
����������
�������

Citation: Ben Yehuda, R.; Kiperberg,

M.; Zaidenberg, N.J. Nanovised

Control Flow Attestation. Appl. Sci.

2022, 12, 2669. https://doi.org/

10.3390/app12052669

Academic Editors: Gregory

Epiphaniou and Carsten R. Maple

Received: 12 January 2022

Accepted: 18 February 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Nanovised Control Flow Attestation
Raz Ben Yehuda 1,† , Michael Kiperberg 2,† and Nezer Jacob Zaidenberg 3,*,†

1 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland; raziebe@gmail.com
2 Department of Software Engineering, Shamoon College of Engineering, Beer-Sheva 8410802, Israel;

michaki1@sce.ac.il
3 Faculty of Computer Science, College of Management Academic Studies, Rishon LeZion 7579806, Israel
* Correspondence: scipio@scipio.org
† These authors contributed equally to this work.

Abstract: This paper presents an improvement of control flow attestation (C-FLAT) for Linux. C-FLAT
is a control attestation system for embedded devices. It was implemented as a software executing
in ARM’s TrustZone on bare-metal devices. We extend the design and implementation of C-FLAT
through the use of a type 2 Nanovisor in the Linux operating system. We call our improved system
“C-FLAT Linux”. Compared to the original C-FLAT, C-FLAT Linux reduces processing overheads
and is able to detect the SlowLoris attack. We describe the architecture of C-FLAT Linux and provide
extensive measurements of its performance in benchmarks and real-world scenarios. In addition, we
demonstrate the detection of the SlowLoris attack on the Apache web server.

Keywords: hypervisor; ARM; Linux; control flow; SlowLoris; TrustZone

1. Introduction

C-FLAT by Abera et al. [1] is a technique for attesting an application’s control flow on
an embedded device. C-FLAT is a dynamic analysis tool. It complements static attestation
by capturing the program’s runtime behavior and verifies the exact sequence of executed
instructions, including branches and function returns. It allows the verifier to trace the
program’s flow control to determine whether the application’s control flow was compro-
mised. Combined with static attestation, C-FLAT can precisely attest embedded software
execution.

Originally, C-FLAT design allows attestation for simple systems. However, C-FLAT
does not support threads, processes or operating systems. Therefore, most industrial
systems are too complex for C-FLAT. Complex systems usually require multi-processing,
multi-threading, inheritance, or function pointers, etc. These features are available on a
General Purpose Operating System (GPOS); C-FLAT does not support GPOS.

Furthermore, C-FLAT runs on top of TrustZone. TrustZone programming requires
high expertise, as well as access to the boot loader code. Such access is usually available
only to the SoM (System On a Module) vendor. Here, we provide a similar but more
straightforward approach using our a dedicated Nanovisor [2]. In this paper, we extend
C-FLAT and eliminate the following limitations:

• Single threads—C-FLAT is available only for a single thread.
• Single Process— C-FLAT is available only for a single process.
• Multi-core—C-FLAT is utilized only for a single process.
• TrustZone access—C-FLAT requires access to TrustZone [3,4], which may not be

available in many industrial cases.

The paper’s main contribution is adapting C-FLAT for complex applications in a GPOS
(Linux). We demonstrate how our system can detect real exploits, such as SlowLoris, that
affect production systems and handles a real test case (CVE-2019-9210).

Appl. Sci. 2022, 12, 2669. https://doi.org/10.3390/app12052669 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052669
https://doi.org/10.3390/app12052669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5712-0677
https://orcid.org/0000-0001-8906-5940
https://orcid.org/0000-0003-3496-7925
https://doi.org/10.3390/app12052669
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052669?type=check_update&version=2

Appl. Sci. 2022, 12, 2669 2 of 18

We record the control flow path and send continuous sub-sequences to an attestation
server. Furthermore, as a result of using Linux, the attestation server may execute locally.
Local execution reduces the risk of transmitting the data over the network and allows for
better performance.

Additionally, as we use C-FLAT over a complex general-purpose application, we must
carefully approach the performance penalty. For this reason, we offer a novel approach to
mitigate it. We run the instrumented section alternately. For example, execute this code
section once a second.

Our contribution provides software-only CFI for ARM for software running in a GPOS.
We perform the path monitoring in TEE or HYP mode. We provide a context-sensitive CFI
and is available for 32 bit applications and is useful on Android Phones. Our Nanovisor
software can run on EL2 (HYP mode) or TrustZone. Since it can track suspicious paths, it
helps in detecting DOS attacks.

