antimicrobial therapy [15,16]. However, they had the limitations of features selection and
imbalanced dataset. Application of machine learning to the audit of antimicrobial prophy-
laxis was never reported. There is strong potential for research to develop machine learning
algorithms with excellent performance in this field.

The purpose of this study is to develop accurate and efficient machine learning models
for auditing appropriate surgical antimicrobial prophylaxis. Auto-WEKA, multilayer
perceptron, and decision tree algorithms were applied to the dataset of surveillance of
healthcare-associated infections and antimicrobial use. Sampling and ensemble methods
were used to enhance the performance against the imbalanced dataset. We compared the
performance measures of these algorithms for the audit of antimicrobial prophylaxis.

2. Materials and Methods

This research was approved by Institutional Review Board at Taichung Veterans
General Hospital, with the ethical approval no. SE13130 and SE13130#2 on 17 May 2013
and on 19 May 2014, respectively, waiving the requirement for obtaining informed consent.

2.1. Data Preprocessing

A point prevalence survey of healthcare-associated infections and antimicrobial use
was conducted in 25 acute care hospitals in Taiwan. Data were collected according to the
protocol version 4.3 of point prevalence survey of healthcare-associated infections and
antimicrobial use in European acute care hospitals [17]. If the patient receiving at least
one antimicrobial drug at the time of survey, the antimicrobial use data were recorded.
For surgical patient, if any surgical prophylactic antimicrobial agent was given in the 24 h
before 8:00 a.m. on the day of the survey, the antimicrobial use data were collected.

One or more antimicrobial agents were used for surgical prophylaxis in 601 of the
7377 surveyed patients. The characteristics of dataset are listed in Table 1. The dataset of
601 instances contained 26 attributes, including age (numeric), gender (binary) hospital
type (nominal), patient specialty (nominal, 29 distinct values), diagnosis (nominal, 20
distinct values), central vascular catheter in place on survey date (binary), peripheral
vascular catheter in place on survey date (binary), urinary catheter in place on survey
date (binary), under endotracheal intubation on survey date (binary), under tracheostomy
intubation on survey date, ventilator used on survey date (binary), patient has active
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healthcare-associated infection (binary), blood stream infection present on survey date
(binary), urinary tract infection present on survey date (binary), pneumonia present on
survey date (binary), surgical site infection present on survey date (binary), antimicrobial
agents used (nominal, 15 distinct values), indication for antimicrobial use (nominal, three
distinct values), diagnosis sites for antimicrobial use (nominal, 16 distinct values), and
finally the class label attribute (nominal, five distinct values). There were three attributes
for antimicrobial agents, with their corresponding indications for antimicrobial use and
diagnosis sites for antimicrobial use. The class label attribute was the type of compliance
with the guidelines for antimicrobial prophylaxis.

Table 1. Characteristics of dataset.

Attribute Type Remarks

Hospital type Nominal
Primary: 71 instances.
Secondary: 258 instances.
Tertiary: 271 instances

Age Numeric Mean: 56.2 years

Gender Binary Female: 297 instances, male:
304 instances

Patient specialty Nominal 29 distinct values

Diagnosis Nominal 20 distinct values

Central vascular catheter in place Binary Yes: 75 instances
No: 526 instances

Peripheral vascular catheter in place Binary Yes: 477 instances
No: 124 instances

Urinary catheter in place Binary Yes: 213 instances
No: 388 instances

Under endotracheal intubation Binary Yes: 33 instances
No: 568 instances

Under tracheostomy intubation Binary Yes: 9 instances
No: 592 instances

Ventilator used Binary Yes: 34 instances
No: 567 instances

Patient has active
healthcare-associated infection Binary Yes: 6 instances

No: 595 instances

Blood stream infection Binary Yes: 0 instances
No: 601 instances

Urinary tract infection Binary Yes: 0 instances
No: 601 instances

Pneumonia Binary Yes: 2 instances
No: 599 instances

Surgical site infection Binary Yes: 3 instances
No: 598 instances

Antimicrobial agents used Nominal 15 distinct values

Indication of antimicrobial agents Nominal 3 distinct values

Diagnosis sites for antimicrobial use Nominal 16 distinct values

Class label attribute Nominal 5 distinct values

The values of class label attribute were determined by infectious disease specialists,
based on the common principles and procedure-specific guidelines [7,18]. For reading
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comprehension, the recommendations of guidelines for antimicrobial prophylaxis were
briefly stated in Table 2. For details, please refer to the articles that are more complex [7,18].

