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Abstract: Cardiac MRI is the gold standard for evaluating left ventricular myocardial mass (LVMM),
end-systolic volume (LVESV), end-diastolic volume (LVEDV), stroke volume (LVSV), and ejection
fraction (LVEF). Deep convolutional neural networks (CNNs) can provide automatic segmentation
of LV myocardium (LVF) and blood cavity (LVC) and quantification of LV function; however, the
performance is typically degraded when applied to new datasets. A 2D U-net with Monte-Carlo
dropout was trained on 45 cine MR images and the model was used to segment 10 subjects from the
ACDC dataset. The initial segmentations were post-processed using a continuous kernel-cut method.
The refined segmentations were employed to update the trained model. This procedure was iterated
several times and the final updated U-net model was used to segment the remaining 90 ACDC
subjects. Algorithm and manual segmentations were compared using Dice coefficient (DSC) and
average surface distance in a symmetric manner (ASSD). The relationships between algorithm and
manual LV indices were evaluated using Pearson correlation coefficient (r), Bland-Altman analyses,
and paired t-tests. Direct application of the pre-trained model yielded DSC of 0.74 ± 0.12 for LVM
and 0.87 ± 0.12 for LVC. After fine-tuning, DSC was 0.81 ± 0.09 for LVM and 0.90 ± 0.09 for LVC.
Algorithm LV function measurements were strongly correlated with manual analyses (r = 0.86–0.99,
p < 0.0001) with minimal biases of −8.8 g for LVMM, −0.9 mL for LVEDV, −0.2 mL for LVESV,
−0.7 mL for LVSV, and −0.6% for LVEF. The procedure required ∼12 min for fine-tuning and
approximately 1 s to contour a new image on a Linux (Ubuntu 14.02) desktop (Inter(R) CPU i7-7770,
4.2 GHz, 16 GB RAM) with a GPU (GeForce, GTX TITAN X, 12 GB Memory). This approach provides
a way to incorporate a trained CNN to segment and quantify previously unseen cardiac MR datasets
without needing manual annotation of the unseen datasets.

Keywords: cardiac MRI; machine learning; left ventricle segmentation; cardiac function

1. Introduction

Quantification of left ventricular (LV) function is crucial for risk stratification, diag-
nosis, and treatment of cardiac disease [1]. Cardiac magnetic resonance imaging (MRI)
has been established as the gold standard for evaluating left ventricular function [2], in-
cluding LV myocardial mass (LVMM), end-diastolic volume (LVEDV), end-systolic volume
(LVESV), stroke volume (LVSV), and ejection fraction (LVEF). To generate these measure-
ments, segmentation of the LV structures is required as a first step. Manual segmentation of
cardiac MRI requires intensive efforts from users, depends on the experience of observers,
introduces user variability, and is not compatible with efficient and high throughput cardiac
imaging workflow [3].
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Various methods have been developed for cardiac MR image analysis and demon-
strated utility for use in research and clinical settings. Non-learning based methods [4,5]
heavily rely on hand-crafted features with limited representation capability and gener-
ally provide suboptimal performance [6]. Recently, the development and use of deep
convolutional neural networks (CNN) has achieved remarkable success for numerous
cardiac imaging tasks [7]. With the availability of large annotated datasets and powerful
computational platforms, these learning-based methods can automatically learn highly
discriminative features through feature abstraction in a hierarchical manner. Recent stud-
ies [3,8,9] showed significant promise of using neural networks for heart segmentation in
cardiac cine MRI, as recently reviewed [10]. Although promising, these studies mainly
trained and tested CNNs on datasets acquired using the same scanner or at the same health-
care center, which represents a limited number of applications of deep learning in most
research and clinical settings. Unfortunately, these [3,8] and other investigations [11] also
demonstrated that deep-learning models trained on one domain (source) do not generalize
well to a new domain (target) and direct application of a pre-trained model to a new dataset
often yields degraded performance because of the well-known domain shift issue facing
the community.

To facilitate translation of this important tool for widespread use in research and clini-
cal care, it is urgently required to improve the generalizability of deep-learning methods to
datasets collected using different imaging settings on different systems at various locations
in patients with distinct diseases. Domain adaptation [12] aims to address this issue by
fine-tuning a pre-trained model using a small amount of labeled data from a target domain,
or by learning domain-invariant features or transforming data from the target domain to
resemble the source domain. For example, previous studies [8,13] fine-tuned a pre-trained
model using manually annotated datasets for new cardiac MRI segmentation tasks in a
supervised manner. Other studies employed adversarial learning to transform data in a
one domain (source) to resemble data in another domain (target) at the image level [14]
or image-and-feature level [15] for unsupervised domain-adaptation-based cardiac image
segmentation. Data augmentation [16] represents a very different approach to solving this
problem by artificially enlarging the training datasets through extensive transformations to
train a model that is robust to potential variations in new domains. Although commonly
used classical data augmentation techniques (e.g., geometrical transformation, noise, con-
trast and blurring perturbation, histogram equalization and matching) have been widely
used in various applications, other advanced and extensive augmentation techniques have
also demonstrated effectiveness in addressing the domain shift issue [17,18]. In particular,
recent studies using advanced data augmentation techniques demonstrated higher per-
formance than several adversarial learning-based domain-adaptation methods for several
medical image segmentation tasks [17,18].