2. Related Work

Research in CFI is vast and is available in the hardware and the software. ARMv8.3-
PAuth [3] adds the Pointer Authentication Code (PAC) feature to the ARM processors. PAC
validates whether the target of an indirect branch is valid (Figure 1). PAC can be used for
construction of CFI systems. Unfortunately, currently ARMv8.3 processors are not available,
thus not allowing it to be embedded in our solution. In addition, the authentication of PAC
is performed in EL0, while our system executes in EL2. Clang CFI [5] is designed to detect
schemes of undefined behavior in C++ programs. These schemes have been optimized for
performance. The schemes rely on LTO (Link Time Optimization). For better efficiency, the
program must be structured such that certain object files are compiled with CFI enabled.
The schemes focus on casting between types, incorrect virtual calls and indirect virtual
calls. It can be interesting to perform Clang’s CFI in our Nanovisor.

authenticate
pointer

Pointer + PAM

Context

Key

Figure 1. PAC.

There are several control flow attestation systems similar to C-FLAT, all having similar
limitations. Lo-Fat [6] is similar system for RISC-V architecture. A similar system for the
bare metal system was proposed in [7]. Another system for remote control flow attestation
of embedded devices was proposed by Liu et al. [8]. Their system is implemented in
ARM’s TrustZone. ReCFA [9] describes several improvements to the attestation scheme. In
particular, ReCFA requires only the binary and not the source code form of the program.
In addition, the control flow information is condensed in multiple way, including com-
pression, in order to allow faster and cheaper delivery of this information to the verifier.
TinyCFA [10] provides control flow attestation for low-end MCUs, such as ATmega32.
Hu et al. proposed [11] to apply the control flow attestation mechanism only to potentially
vulnerable parts of the program. Our advantage against all of these is the ability to support
GPOS and normal multi-process and multi-threaded applications.

Kernel CFI (kCFI) [12] demonstrates CFI for the Linux kernel. It combines static
analysis at the source and binary levels and creates a restrictive CFI policy. Compared to
other kernel CFI approaches, it achieves a small overhead, approximately 2%, and supports
dynamic module insertion. kFCI is compiler-based technology and, therefore, does not rely
on any runtime supervisor or routine, avoiding overheads.

Appl. Sci. 2022, 12, 2669 3 of 18

MoCFI [13] (Mobile CFI) is a CFI framework intended for ARM7. It instruments
the binary on the fly and offers protection from code injection attacks and code reuse
attacks (such as return-to-libc). Unlike C-FLAT, the attestation is performed in a non TEE
environment, and the binary analysis is performed offline. However, it is only fair to say
that it is possible to migrate the runtime enforcement into our Nanovisor.

PathArmour [14] is a context-sensitive CFI (CCFI) for the Intel platform. Its uniqueness
is its ability to detect wrong code path flows; for example, if function B can be called
from both A and C, but the current context is A to B, but the actual path is C to B, then
PathArmour can detect this. PathArmour uses a kernel module to monitor paths. To reduce
the overhead, it mainly focuses on system call tracing and relies on x86_64 branch recording
features. Unlike C-FLAT, it does not run in ARM, and the path monitoring is not performed
in a TEE.

Another technology for ROP attacks is the kBouncer [15]. KBouncer is a binary CFI for
the ×86 platforms. It focuses on ROP attacks protection through the use of Intel’s LBR (Last
Branch Recording). LBR is a set of registers that record the last branches; it is transparent to
the running application and, therefore, incurs zero overhead for storing the branches.

In the area of static attestation, we find SWATT (Software-based Attestation Tech-
nique) [16] for embedded devices. SWATT examines the memory content for viruses.
Another software in this area is Pioneer [17]. In Pioneer, the executable is guaranteed to
execute a trusted environment by implementing a root of trust. This dynamic root of trust
is instantiated through the verification function, a self-checking function that checksums
its instructions. Viper [18] verifies the integrity of peripherals firmware. SMART [19]
is a minor modification to a micro-controller that is used to facilitate a dynamic root of
trust in remote embedded devices. TrustLite [20] is an FPGA to enforce software modules
protection. Another FPGA solution is TyTan [21], a trust anchor for tiny embedded that
provides secured task loading, secured IPC and local and remote attestation.

CFI performance and efficiency had been researched heavily in the past years [4,22,23].
CPI (Control Pointer Integrity) [24,25] is a different technique for insuring pointers in
the code. It protects from code hijacking but does not provide information about control
flow paths. Property-based attestation [26] however, Refs. [27,28] demonstrated some
deficiencies, to name a few, it reveals information about the platform’s configuration
(hardware and software) and the application, usually through an external attesting agent. In
addition, all trusted permutations of the trusted configurations must be known beforehand.
Additionally, if the configuration changes, this must reflect a verifier. Software attestation
calculates a hash over the program’s code, and the correctness also relies on that the verifier
responds in time. This real-time requirement may not be possible in a busy network.

