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Abstract: In the last decade, there has been a surge of interest in addressing complex Computer Vision
(CV) problems in the field of face recognition (FR). In particular, one of the most difficult ones is based
on the accurate determination of the ethnicity of mankind. In this regard, a new classification method
using Machine Learning (ML) tools is proposed in this paper. Specifically, a new Deep Learning
(DL) approach based on a Deep Convolutional Neural Network (DCNN) model is developed, which
outperforms a reliable determination of the ethnicity of people based on their facial features. However,
it is necessary to make use of specialized high-performance computing (HPC) hardware to build a
workable DCNN-based FR system due to the low computation power given by the current central
processing units (CPUs). Recently, the latter approach has increased the efficiency of the network
in terms of power usage and execution time. Then, the usage of field-programmable gate arrays
(FPGAs) was considered in this work. The performance of the new DCNN-based FR method using
FPGA was compared against that using graphics processing units (GPUs). The experimental results
considered an image dataset composed of 3141 photographs of citizens from three distinct countries.
To our knowledge, this is the first image collection gathered specifically to address the ethnicity
identification problem. Additionally, the ethnicity dataset was made publicly available as a novel
contribution to this work. Finally, the experimental results proved the high performance provided by
the proposed DCNN model using FPGAs, achieving an accuracy level of 96.9 percent and an F1 score
of 94.6 percent while using a reasonable amount of energy and hardware resources.

Keywords: face recognition; ethnicity identification; deep learning; real-time; HPC; FPGA; GPU

1. Introduction

Nowadays, surveillance systems play a significant role in freely available security [1].
The resulting videos of these surveillance systems [2,3] became more straightforward to
analyze due to the progress in Artificial Intelligence (AI) [4] and its adoption in the field
of CV (CV) [1]. Recently, numerous works have focused on the event detection problem
using these videos being the necessary potential for identifying and localizing specific
spatio-temporal patterns. In particular, the issue of person identification, which recently
attracted the interest of researchers, is an additional problem within video surveillance [5].
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This problem deals with the recognition of a person picked up from a whole image dataset
in which single/multiple cameras were considered for the data acquisition. It is a signifi-
cant issue for both human–computer interaction and surveillance systems to simplify the
identification procedure using a sizable volume of both images and videos.

In race analysis, facial features have become a standard topic in CV and FR (FR) [6–8].
The field of HRR has shown considerable growth in conjunction with the increasing glob-
alization in several real-world applications such as public security, border control, and
customs checks. In the field of physical anthropology, HRR is also considered a relevant
branch of research. Society, genes, the environment, and other factors have a significant
impact on facial features. Due to various gene fragments, it is not easy to distinguish
between the particular genes of one race group against another one, which has become
a complex challenge. Thus, facial features seem similar across various races [9]. Besides
identifying a suitable emergency supporter, recognizing the human race becomes very
useful for surveillance systems in many situations. For instance, race-targeted pharmacoge-
nomics and race-based medicine support race-information usage in diagnosing and treating
different medical cases that have specific responses based on the organisms of diverse races.
Improving the person’s identification accuracy and narrowing down the possible matches
can be achieved by embedding the race information (e.g., using soft biometrics information)
into video surveillance systems. In addition, targeted advertising and human–computer
interaction systems can also use racial information to offer employers ethnically convenient
services, then preventing the offending risk present in many cultural taboos. Visagisme
is an innovative concept that takes place in optometry and fashion fields. In the previous
paragraph, the authors were talking about applications of surveillance. The role of HRR
helps improve the surveillance and other potential applications of HRR how facial features
can be useful in this application. This paper is focused on the Human Race Recognition
(HRR) problem by means of video surveillance.

Moreover, video clustering targeted at classification tasks is another highly demanding
application of HRR. However, several works on coding and HRR were conducted to address
this challenge. In the study of race learning from the face, Fu et al. [10] presented an in-
depth review including several up-to-the-date techniques. According to the review, the
challenge may be answered in two directions: single model HRR and multiple model HRR.
In the single model HRR, they made an effort to extract both the local discriminative areas
and the appearance features. They combined features from both gait and face fusion in the
second direction, or 3D and 2D information.