Although the previous studies demonstrated some promise in tackling the domain
shift issue for medical image segmentation, these algorithms have limitations. For example,
domain adaptation using labeled data from a target domain requires a substantial amount
of time and expertise for manual annotation and is not compatible with efficient research
and clinical workflow. Adversarial learning that transforms a dataset from a source domain
to resemble a target domain typically requires a large dataset from the target domain and
a long time for re-training/fine-tuning. Data augmentation aims to learn non-domain
specific features by performing extensive transformations to change the appearance of
training datasets and often generates non-realistic datasets that do not resemble real world
cases, which may or may not adversely affect the performance. Another potential issue
associated with these techniques is the increased difficulty of algorithm interpretability
because of the “black box” nature of deep-learning methods. Here, we proposed a different
approach to tackling the domain shift issue. In particular, we employed a machine-learning
method to automatically segment a subset of an unseen dataset without manual anno-
tations to fine-tune a pre-trained deep-learning model to segment cardiac MRI datasets
from a different domain. The proposed approach required 12 min to segment a relatively
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small dataset of 10 subjects for fine-tuning and to update the pre-trained model without
affecting algorithm interpretability. Importantly, our approach yielded several commonly
used and clinically relevant LV function measurements that are in strong agreement with
expert manual analyses; this was not demonstrated in the previous studies. A preliminary
version of this work has been published in conference proceedings [19] and there are
substantial differences between the current work and the previous version [19]. In the
current version, we reviewed some commonly used techniques (e.g., domain adaptation
and data augmentation) that are developed to tackle the domain shift issue and discussed
the advantages/limitations of these techniques. We also provided some details regarding
the mathematical formulation and upper bound-based iterative optimization of the pro-
posed continuous kernel-cut method. In addition, we implemented several state-of-the-art
deep-learning segmentation models (DeepLabV3+ and an optimized style-intensity aug-
mentation method) and performed comprehensive comparison between these methods
and our approach. Furthermore, we discussed the study limitations and proposed some
future work directions. These elements were not included in our previous work [19] and
represents some of the major differences in the current work.

2. Methods
2.1. Cardiac MRI Datasets

We investigated two cine cardiac MR datasets from the Left Ventricle Segmentation
Challenge (LVSC) held in 2009 [20] and the 2017 Automated Cardiac Diagnosis Chal-
lenge (ACDC) [9]. The LVSC dataset (https://www.cardiacatlas.org/\studies/sunnybrook-
cardiac-data/, accessed 20 March 2021) consists of 45 subjects (mean age = 61 ± 15 years,
age range = [23, 88] years; 32 male) enrolled in clinical studies at Sunnybrook Health
Sciences Centre (Canada), including healthy volunteers (n = 9) and patients with hy-
pertrophy (n = 12), or with heart failure with (n = 12) and without (n = 12) infarction.
Two-dimensional short-axis cine images of the whole heart were obtained with as SSFP
sequence (voxel size = 1.25–1.56 mm2, slice thickness = 8–10 mm, inter-slice gap = 8 mm,
6–12 slices, 20 phases per cardiac cycle) on a 1.5T scanner (Signa, GE Healthcare, Milwaukee,
WI, USA). For each subject, both the myocardium (LVM) and blood cavity (LVC) of the left
ventricle in the cine images at the end-diastole were manually segmented by a cardiologist,
and only the LV cavity was manually segmented at the end-systolic phase. Therefore, only
the cine MRI datasets at the end-diastolic phase (n = 45 images) were used in this study.

The ACDC dataset (https://www.creatis.insa-lyon.fr/Challenge/acdc/, accessed 20
March 2021) comprises 100 participants (mean weight = 75± 17 kg; mean height = 171 ± 10 cm)
acquired in clinical routine at the University Hospital of Dijon (France). The dataset cov-
ers five categories of well-defined pathologies (n = 20 subjects in each category): heart
failure with myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopa-
thy, and abnormal right ventricle, as well as healthy subjects. Two-dimensional short-axis
cine images covering the entire LV were acquired on 1.5T or 3.0T scanners (Siemens Aera
and Siemens Trio, Siemens Medical Solutions, Germany) using an SSFP sequence (voxel
size = 1.34–1.68 mm2, slice thickness = 5–10 mm, inter-slice gap = 5 mm (sometimes),
6–18 slices, 28–40 phases per cardiac cycle). The dataset had substantial variability in im-
age quality, including noise, motion and banding artefacts, MR low-frequency intensity
fluctuation, and varying field-of-view. Manual segmentation of the LVM and LVC was
performed on the cine images at both end-diastolic and end-systolic phases, which were
double-checked by two independent experts to reach consensus.

We note that the manual segmentation of the LVSC dataset is not very consistent
between subjects and there is substantial “noise” in manual annotations. In addition, the
LVSC dataset contains cine images with LV cavity and myocardium segmentation only at
the end-diastolic phase. We used the LVSC dataset for CNN pre-training, which provides
additional opportunity to explore the tolerance to annotation noise and generalizability
from end-diastolic phase to end-systolic phase for a deep-learning segmentation algorithm.
The ACDC dataset was randomly divided into 10 and 90 subjects for CNN fine-tuning and

https://www.cardiacatlas.org/\studies/sunnybrook-cardiac-data/
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testing, respectively. All data used in this study were anonymized and ethics approval for
using these public datasets was exempted.