Table 2. Brief recommendations for surgical antimicrobial prophylaxis.

Wound Classification Choice of Prophylactic Antimicrobial
Agents

Duration of Prophylactic
Antimicrobial Agents

Class I
(Clean wound)

1. Recommended agents: First
generation cephalosporins

2. Alternative agents in patients with
β-lactam allergy: Clindamycin or
vancomycin

A single dose
or one day

Class II
(Clean-
contaminated wound)

1. Recommended agents:
First-generation cephalosporins ±
metronidazole or Second-generation
cephalosporins

2. Alternative agents in patients with
β-lactam allergy: Clindamycin +
aminoglycosides or Metronidazole +
aminoglycosides

A single dose
or one day

If the choice of prophylactic antimicrobial use was in concordance with the recom-
mendations in the practice guidelines, then the compliance with choice of prophylactic
antimicrobial agents was determined as “Yes”; otherwise, it was determined as “No”. The
duration of prophylactic antimicrobial agents had the following three observed values, i.e.,
single dose encoded as SP1 (surgical prophylaxis 1), one day encoded as SP2, and more
than one day encoded as SP3. If the duration of prophylactic antimicrobial agents was SP1
or SP2, the compliance with duration of prophylactic antimicrobial agents was determined
as “Yes”. If the duration was SP3, the compliance was determined as “No”. The values of
class label attribute, i.e., compliance with guidelines for antimicrobial prophylaxis, were
then classified into five types (i.e., A, B, C, D, and E), according to the compliance with both
choice and duration of prophylactic antimicrobial agents in Table 3.

Table 3. Description of five types of compliance with recommendations for antimicrobial prophylaxis.

Types of Compliance with
Recommendations for Antimicrobial

Prophylaxis Determined by Infectious
Disease Specialists

Compliance with Choice of
Prophylactic Antimicrobial Agents

Compliance with Duration of
Prophylactic Antimicrobial Agents

A Yes Yes
B Yes No
C No Yes
D No No

E Antimicrobial agents used for treatment of other infections rather than surgical
prophylaxis.

In this study, cefazolin was the most common first-generation cephalosporin used
for surgical prophylaxis. The second-generation cephalosporins included cefoxitin mostly,
but also cefuroxime. The aminoglycosides included gentamicin and amikacin. Amikacin
was used for treatment of infection rather than surgical prophylaxis. The fluoroquinolones
included ciprofloxacin and levofloxacin. The β-lactam/β-lactamase combinations included
amoxicillin/clavulanic acid, ampicillin/sulbactam, and piperacillin/tazobactam.

2.2. Sampling Methods

Imbalanced dataset contains instances that are distributed unequally among the differ-
ent classes, i.e., there are more instances in some classes than in other classes. Classifiers
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perform well with the majority class, but poorly with the minority class. Sampling approach
is one of the useful methods to manage imbalanced data. The sampling techniques include
two subgroups, i.e., undersampling and oversampling.

Undersampling method removes instances from the majority class to make the datasets
balanced. SpreadSubsample is a supervised filter that produces a random undersampling.
The relative distribution difference between the majority and the minority class can be
adjusted [19].

Oversampling is a sampling method that involves replicating the instances of minority
class to make the dataset balanced. SMOTE is a supervised filter that oversamples the
minority class to produce synthetic instances utilizing k-nearest neighbor [20]. The over-
sampling percentage and the number of neighbors can be adjusted when creating synthetic
instances.

Both SpreadSubsample and SMOTE algorithms were proposed to improve the predic-
tive capability of decision tree.

2.3. Machine Learning Techniques

Among the available machine learning systems, we used WEKA as the data mining
software to aid the audit of antimicrobial prophylaxis [19]. WEKA provides implementa-
tions of various machine learning algorithms that can be easily applied to a dataset. The
dataset is divided into 10 approximately equal partitions (also called 10 folds). In each turn,
nine-tenths were used for training and one-tenth for testing. The process was repeated
10 times. Finally, every instance would be used exactly once for testing. This is called
10-fold cross-validation. Cross-validation is widely used as a reliable approach to evaluate
the performance of machine learning techniques when data are all in one set [19].