Recently, researchers have attracted significant attention to Deep Learning (DL) [11–14]
owing to its numerous applications in speech processing [15], natural language process-
ing [16], and CV [17,18]. In video recognition [19] and large-scale images, a model of DL
so-called convolutional neural network (CNN) has lately attained several encouraging
results. Simonyan and Zisserman [20] introduced in 2015 the VGG model, which accom-
plished an extremely well-behaved performance with ImageNet and became used-widely
in different studies of CV.

On the other hand, one of the most significant drawbacks of DL is that it requires
more processing time due to a large amount of data it must deal with. As a result, they
employ various parallel hardware architecture platforms, such as FPGA and GPU, to
overcome these difficulties. Field programmable gate array (FPGA) technology is an
emerging hardware technology developed in recent years [21]. It has shown strong potential
and capabilities for embedded intelligence (EI) applications. As compared to Graphics
processing unit (GPU) and CPU technologies, the core benefit of the FPGA is its capability
to customize the hardware implementation to achieve the applicability of the specified
needs of the EI algorithm. Thus, the FPGA becomes an effective hardware solution for more
significant energy saving and higher computation processing [22]. For example, the FPGA
can use proper quantized memory representations along with fixed-point computations
instead of floating-point. Compared to GPU and CPU systems, the FPGA dedicated
hardware further benefits the FPGA-based systems. Therefore, the integration of embedded
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systems/devices with decision-making algorithms, Machine Learning (ML) techniques,
as well as methods that are commonly achieved on central computation systems such as
cloud computing was introduced by several researchers.

The following are the main contributions provided in this research:

• A network proposal was used to group the human face by its race, specifically from
Chinese, Pakistani, and Russian citizens;

• The collected image dataset is a unique one in its kind and is publicly available upon
request;

• Several HPC hardware accelerator architectures have been tested, such as FPGAs and
GPUs;

• The proposed network was compared against four different pre-trained CNN models:
ResNet50, DenseNet, AlexNet, and GoogleNet;

• The experimental results were enriched by reporting the power usage and execution
time achieved by the proposed network in order to facilitate its future easy develop-
ment as a mobile embedded system.

The structure of the paper is as follows. Section 2 is devoted to introducing the
background and fundamentals regarding the technologies used in this research. Next,
Sections 3 and 4 are aimed at describing in detail the deployment of DL in FPGAs and
the DL-based ethnicity identification proposed in this work, respectively. Section 5 is
focused on the experimental results reported by our proposal and its competitors from
the state-of-the-art (SoTA). A summary of the conducted study and some future research
suggestions is finally introduced in Section 6.

2. Background and Related Work

Classification of ethnics and races using facial images was introduced in a detailed
survey [10]. The survey discussed the race classification challenge from the analytical and
fundamental race sympathetic using interdisciplinary knowledge such as anthropometry,
cognitive neuroscience, and psychology, highlighting the different representations of racial
features. In addition, the survey compared the most related works in the automated race
classification field based on facial images.

From the used racial features viewpoint, the up-to-the-date techniques employ either
local features, global features, chromatic information, or a mixture of these techniques [23,24].
Techniques of local features-based classify the race using lower-level features such as Gabor
filters of gradient directions or histograms. Techniques of chromatic-based are commonly
based on the tone of skin and are extremely illumination sensible. The techniques of global-
based are the most used-widely and take advantage of the interrelation between various
facial areas to build racial belonging. In contrast, hybrid techniques mix all or some of the
above techniques to achieve the optimum representation for race classification [25].