2.2. Algorithm Workflow

We used a 2D U-net [21] that comprised a symmetric contracting and expanding path
with five levels. Each level consists of two blocks of 3 × 3 convolution and a rectified linear
unit, followed by max-pooling in the contracting path or up-sampling in the expanding
path; the number of feature maps was 16 in the top level and increased to 256 in the bottom
level. The network was pre-trained on 45 images from the LVSC dataset for 200 epochs by
minimizing the cross-entropy between model prediction and manual reference segmenta-
tion using an ADAM optimizer (learning rate = 10−4). Spatial data augmentation, including
translation (−50–50 pixels), random rotation (−50–50◦), voxel size and intensity scaling
(0.75–1.25 times), and elastic deformation, was performed in parallel. To further minimize
overfitting and improve CNN segmentation generalizability, Monte-Carlo dropout [22]
(MCD, dropout rate = 0.5) was applied to each block in the bottom three levels of the 2D
U-net. These settings were adopted for the following fine-tuning procedure.

Figure 1 provides the schematic of our proposed algorithm. Briefly, the trained U-
net was applied to the 10 ACDC fine-tuning subjects. For each subject, test-time MCD
was applied to generate 50 segmentation samples (s1(x), s2(x), . . . , s50(x), x ∈ Ω); the
mean of the associated probability maps were calculated to derive the “mean” segmen-
tation s̄(x). In addition, the standard deviation of the 50 segmentation samples was
calculated for each pixel and used as pixel-wise U-net segmentation uncertainty ω(x),
i.e., ω(x) ∝ 1

std({s1(x),s2(x)...,s50(x)}) , x ∈ Ω. The derived “mean" segmentation s̄(x) was
post-processed using a recently developed continuous kernel-cut (CKC) segmentation
method, which demonstrated effectiveness in post-processing cardiac MRI CNN segmen-
tation outputs [3,23,24]. The CKC segmentation algorithm employs normalized cut for
balanced pair-wise feature clustering and continuous regularization on image grids to gen-
erate spatially smooth contours. In addition, we proposed to use the derived CNN “mean”
segmentation as descent initialization of the CKC algorithm such that in regions with high
U-net segmentation uncertainty (i.e., ω(x) is relatively low), the final segmentation u(x)
can be more different from the “mean” segmentation s̄(x) and vice versa. To this end, we
derived the deep-learning uncertainty-guided CKC segmentation algorithm by minimizing
the following function:

∑
l∈L
−

uT
l Xul

1Xul
+

∫
Ω

g(x)|∇ul(x)|dx +
∫

Ω
ω(x) · |ul(x)− s̄l(x)|dx , ul ∈ {0, 1}, (1)

subject to ∑l∈L ul(x) = 1 , ∀x ∈ Ω. In Equation (1), ul(x) ∈ {0, 1} is decomposed from the fi-
nal segmentation u(x) and indicates if voxel x is in region l ∈ L = {LVM, LVC, background},
X is a matrix where each element X(i, j) indicates if voxel j is within the K-nearest neighbor
of voxel i, 1 is an all-ones matrix, g(x) is a boundary weight function based on image
contrast edges, and ω(x) enforces the similarity of CNN initial segmentation s̄l(x) and
CKC final segmentation ul(x) for each region l. Of note, s̄l was decomposed from s̄l similar
to ul(x). The CKC algorithm in Equation (1) integrates the advantages of balanced portion-
ing of image features in high-dimensional space and spatially smooth segmentation that
mimics the behavior of manual delineation [3,24,25].

Direct optimization of the high-order and non-smooth function in Equation (1) is
particularly challenging. Following the previous work [3,23,26], we adopted an upper
bound optimization technique to simplify the optimization of Equation (1) by deriving
and optimizing a series of upper bound functions of Equation (1), assuming that the upper
bound function is easier to minimize than the original formulations. Briefly, for any given
segmentation ûl , l ∈ L, x ∈ Ω, previous studies [26] showed that the following is an upper
bound function of Equation (1):
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∑
l∈L

〈
X1ûT

l Xûl

(1Xûl)2 −
2Xûl
1Xûl

, ul

〉
+

∫
Ω

g(x)|∇ul(x)|dx +
∫

Ω
ω(x) · |ul(x)− s̄l(x)|dx , ul ∈ {0, 1}, (2)

where 〈, 〉 and T denote inner product and transpose, respectively; the first term in
Equation (2) is linear with respect to ul that we aim to solve. Through convex relaxation,
i.e., by relaxing ul ∈ {0, 1} to ul ∈ [0, 1], we can derive a convex relaxed formulation
of Equation (2), which can be efficiently and globally optimized using a continuous min-
cut/max-flow algorithm on a graphics card [27,28]. We refer readers to the previous stud-
ies [27,28] for the details of the continuous min-cut/max-flow algorithm. Please note that
Equation (1) was optimized iteratively; for each iteration, we derived an upper bound
using Equation (2) and minimized the upper bound to generate a solution ûl , which was
used to update the upper bound for the next iteration. In particular, for the first iteration
we used the derived CNN “mean” segmentation s̄ll as the given solution ûl . This process
was iterated several times until convergence (we observed convergence typically within
five iterations in this study) to derive the final solution to Equation (1). We refer readers
to previous studies [3,24] for the details of minimizing the CKC segmentation model in
Equation (1). Upon CKC algorithm convergence, the final segmentation of the fine-tuning
dataset (without manual labels) was saved and used to update the trained U-net model for
another 20 epochs in ∼10 min. This procedure was iterated until convergence and the final
U-net model was tested on the remaining 90 ACDC subjects for LV indices quantification.
We also implemented several commonly used methods for comparison, including:

1. A naive method (Naive): The trained U-net was used to segment the 90 ACDC test
subjects directly.

2. A combined method (Combined) that integrated MCD, spatial augmentation, and
style-intensity augmentation method. We explored the effects of MCD, spatial aug-
mentation, and advanced style-intensity augmentation for U-net training; the optimal
combination of the three components constitutes the combined method. A recent
study [17] proposed style-intensity augmentation during network training to tackle
the domain shift issue and demonstrated state-of-the-art performance in breast seg-
mentation in MRI datasets from a different domain. Style-intensity augmentation
comprises style transfer and intensity remapping, which produce non-realistic look-
ing MR scans while preserving the image shapes. The style transfer procedure uses
features extracted from style images to augment the training images, randomizing the
color, texture and contrast but preserving the geometry [29]. The intensity remapping
technique generates a random mapping function to map the original image signal in-
tensities to new values. This method is based on the assumption that by considerably
changing the appearance of training images, the network will focus on non-domain
specific features, e.g., the geometric shape of breast that is preserved in different
breast MR datasets [17]. The optimized combined method was applied to the ACDC
test dataset.