The multilayer perceptron and decision tree algorithms were applied to evaluate
the appropriateness of antimicrobial prophylaxis in this study. Ensemble methods with
bagging and boosting algorithms were used to improve the performance of decision tree.
Auto-WEKA is a system automatically searching through the WEKA’s algorithms and their
respective hyperparameter settings, by a Bayesian optimization method to achieve optimal
performance [21]. SimpleLogistic was the optimal classifier selected by Auto-WEKA for
the whole dataset in this study. SimpleLogistic is a classifier that employs the LogitBoost
algorithm to build the logistic regression functions at the nodes of a tree and uses the
CART algorithm for pruning. The most relevant attributes in the dataset are selected by
performing a simple regression in each iteration. The optimal number of iterations is
determined by cross-validation [22]. We compared the performance metrics and execution
time of all these algorithms.

Multilayer perceptron is an artificial neural network composed of multiple layers
of perceptrons. The layers include one input layer, one or more hidden layers, and one
output layer. Multilayer perceptron is usually trained by minimizing the squared-error loss
function of network output to make a best estimate of the class probability. The weights
of the connections between neurons are modified by a backpropagation algorithm, which
is computed by a standard mathematical optimization algorithm, called gradient descent,
to minimize the squared-error loss function [19]. The gradient descent algorithm requires
derivatives of the squared-error loss function [19].

The squared-error loss function, E, is defined as:

E =
1
2
(y− f (x))2 (1)

where x is the weight of the input, f(x) is the neural network’s prediction function obtained
from the output unit, and y is the observed value of instance’s class label.

The derivative of f(x) with respective to x is as the following:

d f (x)
dx

= f (x)(1− f (x)) (2)
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The classification algorithm classifier J48 in WEKA provides the application of decision
tree C4.5 algorithm [19]. The decision tree C4.5 algorithm is widely used because of its fast
classification and high precision. Decision tree C4.5 uses gain ratio for feature selection and
construction of a decision tree. Decision tree C4.5 can handle both continuous and discrete
features [12,23].

The decision tree algorithm applies attribute selection measure to determine the
splitting criterion to partition the instances in D into individual branches and nodes. If
the instances in a partition are all of the same class, the node becomes a leaf and is labeled
with that class. The attribute with the least information entropy (or the least information
impurity) has the highest information gain [12].

The dataset, D, is a class-labeled training dataset. Let the class label attribute has k
distinct classes, Ci.

In f o(D) is the information entropy of D:

In f o(D) = −
k

∑
i=1

pi log2(pi) (3)

where pi is the nonzero probability that a subset in D belongs to the corresponding class Ci.
In f o A(D) is defined as the expected information entropy generated by splitting the

training dataset, D, into v partitions, corresponding to the v values of attribute A:

In f o A(D) =
v

∑
j=1

∣∣Dj
∣∣

|D| x In f o
(

Dj
)

(4)

Gain (A) is the information gain:

Gain (A) = In f o(D)− In f oA(D) (5)

The highest information gain in the partitions is chosen as the splitting attribute for
node, and partitioning this attribute can produce the best classification [12].

Imbalanced dataset is a common problem in machine learning algorithms. The ensem-
ble method (for example, Bagging and Adaboost) can be sued to enhance the performance
measure against imbalanced data [24]. An ensemble for classification is made up of a
combination of classifiers (models) to improve the prediction. If one classifier obtains more
votes than others, it is taken as the correct one. Predictions will become more reliable, if
they obtain more votes [19,24]. Both Bagging and boosting adopt this voting approach,
but they derive the models in different ways. In Bagging, the models have equal weight,
whereas in boosting, the base weak learners receive more weights, and the simple weak
learners are combined into a more complex strong ensemble [25]. In this study, Bagging
and AdaBoost approaches were implemented on the dataset to improve the classification
performance of decision tree.

2.4. Performance of Machine Learning Techniques
2.4.1. Confusion Matrix

To assess the performance of a classifier, we considered the following results reported
by WEKA: true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) [12]. TP and TN are correct identification by the classifier. An FP is an outcome
predicted incorrectly as being positive when it is actually negative. An FN is an outcome
predicted incorrectly as being negative when it is actually positive. The quality of a classifier
is judged by the following formulas [12,19].