2.1. Deep CNNs

Recently, owing to their encouraging performance, deep CNNs have been utilized
considerably in CV. For example, Zhang et al. [26] achieved a well-behaved performance
using an innovative feature learning technique to classify halftone images. For feature
extraction, this technique uses unsupervised learning (stacked spare auto-encoders (SAE)),
while for image classification, it uses supervised learning (SoftMax regression) for fine-
tuning the deep network. Wei et al. [27] presented Hypotheses-CNN-Pooling (as a flexible
deep CNN model) to classify images of multiple labels. This framework uses an undefined
number of object segment hypotheses as an input. Next, each hypothesis is connected to the
shared CNN. Lastly, the max-pooling is summed with the hypotheses outputs to produce
the final multi-label predictions. Numerous issues are present in face-based applications,
such as facial expression analysis [28], face alignment [29], and face detection [30]. Li
et al. [31] introduced in 2015 a cascade model constructed on a CNN that has a robust
discriminative capability but keeping well-behaved performance for dealing with the
variations in visual characteristics issue such as those owing to lighting, expression, and
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pose, in the practical FR. Park et al. [32], 2017, developed deep networks to align faces
based on recurrent regression and facial landmark features. In contrast, Chen et al. [33]
presented an intelligent technique for detecting smiles based on CNNs, since in our daily
life, a smile is the most popular facial expression. However, facial expression analysis is
also requested by other issues such as robotics, human–computer interface, lie detection,
and medical assessment.

One of the crucial issues in video analysis is to identify/re-identify persons through
images using either a single camera over time or multiple cameras. Ahmed et al. [34], in
2015, presented a corresponding similarity metric to re-identify persons and a technique
for learning features in parallel. The authors achieved well-behaved results using a deep
convolutional model with specifically designed layers to highlight the re-identification
issue. An additional issue in video analysis is to track the target visually. This issue has
several applications, such as video surveillance, augmented reality, and vehicle navigation.
A CNN with outstanding performance was introduced to deal with such an issue. It is
beneficial in real-time visual tracking [35]. Recently, one more issue in video analysis that
magnetized great attention is the recognition of human activities. Ronao and Cho [36]
introduced a CNN for performing the recognition of human activities effectively and
efficiently. In their work, 1D time-series signals and the inherent activity characteristics are
exploited using smartphone sensors. Based on various experimental datasets, they have
achieved an excellent performance.

2.2. Transfer Learning

It is difficult to train a whole CNN from scratch owing to the limited undersized
datasets. Alternatively, Simonyan and Zisserman [20] presented a CNN, namely VGG,
which achieved an accuracy of 92.7% with ImageNet that has up to 1000 classes and over 14
million images. VGG-16 and VGG-19 are the two forms of the trained VGG model, where
their parameters and structures are available online freely. Pre-trained models, fine-tuning
CNNs, and a fixed feature extractor are the main three scenarios of the latter learning
approach, named transfer learning (TL). In comparing these models, fine-tuning showed
the most popular with different models such as ResNet50, DenseNet GoogLeNet, and VGG.

The RR-VGG model, which used VGG-16 inside, is presented in the coming sections of
this study. Several works leveraged the VGG structure for performing transfer learning in
various challenges. For extracting useful features, Paul et al. [37] utilized the trained VGG
model to detect lung adenocarcinoma, while for image classification, different classifiers
were used. Long et al. [38] adopted several pre-trained CNN models (GoogleNet, AlexNet,
and VGG) inside a fully convolutional model. For segmentation purposes, they fine-
tuned the model. Applying the pre-trained VGG models in problems of computer-aided
detection was studied by Hoo-Chang et al. [39] and attained inspiring results. Transferring
a pre-trained model such as VGG becomes more appropriate than using other techniques.

On the other hand, multiple small filters (e.g., 3 × 3) are used to build larger filters (e.g.,
5 × 5) in the VGG-16 model, which has three fully connected and 13 convolutional layers.
Thus, the whole convolutional layers have only a 3 × 3 filter size. Altogether, processing
one 224 × 224 input image needs a VGG-16 model of 15.5 G multiply-and-accumulates and
138 M weights [40].

One of the most major disadvantages of DL is that it takes greater processing time due
to a large amount of data it must deal with. As a consequence, to solve these challenges,
they deploy different parallel hardware architectural platforms, such as FPGA and GPU.

3. Deployment of Deep Learning on FPGAs

Networks based on DL techniques can construct accurate decisions while they train/
learn by themselves using the provided training data. Due to its capability to maximize
parallelism and energy saving, the FPGA showed substantial growth in its usage in DL
applications. As compared to GPU, the FPGA has comparatively lower computing, band-
width, and memory resources. In contrast, it can offer a reasonable accuracy with high
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throughput. This subsection demonstrates the FPGA-based DL architectures, especially
with CNNs.