3. DeepLab: DeepLabV3+ [30], a top performing neural network in several medical
image segmentation challenges, was trained on the LVSC dataset and tested on the
ACDC test dataset.

Of note, the proposed algorithm and the naive method were implemented based on the
same settings, i.e., MCD+spatial augmentation, and the proposed algorithm incorporated
the fine-tuning procedure. The proposed algorithm, the naive and the combined methods
were implemented using TensorFlow 1.4.0; DeepLabV3+ was implemented with Keras
2.2.4. All were run on Python 2.7.14 platforms on a GPU (Tesla P100, NVIDIA Corp., Santa
Clara, CA, USA). The CKC segmentation algorithm was implemented using MATLAB
2013a (MathWorks, Natick, MA, USA) and CUDA (CUDA v8.0, NVIDIA Corp., Santa Clara,
CA, USA) on a Ubuntu 14.02 desktop with a GPU (GeForce, GTX TITAN X, Santa Clara,
CA, USA).
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Figure 1. Schematic of the proposed algorithm pipeline for cardiac MR image segmentation using pre-
trained CNNs. A trained CNN was applied to 10 previously unseen subjects; the initial segmentation
was post-processed and post-processed using a kernel-cut algorithm. The resulting segmentation
was used to update the trained CNN. This procedure was iterated till convergence to derive the final
CNN model, which was applied to the unseen test dataset for LV function evaluation. Please note
that no manual annotation of the unseen dataset was required in this procedure.

2.3. Evaluation Methods

Algorithm performance was evaluated for LV segmentation and function measure-
ments. LV segmentation accuracy was evaluated using Dice coefficient (DSC) and average
surface distance in a symmetric manner (ASSD) by comparing algorithm and manual
segmentation masks [24,31]. We denote Ra and Rm the algorithm and manual segmenta-
tion, respectively. DSC measures the overlap of Ra and Rm and is calculated as: 2|Ra∩Rm |

|Ra |+|Rm | ,
where |.| represents the size of a mask. ASSD evaluates the closeness between the algo-
rithm and manual segmentation boundaries and is given as: 1

2{
1
|∂Ra | ∑p∈∂Ra d(p, ∂Rm) +

1
|∂Rm | ∑p∈∂Rm d(p, ∂Ra)}, where ∂Ra represents the algorithm segmentation boundary and
d(p, ∂Ra) is the shortest Euclidean distance from a vertex p (e.g., a vertex from the man-
ual segmentation boundary ∂Rm) to ∂Ra. ∂Rm and d(p, ∂Rm) are defined the same way.
Please note that traditional classification accuracy metrics, including true/false positives,
true/false negatives and their combinations, can also be used to evaluate image segmen-
tation accuracies [32] and DSC can be derived based on the four basic cardinalities when
evaluating Boolean data. In fact, DSC, ASSD, and volume errors are widely used overlap,
volume, and distance-based metrics for comprehensive evaluation of segmentation algo-
rithms [33], and here we adopted the same or similar metrics consistent with most image
segmentation studies.

In addition, the derived algorithm segmentation masks were used to determine LVMM,
LVEDV, LVESV, LVSV, and LVEF For LVMM calculation, a density of 1.05 g/mL for my-
ocardium [34] was used.

2.4. Statistical Analysis

Continuous variables were expressed as mean± standard deviation (Mean± SD). DSC
provided by the proposed approach was compared with the other comparative methods
using paired t-tests. Algorithm LV function measurement errors were compared using
paired t-tests. Relationships and agreement for algorithm vs. manual LV indices were
assessed using Pearson correlation coefficients (r, 95% confidence intervals [CI]) and Bland-
Altman analyses (with 95% limits of agreement [LOA]). Fisher’s z-transformation [35]
was used to compare the correlation coefficients provided by each algorithm vs. manual
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analyses. Shapiro–Wilk tests were used to assess if the data can be modeled by a normal
distribution and when data were not normally distributed, nonparametric tests were
performed. We used GraphPad Prism v7.00 (GraphPad Software Inc., San Diego, CA, USA)
for all the statistical analyses. Results were considered significant when the probability of
making a two-tailed type I error was less than 5% (p < 0.05).

3. Results

Figure 2 shows segmentation of different regions of the heart at end-diastole and end-
systole for three ACDC test subjects using the proposed algorithm (left) and the combined
method (right).

S
ub
je
ct
1 E
D

E
S

S
ub
je
ct
2 E
D

E
S

S
ub
je
ct
3 E
D

E
S

Base Apex Base Apex

Proposed Combined
Figure 2. Representative segmentation of different regions of the heart at end-systole and end-diastole
for three unseen ACDC test subjects (Subject1, Subject2, and Subject3) using the proposed (left) and
the combined (right) methods. Algorithm and manual segmentation are shown in purple and yellow,
respectively. ED: end-diastole; ES: end-systole.