True positive rate: the number of TP is divided by the total number of actual positives,
also called sensitivity:

True positive rate =
TP

TP + FN
(6)
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False positive rate: the number of FP is divided by the total number of actual negatives,
also equal to 1—specificity:

False positive rate =
FP

FP + TN
(7)

Specificity: the number of TN is divided by the total number of actual negatives, also
equal to 1—false positive rate:

Specificity =
TN

TN + FP
(8)

Precision: the number of true positive predictions divided by the total number of
positive predictions, also referred to as positive predictive value (PPV):

Precision =
TP

TP + FP
(9)

Accuracy: the probability that the model prediction is correct:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Area under the receiver operating characteristics curve (ROC curve): the ROC curve is
created by plotting the true positive rate (also called sensitivity) against the false positive
rate (also called 1-specificity) at various threshold settings. The area under the ROC curve
is also called area under curve (AUC), or ROC area. The AUC can be used to evaluate the
prediction performance of a classifier system. The value of AUC varies between 0 and 1.
If the AUC is 0, all the predictions will be wrong. If AUC = 1, the classifier can predict
perfectly. If 0.7 < AUC ≤ 0.8, it is defined as acceptable discrimination If 0.8 < AUC ≤ 0.9,
it is defined as excellent discrimination. If 0.9 < AUC ≤ 1.0, it is defined as outstanding
discrimination [26].

2.4.2. Weighted Average of Performance Metrics

The weighted average for multiclass model is calculated by micro-average method,
i.e., weighted arithmetic average of performance metrics for all classes, where the weight
of each class is the prevalence of the class in the whole dataset [27].

For example, an AUC is calculated for each class in the dataset. The weighted average
AUC is calculated by class-reference formulation, also called AUCCR [28]. AUCCR is defined
as the weighted average of the class-reference AUCs, where the weight is the prevalence of
the reference class.

AUCCR

n

∑
i=1

AUCCiPCi (11)

where AUCCi is the area under the class-reference ROC curve for class Ci. Ci is the
corresponding class in class label attribute. CR denotes the class reference. PCi is the
prevalence of each class.

2.4.3. Comparison of the Execution Time for Machine Learning Algorithms

We compared the execution time of machine learning algorithms and manual review
for the dataset, by using a stopwatch to measure execution time from the moment after
we had loaded the data files and started the filter and/or classifiers. The execution time
included time for manual operation of the software and computation of the algorithms.

3. Results

The distributions of values of class label attribute with regard to choice and dura-
tion of prophylactic antimicrobial agents for the whole dataset are listed in Table 4. In
Class A, cefazolin was the most common prophylactic antimicrobial agent and compli-
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ant with recommendations of guideline for the correct choice and duration. In Class B,
cefazolin, cefoxitin, clindamycin, and ciprofloxacin were correctly chosen for different
surgical procedures with risks of infections. However, the duration was longer than one
day and not compliant with recommended duration of antimicrobial prophylaxis. In Class
C, the combination of cefazolin and gentamicin was identified as the most common type of
non-compliance with choice of antimicrobial agent, because there were no special clinical in-
dications for prophylaxis of Gram-negative bacterial infections for their surgical procedures.
In Class D, the combination of cefazolin and gentamicin was identified as the most common
type of non-compliance with the correct choice and duration of antimicrobial agent. In
Class E, the prescriptions of ampicillin–sulbactam and third-generation cephalosporins
were classified as not compliant with the recommended choice of antimicrobial agents.
Their indications were identified as treatment of other infections rather than prophylaxis.

Table 4. Choice and duration of prophylactic antimicrobial agents for whole dataset.

Class No. of
Instances Choice of Antibiotics

Duration of Prophylactic
Antimicrobial Use a

(No. of Instances)

A Total 255
245 Cefazolin SP1 (178), SP2 (67)

5 Cefoxitin SP1
4 Cefoxitin SP2
1 Cefuroxime + metronidazole SP2

B Total 155
126 Cefazolin SP3

8
Cefazolin

+ other antibiotic (for different
surgical procedures or risks)

SP3

10 Cefoxitin SP3
8 Clindamycin SP3
3 Ciprofloxacin SP3

C Total 30
25 Cefazolin + gentamicin SP1 (13), SP2 (12)
5 Other antibiotics SP1 (2), SP2 (3)

D Total 103
69 Cefazolin + gentamicin SP3
5 Cefoxitin + gentamicin SP3
2 Cefoxitin SP3

21 Oral cephalexin SP3
6 Others

E Total 57
17 Ampicillin–sulbactam SP2 (4), SP3 (13)
10 Third-generation cephalosporins SP2 (4), SP3 (6)
30 Others

a Single dose encoded as SP1, one day encoded as SP2, and more than one day encoded as SP3.