Consequently, another paper introduced a compressed CNN technique and employed
a scalable and fast structure for a low-density FPGA. The image-batching and fixed-point
arithmetic techniques are the core methods utilized in this structure. These techniques can
save the memory bandwidth and allow the computational memory to concentrate on actual
processing works such as object detection and surveillance monitoring. The weights and
activations are represented in fixed-point format despite the window size in optimization
techniques, where fixed-point quantization is a part of them. In addition, the memory
bandwidth can be reduced by executing multiple images in a batch [41]. In contrast, each
layer has its scale factor.

Even if the layers of convolution and fully connected are entirely the same, they should
be separated into two unlike parts and performed in parallel. The on-chip memory is used
to store the intermediate features and the input image. If it is undersize to store the image,
then partitioning the image is required and convolved independently. The data dispatch
and interconnected are used to store the OFM in an external memory if it is too big to fit
into the on-chip memory. The PE (processing element) units run in parallel to compute the
whole arithmetic. Figure 1 shows the PE cluster of the convolutional layers composed of
the interconnection and matrix network to advance the activations of input and output
among the PE.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 
Figure 1. Interconnection between PE (processing element) and S (switch). 

Another work on FPGA that proposed a depth-wise separable CNN (essentially a 
factorization from conventional convolution into pointwise and depth-wise convolution 
to build new features) is being studied [43]. The framework can enhance computing 
speeds and reduce the model parameters, and it has become commonly used in applica-
tions of mobile-edge computing such as MobileNet and Xception. Double buffering 
memory channels are also proposed to handle the data transfer based on a custom com-
puting engine structure. Moreover, the data tiling technique divides the matrix multipli-
cation into small-form factors for applying in the fully connected layer. 

In contrast, Figure 2 illustrates the depth-wise convolutional unit, composed of max 
pooling modules, nonlinearity activation modules, accumulators, and the multiply-accu-
mulate computing unit. The max-pooling modules compute the data down-sampling, 
while the nonlinearity module carries out the ReLU function. The work of the pipeline 
structure is an essential technique for such depth-wise CNN. Lastly, lowering the numeric 
computing precision will lower the consumed power with a slight accuracy loss. Com-
pared to 32-bit floating-point, a framework of 16-bit fixed-point multiplication reduces the 
power-consuming by 6.2 times, but with a reduction in accuracy of 0.5%. For the image 
size of 32 × 32 × 3, the work also concluded a reduction in the consumed power of 29.4 
times that of GPU. Further, an improvement in the performance of 17.6 times faster than 
that of the CPU [43]. 

Mem Mem Mem Mem

Core
 00

Core
01

Core
 02

Core 
0m

S S S S

Core 
10

Core 
11

Core 
12

Core 
1m

S S S S

Core 
N0

Core 
N1

Core 
N2

Core 
Nm

S S S S

Ba
tc

h 
M

em
or

y

Ba
tc

h 
M

em
or

y
M

ap
 M

em
or

y 
fo

r F
ea

tu
re

Weight Memory

Figure 1. Interconnection between PE (processing element) and S (switch).

The data transfer is based on the type of the next layer; if it is convolution, the data
moves back to the feature map memory; if not, then the data move to a fully connected layer,
which has a similar structure to the convolution cluster. The switch is two small modules
and performs the whole data transfer. For reducing the accuracy loss and improving the
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performance in the hardware, the weights and activation are represented by an 8-bit mixed
fixed-point format. With a similar structure, the throughput increases by focusing on fixed-
point arithmetic at the convolutional layer and the image batching at the fully connected
layer. Finn is another proposed framework that focuses on the efficient mapping of the
binarized neural network to the FPGA [42]. Using standard datasets (SVHM, CIFAR-10,
and MNIST), the hardware maintains high classification performance and obtains low
power consumption (lower than 25 W) on the ZC706 embedded FPGA platform.

Another work on FPGA that proposed a depth-wise separable CNN (essentially a
factorization from conventional convolution into pointwise and depth-wise convolution to
build new features) is being studied [43]. The framework can enhance computing speeds
and reduce the model parameters, and it has become commonly used in applications
of mobile-edge computing such as MobileNet and Xception. Double buffering memory
channels are also proposed to handle the data transfer based on a custom computing
engine structure. Moreover, the data tiling technique divides the matrix multiplication into
small-form factors for applying in the fully connected layer.