C-FLAT and our approach to attestation is dynamic analysis. Using hypervisors for
dynamic security of kernels is described in Secvisor [29]. Secvisor can assure that only
whitelisted code executes. However, Secvisor does not protect against return-oriented
programming or perform dynamic analysis. Liu et al. [30] describe KSP (Kernel Stack
Protection), through the use of a hypervisor. In [30], a return-to-schedule attack is made on
some process while this process is not executing and its stack has tampered. The protection
model is by shadow page tables. These pages are used to provide different kernel stacks
with different access permissions; thus, kernel units have different access permissions when
they try to modify other kernel stacks; in addition, Liu et al. [30] offer to use the hypervisor
to record important information regarding the process, and, thereby, protecting from some
malicious kernel. MOSKG (Multiple Operating Systems Kernel Guard) is aimed to protect
from DKOM attacks (Dynamic Kernel Object Manipulation), Yan et al. [31] offers a secure
paging mechanism to protect critical kernel data.

HIMA[32] is a similar system for detecting kernel integrity using a hypervisor. We
performed a dynamic analysis of kernel code using Lguest in [33]. The method was
extended [34] for detecting operating system bugs and kernel vulnerabilities. Lgdb is based
on a para-virtualized environment and significant performance penalties. It is limited
to a single version of Linux (running on the host) and 32 bit ×86. In contrast, our new

Appl. Sci. 2022, 12, 2669 4 of 18

approach is using hardware virtualization with good performance. Our approach is aimed
directly at detecting ROP (Return Oriented Programming) in real-time. Our new approach
is not limited to Linux of any flavor, provides much better performance, and uses ARM
hardware-assisted virtualization.

Another approach to dynamic analysis is the phases approach. On the first (online)
step, the entire memory of the inspected system is grabbed [35]. Then, the memory is
examined using volatility [36] or AI-based tools to detect anomalies in memory [37]. The
problem of live memory forensics is that the comparable memory is large. Therefore,
changes occur while the forensic analysis is running, causing anomalies [38]. Unlike our
method, independent memory acquisition and analysis are not capable of understanding
context and are vulnerable to detection anomalies. In contrast, we trace the system stack
and are aware of loading libraries and performing function and system calls.

3. Threat Model

C-FLAT does not target specific attacks (ROP, MOSKG, DOS) attacks or similar attacks.
Therefore, it is challenging to compare C-FLAT to other technologies. C-FLAT targets
vulnerabilities once a zero-day attack takes place. Due to its versatile nature, C-FLAT also
records the time of execution and, therefore, stipulates better diagnostics of inconsistencies
in the time of execution in the flow of the program.

For this paper, an attacker may attack via the network through DOS attacks, or in the
case of CFI attacks, the attacker may change the program’s memory by exploiting some
vulnerability [39]. In this paper, a CFI attack refers to an attack on a native binary. For DOS
attacks, we assume that the HTTP request bypassed any network firewall if one exists.

4. Background

C-FLAT is a dynamic attestation and complements static attestation. It measures the
program’s execution path at the opcode level by capturing its runtime behavior. Figure 2
(taken from the original C-FLAT paper) presents the C-FLAT. Prv is a prover, and Ver is the
verifier. The Prover usually runs on a resource-limited device, and, therefore, cannot do the
verification while in execution. Both the Verifier and the Prover must have access to the
program’s binary at any time.

First step 1© is that Ver generates a control-flow-graph offline. It also measures each
possible control-flow path using function H, and saves the results 2©. In the original C-FLAT,
Ver stores and generates CFG’s results in Ver, because Prv is a low resources’ computer. In
C-FLAT Linux the CFG is stored in Ver itself. Reading the CFG is required only once per
program. We do it on the process start-up, so it does not endanger the performance. In 3©,
Ver challenges Prv. Then, Prv starts executing the program 4©, while our trusted software
computes the program’s path 5©. In the original C-FLAT, code running in TrustZone
performed this computation. In our system code, running in hypervisor mode performs
the calculation. Lastly, Prv generates the attestation report r = SigK(Auth, c), computed
as a digital signature over the challenge c and Auth using a key K known only to the
measurement engine. Lastly, Prv transmits r to Ver 6© to validate it 7©.