The performance metrics of machine learning techniques for the whole dataset are
shown in Table 5. Classification accuracy alone can be misleading if there is an unequal
number of observations in each class (type) in the dataset. Therefore, we had to look at
other performance metrics in the Table 5. Multilayer perceptron had the best performance
measures. SimpleLogistic was selected by Auto-WEKA as the optimal classifier for the
whole dataset. However, the performance measures of SimpleLogistic were the second best
among the algorithms in this study. The weighted average sensitivity, specificity, precision,
and AUC of decision tree were 0.932, 0.972, 0.931, and 0.985 respectively. Bagging with
decision tree, AdaBoost with decision tree, decision tree with SMOTE could increase the
performance measures of decision tree, except the AUC of AdaBoost was a little less than
that of decision tree. The performance measures of decision tree with SpreadSubsample
were lower than those of decision tree alone.



Appl. Sci. 2022, 12, 2586 9 of 17

Table 5. Weighted average of performance metrics of algorithms for whole dataset.

Spread Subsampl-
Decision Tree

Decision
Tree

Bagging-Decision
Tree

AdaBoost-
Decision Tree

SMOTE-
Decision Tree

Simple-
Logistic

Multilayer
Perceptron

Sensitivity 0.895 0.932 0.940 0.945 0.960 0.958 0.967
Specificity 0.970 0.972 0.968 0.980 0.990 0.990 0.992
Precision 0.908 0.931 0.941 0.944 0.961 0.959 0.967

AUC a 0.978 0.985 0.991 0.983 0.985 0.987 0.992
a AUC: Area under receiver operating characteristics curve.

The performance metrics (sensitivity, specificity, precision, and AUC) of the seven
algorithms for the whole dataset (601 records) were shown in Figure 1. The seven algorithms
(decision tree with SpreadSubsample, decision tree, Bagging with decision tree, Adaboost
with decision tree, decision tree with SMOTE, SimpleLogistic, and multilayer perceptron)
are plotted in increasing order of performance with regard to sensitivity, specificity, and
precision. All the algorithms presented with outstanding discrimination, i.e., AUC > 0.97.
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Figure 1. Performance metrics of algorithms for whole dataset (601 instances).

In this study, 544 instances were classified as surgical prophylaxis, 57 instances were
classified as treatment of infections rather than surgical prophylaxis. The confusion matrix
of decision tree algorithm for class-label attribute is shown in Table 6. Between-class
imbalance was observed in this study, i.e., unequal number of observations in each class.
Class C (5%) and E (9.5%) were much smaller subsets, as compared with that of Class A
(42.6%), B (25.8%), and D (17.1%). There were also unequal sample sizes and minority
instances within each labeled class, i.e., within-class imbalance. The sample sizes of
minority instances were too small to be identified accurately by the machine learning tools,
especially in Class E, as shown in Table 6.

For the 544 instances of antimicrobial prophylaxis (Class A, B, C, and D), 75.6%
(411/544) of antimicrobial choices (Class A and B) were classified as consistent with guide-
lines, 52.6% (286/544) of antimicrobial prescriptions (Class A and C) were discontinued
within 24 h after surgery completion.

Five specialties, orthopedics (22.5%), neurosurgery (13.8%), general surgery (14.0%),
obstetrics/gynecology (13.1%), and urology (9.7%) had the greatest number of instances.
The dataset was further stratified and analyzed by specialty. The compliance with the
recommendations of guideline for antimicrobial prophylaxis by the five major specialties is
plotted in Figure 2. The compliance with recommended choice of prophylactic antimicrobial
agents for neurosurgery, obstetrics and gynecology, general surgery, orthopedics, and
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urology were 64.5%, 71.6%, 80.0%, 80.5%, and 81.0%, respectively. The compliance with
duration of surgical prophylaxis for neurosurgery, urology, general surgery, orthopedics,
and obstetrics and gynecology were 36.8%, 46.6%, 54.7%, 67.9%, and 77.0%, respectively.

Table 6. Confusion matrix of decision tree algorithm for whole dataset.

Predicted Class Actual Class Number of Observations (%)

A B C D E
255 0 1 0 0 A 256 (42.6)

0 144 0 6 5 B 155 (25.8)
5 0 25 0 0 C 30 (5.0)
1 4 0 98 0 D 103 (17.1)
8 6 0 5 38 E 57 (9.5)

Total: 601 (100)
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Figure 2. Compliance with recommendations of guidelines for antimicrobial prophylaxis, plotted by
5 major specialties.

The AUC of six algorithms for five major surgical specialties are plotted in Figure 3.
Multilayer perceptron was the best algorithms among the five specialties. Bagging with
decision tree, decision tree with SMOTE could increase the performance of decision tree for
the datasets of most specialties, except for urology dataset. SimpleLogistic worked better
than decision tree with sampling methods for the datasets of obstetrics and gynecology
and urology, but not for neurosurgery dataset.