In contrast, Figure 2 illustrates the depth-wise convolutional unit, composed of
max pooling modules, nonlinearity activation modules, accumulators, and the multiply-
accumulate computing unit. The max-pooling modules compute the data down-sampling,
while the nonlinearity module carries out the ReLU function. The work of the pipeline
structure is an essential technique for such depth-wise CNN. Lastly, lowering the numeric
computing precision will lower the consumed power with a slight accuracy loss. Com-
pared to 32-bit floating-point, a framework of 16-bit fixed-point multiplication reduces the
power-consuming by 6.2 times, but with a reduction in accuracy of 0.5%. For the image size
of 32 × 32 × 3, the work also concluded a reduction in the consumed power of 29.4 times
that of GPU. Further, an improvement in the performance of 17.6 times faster than that of
the CPU [43].
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The reduction in parameter requirements is an additional challenge attracting the
researchers’ interest. Regarding the hardware accelerator design, LetNet and SqueezeNet
are models that utilize techniques of condensed parameter requirements [43]. Another work
presented a reduction and size in the convolutional layers’ kernels and removed nearly all
the fully connected layers to leverage the previous research. A fire module layer replaced
all removed layers [44], and it is a combined layer of the expanded convolutional layers and
the squeeze layer. The model also utilizes a downsampling technique for reducing the size
and preserving high-level accuracy. Calculating the number of parameters is performed by
multiplying the number of output channels in the layer by the number of parameters in
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the individual kernel. In addition, calculating the AC operation depends upon the weight
vectors presented in a square dimension of the layer output features [45].

On the other hand, 8-bit encoded image pixels and 8-bit encoded weight vectors are
utilized in considering the bit-width issue. Based on the kernel size, a different number
of parallel memories is presented in each layer. As compared to the standard network, a
reduction in parameters by 11.2 times was achieved using this fire module technique with
no impact on the accuracy of classification [43].

In concluding the above works, the FPGAs with flexible platforms to establish various
DL applications in brief periods are desirable in embedded DL intelligence compared
to application-specific integrated circuits. Performing arithmetic intensive operations
become possible using embedded components and rich-set programmable logic cells such
as DSP. However, additional techniques for DL are still in development and investigation
by the researchers, such as the roofline model, graph partitioning, double buffering, and
rearranging memory data. While the previous study [46] proposed a network based on
the GPU platform, which consumes more power and is unsuitable for portable embedded
systems, this research implements a network for human race classification by taking
advantage of parallelism techniques on FPGA (type DE1-SoC) to speed up our classification
while consuming less power, making it more suitable for portable embedded systems.

4. The Deep Learning-Based Ethnicity Identification Proposal
4.1. Ethnicity Identification

Our model proposal uses twelve DL layers. Initially, four convolutional layers are
employed, each followed by a max-pooling layer. In addition, some of these convolutional
layers have a dropout layer inserted after the max-pooling layer for extracting facial features.
Next to these convolutional layers, there are two fully connected layers and a drop connect
layer as a separator to rid the overfitting problem through the training process. After the
drop-connect layer, a flattening layer is inserted to flatten the output before it passes to
the fully connected layer. An additional dropout layer is inserted between the two fully
connected layers. Finally, a SoftMax output layer is employed to recognize the classes.
The total network architecture is shown in Figure 3. Note that it is possible to enlarge the
recognized classes (n) to include more nationalities.
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However, the input image has a size of 128 × 128 × 3 since (3) can be feature maps. In
addition, the patch size is 3 × 3 with unchanged padding in each convolutional layer. In
contrast, the stride has a value (1) to make the convolutional layer output nearly similar
to the input size. The input size is minimized, bypassing the convolutional layer output
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to a max-pooling layer and then to the ReLU activation function. The equation of the
convolutional layer with the feature map is:

f (x)j(r) = max

(
0, bj(r)

∞

∑
n=1

kij(r) ∗ xi(r)

)
(1)

Within a specific area r, f (x)j(r) is the jth output patch of the convolution layer, bj(r) is
the bias of the jth output patch, kij(r) is the kernel of the convolutional layer between the
ith input and jth output patch, the multiplication sign (∗) means the convolution, and xi(r)

is the ith input patch within a specific area r to the convolution layer. Figure 3 shows that
the input image is partitioned into small areas; each area has a size of 3 × 3 based on the
window patch size.