We observed that direct application of the trained model to the 10 fine-tuning subjects
yielded DSC of 0.77, 0.90 and ASSD of 2.32 mm, 2.88 mm for LVM, LVC; these accuracies
were improved to 0.82, 0.92 for DSC and 1.97 mm, 1.91 mm for ASSD by the proposed CKC
algorithm (data not shown), which were used to fine-tune the pre-trained model. As shown
in Table 1, for the 90 test subjects the proposed algorithm yielded DSC of 0.81± 0.09 for LVM
and 0.90 ± 0.09 for LVC. Meanwhile, the combined method generated DSC of 0.78 ± 0.08
and 0.87 ± 0.12 for the two regions, higher than the naive method and DeepLabV3+.
Similarly, the proposed algorithm yielded substantially lower ASSD compared with the
naive method, which further outperformed the combined method and DeepLabV3+. Of
note, the DSC and ASSD provided by our approach were significantly different from
each of the other algorithms (p < 0.0001), and the naive method demonstrated higher
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overall segmentation accuracy than the combined method and DeepLabV3+. As shown in
Table A1 in Appendix A, MCD, spatial augmentation, and style-intensity augmentation
each improved the segmentation accuracy and the combination of the three components,
which constitutes the combined method, provided the highest segmentation accuracy
among all the possible combinations.

Table 1. LV myocardium and cavity segmentation accuracy (mean ± SD) for n = 180 images from 90
previously unseen ACDC test subjects.

DSC ([0, 1]) ASSD (mm)
Methods LVM LVV LVM LVC

Proposed 0.81 ± 0.09 0.90 ± 0.09 2.04 ± 1.77 1.82 ± 2.18
Naive 0.74 ± 0.12 * 0.87 ± 0.12 * 2.43 ± 2.16 * 2.40 ± 2.58 *

Combined 0.78 ± 0.08 * 0.87 ± 0.12 * 2.71 ± 2.50 * 2.87 ± 2.61 *
DeepLab 0.26 ± 0.18 * 0.32 ± 0.27 * 18.60 ± 17.48 * 17.33 ± 12.37 *

DSC: Dice-similarity-coefficient, ASSD: average-symmetric-surfaced-distance; LVM: left ventricle myocardium,
LVC: left ventricle cavity; *: p < 0.0001 when compared with the proposed algorithm.

Table 2 summarizes the LV functional parameters generated by manual and algo-
rithm segmentation, illustrating that LV function measurements provided by the proposed
approach are closer to manual results compared with the other methods. For example,
paired t-tests showed that LV indices provided by the proposed approach were not signifi-
cantly different from manual measurements, whereas the measurements generated by the
naive and combined method were significantly different from manual LVMM (Proposed:
p = 0.1976; Naive: p < 0.0001; Combined: p = 0.0023), LVEDV (Proposed: p = 0.8015; Naive:
p < 0.0001; Combined: p < 0.0001), LVESV (Proposed: p = 0.8631; Naive: p < 0.0001; Com-
bined: p < 0.0001), LVSV (Proposed: p = 0.6617; Naive: p = 0.0734; Combined: p < 0.0001),
and LVEF (Proposed: p = 0.2495; Naive: p = 0.0059; Combined: p < 0.0001).

Table 2. Algorithm and manual LV function measurements (mean ± SD) for n = 180 images from 90
previously unseen ACDC test subjects.

Manual Proposed Naive Combined DeepLab

LVMM (g) U 138.1 ± 54.3 129.3 ± 49.80.1976 110.8 ± 48.2<0.0001 154.4 ± 83.60.0023 46.4 ± 34.7<0.0001
LVEDV (mL) 163.8 ± 75.2 162.9 ± 72.00.8015 174.6 ± 74.5<0.0001 175.8 ± 72.8<0.0001 71.8 ± 69.3<0.0001
LVESV (mL) 99.4 ± 80.4 99.2 ± 76.70.8631 108.2 ± 80.0<0.0001 118.4 ± 76.2<0.0001 58.3 ± 62.1<0.0001
LVSV (mL) 64.4 ± 24.6 63.7 ± 25.80.6617 66.5 ± 31.50.0734 57.4 ± 25.9<0.0001 13.5 ± 24.2<0.0001

LVEF (%) 46.2 ± 20.4 45.5 ± 20.50.2495 43.0 ± 23.60.0059 36.7 ± 18.4<0.0001
−4.4 ±

142.2<0.0001

LVMM: LV myocardium mass (g); LVEDV: LV end-diastolic volume (mL); LVESV: LV end-systolic volume (mL);
LVSV: LV stroke volume (mL); LVEF: LV ejection fraction (%); U : n = 180 images from 90 subject; p-values for
comparison of algorithm vs. manual LV indices are shown in subscripts.

Table 3 and Figure 3 show that there were strong and significant correlations between
the proposed algorithm and the naive method vs. manual analyses of LVMM (Proposed:
r = 0.86, p < 0.0001; Naive: r = 0.79, p < 0.0001), LVEDV (Proposed: r = 0.99, p < 0.0001; Naive:
r = 0.98, p < 0.0001), LVESV (Proposed: r = 0.99, p < 0.0001; Naive: r = 0.98, p < 0.0001), LVSV
(Proposed: r = 0.92, p < 0.0001; Naive: r =0.84, p < 0.0001), and LVEF (Proposed: r = 0.93,
p < 0.0001; Naive: r = 0.75, p < 0.0001). Please note that the correlations between the naive
and combined methods vs. manual measurements were very similar for all the LV indices
except for LVMM. Fisher’s z-transformations showed that the correlations for the proposed
algorithm and the naive method vs. manual measurements were significantly different for
LVMM (p = 0.0366), LVEDV (p = 0.0214), LVESV (p = 0.0214), LVSV (p = 0.0151), and LVEF
(p < 0.0001). Similar results were observed when comparing the correlations yielded by the
proposed algorithm and the combined method.
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Table 3. Relationships (Pearson r and []=95% CI) for algorithm vs. manual LV function measurements
for n = 180 images from 90 previously unseen ACDC test subjects.