The hyperparameters and execution time of machine learning algorithms and manual
review are shown in Table 7 (Whole dataset in Supplementary Materials). Auto-WEKA
and multilayer perceptron took more execution time as compared with that of decision
tree. The execution time of decision tree with SpreadSubsample and SMOTE is longer than
that of decision tree alone. All the algorithms were more efficient in execution time than
manual review.
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Figure 3. Area under receiver operating characteristics curve (AUC) of 7 algorithms for 5 major
specialties.

Table 7. Hyperparameters and execution time for machine learning techniques and manual review.

Classifier Hyperparameters Sampling Method Execution Time (s)

Decision tree

Reduced error pruning = false
Confidence factor = 0.2
distributionSpread: 2.0
Percentage: frequency of minor
classes adjusted to nearly the
same with that of major class
Classifier Choose: J48
Classifier Choose: J48

No sampling
SpreadSubsample
SMOTE
Bagging
AdaBoost

7.8
27.9
71.8
16.0
16.1

SimpleLogistic Default No sampling 9.8

Multilayer perceptron Learning rate = 0.3
Training Time = 500 No sampling 353.1

Auto-WEKA Default
Time = 15 min No sampling 8586

Manual review Estimated
24,040

4. Discussion

The National Healthcare Safety Network (NHSN), the CDC surveillance system,
provides information on incidence rates for healthcare-associated infections. The NHSN
cannot provide national-scale data on the antimicrobial use. Point prevalence surveys
provide valuable information on healthcare-associated infections and antimicrobial use
globally, and they may facilitate comparisons among different countries [29]. Although
the duration of point prevalence survey in a single hospital is limited to three weeks, the
criteria of compliance with duration of antimicrobial prophylaxis are less than one day or
longer than one day, and the short duration of prevalence survey does not limit the analysis
of data or presentation of useful information [17]. The surgical prophylaxis guideline by
Bratzler et al. remains a standard and is still cited by the recent publications [7,18].
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Among the 7377 patients, 1981 patients were never subjected to a surgical procedure,
but only 601 instances with antimicrobial prophylaxis were collected. Because only the
antimicrobial agents used on the day of survey were recorded, the dataset did not include
the data of antimicrobial use for every patient who had been subjected to a surgical
procedure before this survey. Some commentators may suggest that some of these patients
should have been subjected to surgical prophylaxis, though they were not. If that is the
case, such cases are of major importance for the purposes of this work. This issue was
not described in the previous publications [8,9,30]. However, it is not a major concern in
real-world practice except for human error. This is because the question, “Has antibiotic
prophylaxis been given within the last 60 min before skin incision?”, is an item in the time-
out surgical safety checklist proposed by WHO [8,31]. Surgeons will confirm that antibiotic
prophylaxis was given within the last 60 min before surgical incision. More importantly, the
appropriate use of antimicrobial prophylaxis (choice of antimicrobial agents and duration
of antimicrobial use) is not on the checklist and needs to be clarified in the audit. However,
we do not have data to verify this issue caused by human error, and we will take it into
consideration for a perfect audit in a future study.

In this study, 544 instances were surgical prophylaxis. A total of 75.6% (411/544)
of antimicrobial choices (Classes A and B) were classified as consistent with guidelines,
while 52.6% (286/544) of antimicrobial prescriptions (Classes A and C) were discontinued
within 24 h after surgery completion. The combination of cefazolin and gentamicin was the
most common type of noncompliance with guideline. Cefazolin was widely used as an
appropriate drug for many surgical procedures with its wide spectrum of susceptibility
(e.g., against Gram-positive Staphylococcus species and Gram-negative bacilli) and ade-
quate concentrations in the tissue. Therefore, gentamicin is used only if Gram-negative
bacteria infection is a concern of postoperative infections and the patient is allergic to
cefazolin. In comparison, antimicrobial agents compliant with guidelines were used for
92.6% of patients in U.S. hospitals [7] and 78.4% in Italian hospitals. [9] Prolonged surgical
prophylaxis longer than 24 h was common in the worldwide surveys, including 54.2%
in the European hospitals, 52.4% in the global survey, 45.7% in Australia hospitals, and
20.7% in US hospitals [8,29,30,32]. Compared with that of surgical prophylaxis used for
24 h or less, prophylactic antimicrobial agent used for more than 24 h for most surgical
procedures does not reduce postoperative infections but increases the risk of antimicrobial
resistance and adverse effects. In the absence of preoperative infection or postoperative
complications, prolonged postoperative antimicrobial prophylaxis is not necessary [2,32].
International collaborative works are needed to improve appropriate antimicrobial use for
surgical prophylaxis, such as optimal antibiotic choice, dosage, and length of prophylaxis.