As mentioned earlier, the max-pooling layer receives the convolutional layer output.
The equation of the max-pooling layer is:

f (x)i
jk = max

0≤m,n<sz

(
xi

j·sz+m,k·sz+n

)
(2)

The neurons in the ith output patch of f (x)i pool over a local area of sz × sz in the
ith input patch (xi). The nonlinearity function ReLU keeps all positive values constant,
whereas all negative values are set to zero. As compared to the sigmoid function, the RELU
has a better fitting performance [45].

In this work, three dropout layers were used, one separating the two fully-connected
layers and the other two are after the second and the third convolutional layers, respectively.
The equation of the two fully connected layers is:

f c = max

(
0, ∑

i
xi−1·wi−1,j−1

)
+ max

(
0, ∑

i
DOutrate

(
xi·wi,j

))
(3)

Regarding the previous layer, xi−1 refers to the neurons, and wj−1 refers to the weights.
The DOutrate separates the two fully connected layers where the rate is 0.5. Regarding the
first connected layer, xi refers to the neurons, and wj refers to weights.

Among n different ethics, the n-way softmax predicts the face ethic based on the
ConvNet output. The equation of the softmax is:

yi =
exp(xi)

∑n
j=1 exp

(
xj
) (4)

where x is the output index in n, which means, for example, the number of classes, and xi
is the input vector that refers to the very significant features utilized for FR to the output
layer.

4.2. Dropout Layer

The reported results become inaccurate in the testing phase due to errors in the training
phase. Dropout as a robust regularization is utilized to solve the overfitting problem [44].
The concept of the dropout includes dropping out from the network a few neurons that are
selected randomly alongside the probability q = 1 − p. These neurons become free after
drop out (i.e., its input and output are discounted). They can learn somewhat helpful on
their own, exclusive of depending in large amounts on the remaining neurons to modify
their limitations.

Conversely, the inputs and outputs of all patches are calculated as follows before
applying dropout:

xl+1 = wl+1yl + bl+1 (5)

yl+1 = AF
(

xl+1
)

(6)
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Note that the network layer index is l, the input patch is xl+1, the weight is wl+1, the
bias is bl+1, the output patch is yl+1, and the activation layer is AF. After the dropout is
executed, the following operations take place:

σl
i ≈ Bernolulli(p) (7)

yll
= σl ⊕ yl (8)

xl+1 = wl+1yll
+ bl+1 (9)

yl+1 = AF
(

xl+1
)

(10)

The layer l, ith neuron, σl
i denotes the Bernoulli random variable alongside a probability

value of 1. The multiplication of element by element is denoted as ⊕.

5. Results
5.1. Training Dataset

Despite the fact that there are several large-scale face image databases accessible
online, none of these databases are acceptable for the purpose of the conducted study in
our research. Furthermore, 3141 photographs were gathered from a variety of sources.
Specifically, 1081, 1021, and 1039 Chinese, Pakistani, and Russian face photos were gathered,
respectively. Following the collection of the images, they were processed in order to extract
the faces from the whole set of images. Next, the entire dataset was partitioned into three,
which include a training set, validation set, and test set at 60%, 10%, and 30%, respectively.
A portion of the new dataset is shown in Figure 4.
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5.2. FPGA Hardware Implementations

Using an FPGA DE1-SoC, a 64-computations array of 16-bit DSP was used to speed the
proposed network and other four pre-training models. HPS, the control software utilized
in this procedure, and the hardware responsible for the convolutional computations were
the two components of this acceleration process. Because of the limits of FPGA fabrics
on DE1-Soc, only 13-convolutional layers were employed in order to maximize efficiency
while also addressing the restrictions of the architecture. The remaining calculations were
carried out in hardware due to the fact that hardware can execute computations far quicker
than software.
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Unlike the convolution layers (CONV), which are mainly comprised of separate
control logic and a parallel adder, the multiplication layers (MUL) serve as the principal
computational engines and are connected across all levels, as seen in Figure 5. During the
convolution process, the data input is recorded in on-chip buffers, and the outputs of the
multiplier are sent to the CONV stage for summing and accumulating. After CONV was
completed, the findings were routed to a variety of various on-chip memories, where they
were used for the next step of the process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 
Figure 4. A portion of the new dataset gathered from three separate countries. 