Pearson (r, 95% CI) Proposed vs. Manual Naive vs. Manual Combined. vs.
Manual DeepLab vs. Manual

ine LVMM (g) U 0.86 ([0.80, 0.90]) 0.79 ([0.73, 0.84]) 0.41 ([0.28, 0.52]) 0.47 ([0.35, 0.58])
LVEDV (mL) 0.99 ([0.98, 0.99]) 0.98 ([0.97, 0.99]) 0.99 ([0.99, 0.99]) 0.57 ([0.41, 0.69])
LVESV (mL) 0.99 ([0.98, 0.99]) 0.98 ([0.97, 0.99]) 0.97 ([0.96, 0.98]) 0.65 ([0.51, 0.75])
LVSV (mL) 0.92 ([0.88, 0.95]) 0.84 ([0.76, 0.89]) 0.83 ([0.75, 0.89]) 0.13 ([−0.08, 0.33])
LVEF (%) 0.93 ([0.89, 0.95]) 0.75 ([0.65, 0.83]) 0.76 ([0.65, 0.83]) 0.08 ([−0.13, 0.28])

LVMM: LV myocardium mass (g); LVEDV: LV end-diastolic volume (mL); LVESV: LV end-systolic volume (mL);
LVSV: LV stroke volume (mL); LVEF: LV ejection fraction (%); U : n = 180 images from 90 subjects.
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Figure 3. Relationships and agreement between the proposed algorithm vs. manual measurements
of LVMM (A), LVEDV (B), LVESV (C), LVSV (D), and LVEF (E) (n = 180 images from 90 subjects).
Linear regression and Bland-Altman analyses of algorithm vs. manual LV indices are shown in the
top and bottom plots, respectively. Alg: algorithm results; Man: manual results. Solid lines (blue)
indicate the biases and dotted lines (red) represent the 95% limits of agreement.

Figure 3 also shows the quantitative agreement between the proposed algorithm and
manual LV indices. Bland-Altman analyses indicated that there was promising agree-
ment between the proposed algorithm and manual LVMM (bias = −8.8 ± 30.3 g, 95%
LOA = [−68.1, 50.5] g), LVEDV (bias = −0.9 ± 13.1 mL, 95% LOA = [−26.6, 24.8] mL),
LVESV (bias =−0.2± 13.8 mL, 95% LOA = [−27.3, 26.9] mL), LVSV (bias = −0.7 ± 10.0 mL,
95% LOA = [−20.2, 18.9] mL), and LVEF (bias = −0.6 ± 7.8%, 95% LOA = [−15.9%,
14.6%]). In contrast, the naive and combined methods yielded greater biases and wider
95% LOAs for LVMM (Naive: bias = −27.3 ± 33.3 g, 95% LOA = [−92.5, 37.9] g; Combined:
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bias =16.4 ± 79.0 g, 95% LOA = [−138.5, 171.3] g); LVEDV (Naive: bias=10.9 ± 14.5 mL,
95% LOA = [−17.5, 39.2] mL; Combined: bias = 12.0 ± 11.2 mL, 95% LOA = [−10.0,
34.0] mL), LVESV (Naive: bias = 8.8 ± 16.7 mL, 95% LOA = [−24.0, 41.5] mL; Combined:
bias = 19.0± 18.1 mL, 95% LOA = [−16.4, 54.4] mL), LVSV (Naive: bias = 2.1± 17.4 mL, 95%
LOA = [−31.9, 36.1] mL; Combined: bias = −7.0 ± 14.7 mL, 95% LOA = [−35.8, 21.8] mL),
and LVEF (Naive: bias = −3.1 ± 15.8%, 95% LOA = [−34.0%, 27.7%]; Combined:
bias = −9.5 ± 13.6%, 95% LOA = [−36.1%, 17.2%]).

For the proposed algorithm and the naive method, U-net training/pre-training was
completed in approximately 5 h. The fine-tuning procedure required an additional∼12 min,
including 10 s to post-process each image using the CKC algorithm and 10 min to update
the U-net parameters. The combined method required ∼15 h for training and DeepLabV3+
required ∼5 h. For all the trained/fine-tuned models, inference of a new 2D cine image
stack required ∼1 s.

4. Discussion

Deep learning is emerging to potentially transform cardiac imaging workflow and
clinical patient care. Here, we developed an approach to employing a trained CNN for LV
segmentation and function evaluation in an independent cardiac cine MRI dataset. For a
dataset of 180 cine MR images from 90 subjects with various cardiac disease, we made the
following observations: (1) improved segmentation accuracy in the independent dataset;
(2) strong correlations between the proposed approach and manual analyses of LV indices;
and (3) rapid and fully automated fine-tuning procedure without needing manual labels for
the independent dataset.