WHO suggests an assessment method for antimicrobial surgical prophylaxis by re-
viewing the essential variables for evaluation, including indication (type of surgery), age
and gender of the patients, comorbidities, antibiotics prescribed as prophylaxis, dose, time
of administration, and duration of antimicrobial use [11]. Manual method is not suitable for
the audit of enormous data from annual survey in a medical center, interhospital compari-
son, or national survey. Auditing appropriate antimicrobial use for surgical prophylaxis
by manual review of enormous medical data is labor-intensive and time-consuming. It is
needed to develop efficient models for the audit of appropriateness of prophylactic antibi-
otic use. The purpose of this study was to investigate whether machine learning techniques
could be used to predict the appropriate antimicrobial use for surgical prophylaxis from
a large volume of clinical data. Machine learning techniques facilitate reviewing large
volumes of data to discover specific patterns and trends that would usually not be apparent
to humans. As shown in the results, with the help of the machine learning techniques, we
could easily identify the five types of compliance with recommendations of antimicrobial
prophylaxis. In addition, multilayer perceptron, SimpleLogistic, and decision tree algo-
rithms provided high-performance measures for identifying appropriate use (Class A) and
inappropriate use (Classes B, C, and D). The appropriateness of prophylactic antibiotic
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use by different surgical specialties can also be determined rapidly by the efficient models
developed in this study.

Imbalanced dataset contains instances that are unevenly distributed among the dif-
ferent classes. Between-class imbalance means unequal numbers of instances between
different classes; within-class imbalance occurs when a class consists of different subclasses
with unequal numbers of instances [33]. Both between-class imbalance and within-class
imbalance are observed commonly in datasets. Between-class imbalances as well as within-
class imbalances can affect classification performance.

The between-class imbalance was observed in the dataset in this study, i.e., unequal
distribution in each class. Classes C and E were much smaller subsets, as compared
with that of Classes A and D. The performance metrics in Classes C and E were not as
good as those of Classes A and D. There were also unequal sample sizes and minority
instances within each labeled class, i.e., within-class imbalance. The sample sizes of
minority instances were too small to be identified accurately by the machine learning tools,
especially in Class E, as shown in Table 6.

Imbalanced dataset is a common problem in machine learning classification. This
imbalanced data can prevent the machine learning algorithms from building accurate
models for these minority classes and lead to prediction errors [25,34]. For example, Sim-
pleLogistic worked better than decision tree with sampling methods for the datasets of
obstetrics and gynecology and urology, but not for neurosurgery dataset. There are several
methods to solve this problem of imbalanced data, such as resampling the datasets by
under-sampling the majority class and over-sampling the minority class, modifying algo-
rithms, and considering a different perspective, such as anomaly [24,25,34]. We used two
resampling approaches (Bagging and AdaBoost) to overcome the problem of imbalanced
dataset. Bagging increased the precision for decision tree algorithm in this study. AdaBoost
could reduce the bias of decision tree, but could be prone to overfitting noisy, as shown in
Classes C and E [25].

Overfitting is a common problem in supervised machine learning algorithms. Over-
fitting occurs if the model performs perfectly on the training dataset, while fitting poorly
on the testing dataset. Overfitting happens because of the presence of noise in the train-
ing dataset, small size of dataset, and the complexity of classifiers. Various strategies
were proposed to reduce overfitting. The first is data sampling methods, including un-
dersampling and oversampling [25,35]. SpreadSubsample randomly removes instances
from the majority class to make the dataset balanced. However, because undersampling
method could lose useful data for classifiers, decision tree with SpreadSubsample did not
achieve better performance than decision tree alone in this study. SMOTE is an oversam-
pling method that has the advantage of no loss of useful data. SMOTE could improve
the performance measures of decision tree in this study, as well as other studies [36,37].
However, SMOTE may require additional computational time if the dataset is very large,
as shown in Table 7, SMOTE took more execution time as compared with decision alone or
SpreadSubsample [25,37]. The other methods for reducing overfitting are cross-validation,
ensemble methods, as shown in this study [25,35]. However, overfitting cannot be avoided
completely. As with most applications in data science and machine learning algorithms,
there is no definitive best approach that always performs excellently. Depending on the
characteristics of the dataset, distribution of classes, models, and predictions, some of the
above algorithms will perform better than others