5.2. FPGA Hardware Implementations 
Using an FPGA DE1-SoC, a 64-computations array of 16-bit DSP was used to speed 

the proposed network and other four pre-training models. HPS, the control software uti-
lized in this procedure, and the hardware responsible for the convolutional computations 
were the two components of this acceleration process. Because of the limits of FPGA fab-
rics on DE1-Soc, only 13-convolutional layers were employed in order to maximize effi-
ciency while also addressing the restrictions of the architecture. The remaining calcula-
tions were carried out in hardware due to the fact that hardware can execute computations 
far quicker than software. 

Unlike the convolution layers (CONV), which are mainly comprised of separate con-
trol logic and a parallel adder, the multiplication layers (MUL) serve as the principal com-
putational engines and are connected across all levels, as seen in Figure 5. During the 
convolution process, the data input is recorded in on-chip buffers, and the outputs of the 
multiplier are sent to the CONV stage for summing and accumulating. After CONV was 
completed, the findings were routed to a variety of various on-chip memories, where they 
were used for the next step of the process. 

 
Figure 5. The schematic of a convolutional block within an FPGA. 

5.3. A Preliminary Comparitive Analysis 
This subsection is devoted to introducing a performance comparison considering 

several contributions from the SoTA. In recent years, numerous additional studies have 

Input feature 
buffers

Weight buffers

Multiplier bank Output Feature 
Buffers

Control Logic

Adder ReLU

Registers

Convolution Block (CONV)

Read Addresses
Write Addresses

Iteration

Start Signal Data

Control

Figure 5. The schematic of a convolutional block within an FPGA.

5.3. A Preliminary Comparitive Analysis

This subsection is devoted to introducing a performance comparison considering
several contributions from the SoTA. In recent years, numerous additional studies have
attempted to address the classification problems of race [4] and ethnicity [46] by means
of DL approaches, e.g., CNNs. Table 1 presents the results provided by several methods
of the SoTA dealing with the tackled problem. Note that it was not feasible to carry out a
direct numerical comparison against all methods due to several of them were trained and
assessed on not accessible private datasets.

Table 1. Performance comparison results.

Method Dataset Number of
Images Groups Accuracy Hardware

Platform

[4] Internet images over 175,000 Asian, Afro, Caucasian, and Indian 96.64% GPU
[6] VNFaces 6100 Vietnamese and others 88.87% Not mention
[8] Celeb-A over 200,000 predominately Western celebrities 91% Not mention
[23] Private 22 WD, RBAL and BD 96% GPU
Our Private 3141 Chinese, Pakistani, and Russian 96.9 GPU and FPGA

In [4], the authors developed and made available a large-scale library of over 175,000
photos of faces of celebrities from multiple ethnicities and races, which were used for
training and testing. The method was compared against four cutting-edge CNNs on the
topic. Another dataset called VNFaces [6] was used to compare the accuracy of RR-CNN
and RR-VGG methods, in which accuracy of 88.64 and 88.87 percent, respectively, was
achieved.

Previous studies have used datasets consisting mostly of Western celebrities [8] as
well (WD, RBAL, BD) [11] and obtained accuracy rates of 91 and 96 percent. It should
be noted that GPU was the hardware platform used in all the previous studies. Our
proposal provides a new extension of the SoTA by using FPGA, being one of the first
successful attempts making use of this specific hardware platform for addressing the real-
time classification of human races. The reported results in Table 1 demonstrated the higher
performance achieved by our method with an accuracy rate of 96.9 percent.
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5.4. Comparison for the Pre-Trained CNNs