Cine MRI has been routinely performed for evaluation of LV structure and function in
cardiovascular MR exams. Deep learning and machine leaning have demonstrated promise
in several aspects of the cardiac research and clinical workflow, including but not limited to
prediction of cardiac left ventricular kinematics and boundaries [36], classification of cardiac
arrhythmias from electrocardiogram [37], and detection of cardiac structure and structural
abnormalities [38]. However, direct application of a trained model to a previously unseen
dataset often yields suboptimal performance [3,8,39]. For example, direct application
of a CNN trained on a large cine MRI dataset of 4275 subjects [8] to 20 patients in a
previously unseen ACDC dataset yielded DSC of 0.65 for LVM and 0.74 for LVC. Previous
studies showed that DSC is usually sensitive to small differences when the segmented
object is relatively small and not very sensitive to errors when the object is relatively
large [40]. We note that the size of LVM is generally smaller than the LVC at end-diastole
although the differences between the two regions are smaller at end-systole. A recent
study [9] investigated the variabilities of intra and inter-observer manual segmentation.
The authors reported greater DSC of 0.956–0.967 for LVC and 0.870–0.900 for LVM at
end-diastole, and similarly, these were 0.898–0.941 and 0.891–0.917 at end-systole. The
robustness of manual segmentation and the substantially lower algorithm DSC [8] than
repeated manual analyses (0.65 vs. 0.870–917) suggest that manual segmentation errors
have a minimal effect in this case. In addition, the training and testing datasets used by
Bai et al. [8] differ substantially as the training dataset mainly consists of healthy volunteers
whereas the testing dataset comprise patients with diverse cardiac pathologies, which
affect the appearance of the myocardium in MR images. Based on the literature and our
experience, we think that the relatively low DSC for LVM than LVC (0.65 vs. 0.74) reported
by Bai et al. [8] is mainly caused by the combined effects of the large differences between
training and testing datasets, the relatively small size, hollow shape, and image signal
intensity inhomogeneity in the LVM compared with LVC. However, this warrants further
investigation. Nonetheless, the initial suboptimal accuracies [8] were later improved by
employing 80 manually segmented subjects in the ACDC dataset for fine-tuning. Previous
studies [4,41] and our efforts have shown that manual segmentation of a 3D cardiac MR
volume with 10–15 slices typically requires 20–30 min. This lengthy procedure requires
experience and expertise from examiners, introduces user variability, and is not compatible
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with efficient research and clinical workflow. Similarly, another study [3] applied a pre-
trained state-of-the-art CNN (1st place winner in the ACDC segmentation challenge) to
40 ACDC subjects and achieved DSC of 0.78 for LVM and 0.86 LVC. Compared with
these previous works, our approach yielded greater DSC of 0.81 for LVM and 0.90 for
LVC without requiring manual segmentation of the fine-tuning datasets. In our future
work, we will compare the results from this study with that by fine-tuning the proposed
algorithm framework using manually segmented unseen dataset in terms of segmentation
accuracy and time. In addition, the derived LV function measurements provided by
our approach were strongly correlated with expert manual analyses with no significant
differences between the techniques (p = 0.1976–0.8631, Table 2). This is important because
our approach implemented fully automated transfer learning to segment an independent
cardiac cine MR dataset acquired using a different MR system at a different location in
patients with different cardiac diseases without requiring manual segmentation of the target
dataset, potentially enabling efficient clinical workflow and facilitating broader use of deep
learning for a wide range of applications.

We also implemented a combined method that employed state-of-the-art style-intensity
augmentation techniques [17] to address the domain shift issue, which had performed
well for breast segmentation in different MRI datasets. Compared with our approach, the
optimized implementation of the combined method yielded lower DSC of 0.78 for LVM and
0.87 for LVC with substantially greater ASSD, as shown in Table 1. In another study [18],
the authors tackled a similar problem by developing a series of stacked transformations
that performed extensive data augmentation (sharpening, blurring, adding noise, changing
brightness/contrast, intensity perturbation, rotation, scaling, deformation) during network
training. For eight public MRI/ultrasound datasets, the authors achieved improved seg-
mentation accuracy with the use of the proposed data augmentation techniques. These
studies [17,18] showed that advanced and extensive data augmentation techniques yielded
higher segmentation performance than adversarial learning-based domain-adaptation
techniques. Surprisingly, the naive method generally outperformed the combined method
for segmentation accuracy measurements (except for DSC for LVM) but the correlations of
LV function measurements with manual results were comparable. This warrants further
investigation. Of note, the well-known DeepLabV3+ algorithm [30] performed poorly in
this work (see Figure A1), further highlighting the challenges of domain shift for medical
image segmentation. In fact, we previously trained the DeepLabV3+ model on 50 subjects
from the UK Biobank dataset and applied the model to segment 50 previously unseen
ACDC subjects. We achieved DSC of 0.437 for LVM and 0.568 for LVC. Similarly, we trained
the DeepLabV3+ model on 50 ACDC subjects and tested the model on 50 subjects from the
UK Biobank dataset. We obtained DSC of 0.745 for LVM AND 0.813 for LVC. Please note
that these results are excluded in the final version of our previous paper [3] as suggested by
the reviewers. In a recent study of lung MRI segmentation [23], we achieved DSC of 0.872
and 0.701 by training the DeepLabV3+ model on one dataset and testing the model on
another different dataset. Collectively, these and other studies suggest the inability of deep
learning, including DeepLabV3+ and other state-of-the-art models, to deal with the domain
shift issue for medical image segmentation. Our approach outperformed the naive method
and a combined method that used state-of-the-art data augmentation techniques [17] and
differs from the other methods [18,31] in that in addition to comprehensive data augmenta-
tion, we implemented Monte-Carlo dropout to mitigate overfitting and a CKC algorithm to
automatically update the “annotations" of the fine-tuning subjects. Previous studies [3,24]
demonstrated the effectiveness of using CKC to improve CNN initial segmentation and
here we substantially extended the previous work by demonstrating its utility in a new
application, whereby the CKC post-processing results were incorporated to effectively tune
the trained model to segment an independent cardiac cine MRI dataset. The proposed
framework is relatively independent from commonly used domain adaptation and data
augmentation techniques. Therefore, we think that our approach could be combined with
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these methods to address the domain shift issue, which represents an advantage of our
approach that will be further investigated in future work.