It takes about 40 s to review the data of a single instance manually. The estimated
execution time of manual review for all the 601 instances will be 24,040 s (6 h, 40 min and
40 s). However, the actual execution time of manual review will exceed 24,040 s, because
we cannot continuously concentrate on reviewing the data without rest. Although they
have better performance measures, Auto-WEKA and multilayer perceptron require more
execution time as compared with that of other algorithms. All the algorithms were more
efficient in execution time than manual review.
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Finally, this study demonstrated that multilayer perceptron, SimpleLogistic, and deci-
sion tree had outstanding discrimination with AUC > 0.9 for identifying the appropriateness
of surgical prophylaxis, despite the imbalanced data. However, we still consider a different
perspective that the rare instances are anomalies in the dataset. The antimicrobial use
of these rare instances was inappropriate as compared to those regular practices which
were according to the recommendations of antimicrobial prophylaxis guidelines. With the
models determined by all the algorithms, we can easily identify the anomalies or outliers.

There are some limitations in this study. First, for the instances with active infection
already present at the time of surgery, the antimicrobial agents could then be selected by
clinicians according to the clinical data, such as source of infection or microbiology. These
antibiotics were used for active infections rather than surgical prophylaxis. Although these
instances could be identified as inappropriate use, the models that used machine learning
techniques to audit antimicrobial prophylaxis do not override clinical judgment. Once the
surgeons obtain the information from the audit, they can review the cases of nonadherence
to guideline. Lack of documentation of the reason of antimicrobial prescription is not un-
common (about 20% in European hospitals) [32]. If the variances from standards arise from
lack of documentation of pre-existing infection and treatment for infection rather surgical
prophylaxis, they can improve the documentation of treatment or surgical prophylaxis on
the medical records. In the future study, the instances with treatment for preexisting infec-
tion will be excluded to reduce the variances from standards. Second, the small population
of outliers used in training set may not sufficiently represent the outlier patterns. The small
amount of outlier samples can limit the capability of building an accurate classifier for
the detection of outlier patterns, and it may also result in misclassification. Third, before
administering any antibiotic prophylaxis regimen, it is necessary to define whether the
patient really needs such prophylaxis. Antimicrobial prophylaxis is not recommended for
most clean surgical procedures in patients without risk of postoperative infection, such as
thyroidectomy or clean plastic surgery [7]. However, the risks of infection for these clean
procedures were not included in the attributes. Consensus on this issue is required from the
surgical society as well as adding infection risks of surgery to the attributes. Only then will
the algorithms be able to provide more useful information for assessing the appropriate
antimicrobial use in future studies. Fourth, some features considered in this study were not
relevant. Irrelevant features can have an impact on the model performance. Regularization
strategy is proposed to enhance the model performance by removing the useless features
and selecting only the useful features from the model, and minimizing the weights of
the features with little useful information on the classification [35]. In future work, we
will focus on the database design and configuration of more useful data to improve the
performance of the algorithms. Fifth, we are concerned about the issue of inappropriate
surgical prophylaxis or limited antimicrobial options leading to the selection of resistant
bacteria. Some strategies were proposed to prevent the emergence of resistant bacteria,
such as combination regimens [38,39] and adequate dosing to maintain the serum concen-
tration of antibiotic above the minimal inhibitory concentration of the bacteria during the
treatment [39,40]. Machine learning may be used to deal with this issue, which involves
alternative surgical prophylactic regimens and emergence of resistant bacteria, based on the
hypothesis that the new resistant bacteria may be prevented or treated with new prophylac-
tic regimens. Reinforcement learning is an approach that seems suitable for such a problem.
However, more data on antimicrobial resistant patterns and alternative options for surgical
prophylactic antimicrobial agents need to be collected before validating reinforcement
learning for this issue in future studies.

5. Conclusions

Multilayer perceptron, SimpleLogistic, and decision tree algorithms have outstanding
performance measures for identifying the appropriateness of surgical prophylaxis. The Bag-
ging and SMOTE algorithms can improve the predictive power of decision tree classifiers
against imbalanced datasets. The efficient models can be used to assist the antimicrobial
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stewardship team in the audit of surgical antimicrobial prophylaxis. In future work, we
still have the challenges and opportunities of investigating the database configuration and
enriching our datasets with more useful clinical information to improve the performance
of the algorithms.
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