A total of four pre-trained CNN models were chosen, in which the last four layers
of each approach have been frozen, and with our fully connected layers being utilized
to calculate the number of outputs based on the number of classes present in the dataset.
Specifically, ResNet50, DenseNet, AlexNet, and GoogleNet were the chosen CNNs. The
training was carried out using a system based on a CPU (Intel Core i7-10750H), a GPU
(NVIDIA GeForce RTX 2070), and RAM (16 GB). According to the findings, our proposed
network offers the best performance in terms of the parameters listed in Table 2, which
illustrates the training outcomes of our network against the ones from the other four CNN
models. As shown in Figure 6, our network outperformed the competition on Accuracy,
F1 score, and other parameters. The accuracy and F1 score both reached a ratio rate of
96.9 percent and 94.6 percent, respectively. It is important to note that the power used by
the GPU remains constant throughout workloads since it is intended to function at full
capacity, as opposed to the FPGA, which uses just a subset of the reprogrammable logic
components and then calculates the power usage by FPGA synthesis tool.

Table 2. Comparison between our proposed network and other CNN pre-train models in term of
performance metrics.

Measure ResNet50 DenseNet AlexNet GoogleNet Our Proposed
Network Derivations

Sensitivity 0.945 0.916 0.723 0.852 0.966 TPR = TP/(TP + FN)
Specificity 0.950 0.977 0.957 0.984 0.956 TNR = TN/(FP + TN)
Precision 0.904 0.953 0.892 0.963 0.966 PPV = TP/(TP + FP)

False Positive Rate 0.049 0.022 0.042 0.015 0.043 FPR = FP/(FP + TN)
Accuracy 0.949 0.957 0.879 0.940 0.969 ACC = (TP + TN)/(P + N)
F1 Score 0.924 0.934 0.799 0.904 0.946 F1 = 2TP/(2TP + FP + FN)

Where: TP: True Positive, TN: True Negative, FP: False Positive and FN: False Negative.
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This research is an improvement from the previous study [46], which proposed a
network based on GPU platform, which requires more power and is unsuitable for portable
embedded systems, but in this work, the network for human race classification is imple-
mented by taking advantage of parallelism techniques on FPGA (type DE1-SoC) to speed
up our classification while consuming less power.

Another comparison was conducted in Table 3 between our proposed network and
existing CNN models. AlexNet offers the lowest power usage and execution time due
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to its basic design. In contrast, our network outperforms in terms of accuracy, F1 score,
appropriate power usage in FPGA, and processing time in GPU and FPGA, see Figure 7. The
FPGA assessments were based on an acceptable amount of DE1-Soc resources, including
total logic elements, total block memory, and total logic registers, as shown in Table 4 and
Figure 8.

Table 3. Comparison between our proposed network and other pre-trained CNN models in terms of
time execution and power consumption.

ResNet50 DenseNet AlexNet GoogleNet Our Proposal

GPU FPGA GPU FPGA GPU FPGA GPU FPGA GPU FPGA

Execution Time 11.4 s 6.39 s 13.1 s 8.32 s 143 ms 122 ms 9.33 s 4.90 s 5.21 s 2.76 s
Power Consumption 650 w 20.2 w 650 w 33.8 w 650 w 5.9 w 650 w 14.7 w 650 w 10.7 w
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6. Conclusions and Future Works

Recently, the interest in employing DL has increased, specifically CNNs, to highlight
the race and ethnicity classification issue. In our research, a fresh dataset was acquired to
be used in the training phase of a new DL proposal aimed at the ethnic identification of
citizens. Therefore, photos taken in three separate countries were used: China, Pakistan,
and Russia. This unique dataset is thought to be the first of its kind to be gathered for
ethnic groups of individuals, and it was made accessible to the scientific community upon
request.

In our study, several specialized high-performance computing (HPC) hardware such
as field-programmable gate arrays (FPGAs) and graphics processing units (GPUs) were
considered, which resulted in the development of classifier accelerators in order to increase
the efficiency of the network in terms of power consumption and execution time, among
other benefits. On the other hand, the conducted experiments reported that GPUs required
more power consumption and are unsuitable for its future adoption as a portable embedded
system, as the approach based on FPGA (type DE1-SoC), which is the one with the best
performance to speed up the identification system while consuming less power. Moreover,
our DL-based proposal was compared against four different pre-trained CNN models such
as ResNet50, DenseNet, AlexNet, and GoogleNet. The experimental results reported that
our model outperformed all the methods of state-of-the-art, achieving an accuracy and F1
score value of 96.9 percent and 94.6 percent, respectively.
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