Although our approach was based on a U-net implemented with Monte-Carlo dropout
and a recently developed CKC algorithm, this work differs from other cardiac image seg-
mentation methods developed to tackle a similar issue with higher performance for LV
segmentation and biomarker quantification. In addition, the promise of our approach was
demonstrated in the context of a U-net, which has been widely used for numerous applica-
tions, suggesting the generalizability of our framework for a broad range of segmentation
tasks that involve a U-net. The improved segmentation generalizability may stem from the
combination of the advantages of deep-learning and machine-learning methods without
a deep architecture. As a result, both deep and shallow image features can be learned
or employed, and the power of data-driven and rule-based segmentation methods was
aggregated, potentially mitigating the limitations of the individual methods. However,
further investigation of this is warranted. Efforts that can further improve the performance
of our proposed approach including: (1) applying the CKC algorithm only to the fine-
tuning subjects with problematic segmentation; (2) automatically selecting the datasets
with acceptable CKC segmentation for CNNfine-tuning; and (3) adding a few more new
unlabeled datasets for each iteration. We think that these strategies may be optimized
and implemented in parallel to for potentially greater robustness. Regardless, the results
realized here suggest that our approach provides a way to improve deep-learning segmen-
tation generalizability without increasing the difficulties of algorithm interpretability, a
major concern facing the community [42], and may facilitate broader use and translation of
deep-learning techniques for research and clinical care.

We acknowledge several study limitations. First, the segmentation accuracy of our
approach is lower than CNNs trained and tested on the same datasets. However, here
we focus on adapting a trained CNN for segmentation of previously unseen cardiac MRI
datasets, which is particularly challenging and requires urgent solution. Importantly, we
achieved segmentation accuracies higher than two state-of-the-art segmentation methods
(a combined method that employed style-intensity augmentation and DeepLabV3+) and LV
function measurements that were strongly correlated with manual results. We note that the
basal and apical slices of the heart are difficult to segment due to poor image qualities and
the complexity of cardiac structures, which represent some of the major challenges facing
the community. In addition, the proposed algorithm was validated on a retrospective
dataset and the effectiveness of this approach warrants a prospective evaluation with
datasets from different centers, MR scanners, imaging protocols, and disease phenotypes.

5. Conclusions

In conclusion, we developed a way to employ a pre-trained neural network to segment
previously unseen cardiac MR datasets without requiring manual annotations of the unseen
datasets for fine-tuning. For a clinical dataset of patients with diverse cardiac disease, we
achieved LV segmentation and function evaluation accuracy and precision that may be
suitable for research and clinical use. As such, our approach may facilitate the translation
and use of deep learning in cardiac imaging workflow.

Appendix A

Table A1 shows that Monte-Carlo dropout, spatial augmentation, and style-intensity
augmentation together led to the optimal performance of the combined method [17].
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Table A1. Effects of Monte-Carlo dropout, spatial augmentation, and style-intensity augmentation on
U-net training using the LVSC dataset. The three components were combined during U-net training
(optimal implementation) and the trained U-net models were directly applied to the 90 ACDC test
subjects (n = 180 images) for DSC and ASSD (mean ± SD) calculation.

DSC ([0, 1]) ASSD (mm)
MCD Spa. Aug. Sty.-Int. Aug. LVM LVC LVM LVC
ine 7 7 7 0.33 ± 0.22 0.46 ± 0.30 16.85 ± 21.52 15.28 ± 18.02

7 7 3 0.49 ± 0.18 0.68 ± 0.22 8.38 ± 7.33 8.55 ± 8.69
7 3 7 0.73 ± 0.12 0.85 ± 0.14 2.92 ± 2.86 3.34 ± 3.48
7 3 3 0.77 ± 0.07 0.87 ± 0.11 2.39 ± 2.05 2.80 ± 2.49
3 7 7 0.34 ± 0.21 0.49 ± 0.29 11.30 ± 16.93 9.97 ± 15.36
3 7 3 0.55 ± 0.17 0.71 ± 0.21 7.47 ± 7.00 7.37 ± 8.22
3 3 7 0.75 ± 0.11 0.87 ± 0.12 2.30 ± 1.64 2.39 ± 1.85
3 3 3 0.78 ± 0.08 0.87 ± 0.12 2.71 ± 2.50 2.87 ± 2.61

7: a component is not used., 3: a component is used. DSC: Dice-similarity-coefficient, ASSD: average-symmetric-
surfaced-distance; LVM: left ventricle myocardium; LVC: left ventricle cavity; MCD: Monte-Carlo dropout; Spa.
Aug.: spatial augmentation; Sty.-Int. Aug.: style-intensity augmentation.
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Figure A1. Representative segmentation of different regions of the heart at end-systole and end-
diastole for the same three subjects as that in Figure 2 using DeepLabV3+. Algorithm and manual
segmentation are shown in purple and yellow, respectively. ED: end-diastole; ES: end-systole.
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