C-FLAT model is designed for small embedded devices, and therefore does not fit to
a general-purpose OS on a general-purpose processor which is common today in many
embedded setups. C-FLAT Linux is suitable for these setups.

In addition to the above, for C-FLAT to trace the program’s flow, it is essential to
intervene in the program binary (Original). For this, we replace the program’s branches
and returns-from-function. For example, in Figure 3, the “br x0” opcode is replaced by “br
hook_b” opcode (Instrumented). Hook_b is an address of a procedure that searches for the
address of the original branch opcode, and once found (Trampoline), it sends (via the SMC
command) it to computation in the TrustZone. The computation records the address and
returns to perform the original branch command.

Appl. Sci. 2022, 12, 2669 5 of 18

Figure 2. C-FLAT original system model ©Abera.

Original
stp x16, x30

ldr
x0,[sp,#8]
br x0
add x16,x16

..

Instrumented
stp x16, x30

ldr
x0,[sp,#8]
br hook_b
add x16,x16

..

Trampoline
hook_b:

search
hooks
smc
br org addr

Figure 3. C−FLAT Instrumented.

5. Control Flow Attestation for Linux

Our Nanovisor implementation (Figure 4) replaces the TrustZone. C-FLAT Linux
instruments the ELF [40] (Executable Linking Format) such as in [1]. The instrumentation
includes replacing the binary opcodes for the various “branch” commands with a code that
branches to the trampoline. It also requires caching the original branch targets.

Instrumented
stp x16, x30

ldr
x0,[sp,#8]
br hook_b
add x16,x16

..

Trampoline
hook_b:

search
hooks
bkpt
br org addr

Nanovisor
trap bkpt:
Process data
eret

Figure 4. A C−FLAT Program in Linux.

Figures 3 and 4 depict the main difference in the infrastructures. Our Nanovisor
provides a trusted execution environment (TEE) through a fast Nanovisor RPC [2]. The
Nanovisor performs the computation and aggregation of addresses generated by the
program’s flow.

Figure 5 depicts that as the instrumented program P runs, it generates input to Nanovi-
sor Q. Q collects the input, and at some point, the collected data are encrypted and passed
to the attestation server. The attestation server deciphers the data and verifies that the
control path does not have any abnormalities. The attestation server handles each branch
instruction or batches of instructions.

Appl. Sci. 2022, 12, 2669 6 of 18

Attestation server

attested dataQ

P

Figure 5. C-FLAT architecture.

Program Q (Figure 5) is a background process that serves the Nanovisor requests from
the protected program. Parts of Q execute in HYP mode through the use of our Nanovisor
RPC [2]. Q loads when the computer boots and waits in the background. C-FLAT does
not start any threads or agents, and its overhead is small. Q’s main task is to process the
information from the protected process and pass it to the attestation server. The information
that the protected program passes Q is the Event Type, the Destination address, the Source
address and Link Register Value. These values are passed on four registers to increase
performance. However, the constant round trip of the traps incurs an overhead. We will
demonstrate the overhead in the evaluation section. To improve performance, we decided
to mitigate the number of round-trips.

5.1. Performance

As we aim to mitigate the traps penalty, we need to minimize the amount of Nanovisor
traps (calls). Thus, we trigger off and on the trap code. To do that, we intervene in the
protected program execution code while it executes and replace the trap opcode (the BKPT
instruction) with the NOP (no operation) opcode. A NOP opcode depends on the compiler
output, and, therefore, to modify the opcode in real-time, it is required to know in advance
the following

1. The size of the BKPT opcode (16 bit or 32 bit);
2. The position of the opcode in the program’s address space;
3. Identify that a protected program runs (or sleeps) without the need to wait for traps.

The ARM compiler may generate opcode in thumb mode (16bit) or regular mode
(32bit). For this reason, it is essential to know the BKPT (breakpoint) opcode size and
position. Therefore, the Nanovisor records the position (and size) of the first trap generated
by the INIT operation (Figure 6). The INIT operation is also used to initialize C-FLAT’s
background process (Q). The page containing the trap code is mapped to the kernel at
some early point in the program execution. The user (which may be a program), at his
choice, triggers the coding and re-coding of the BRPT/NOP opcodes.

P Trampoline Kernel QHYP

INIT Initialize C-FLAT
Components,
Mark Trap code
Position

hooked branch opcode
record

BKPT → NOP
hooked branch opcode

bounce back and continue
NOP→ BRPThooked branch opcode

record

QUOTE

Figure 6. C-FLAT Flow.

The trap to the Nanovisor is performed by programming the Nanovisor to trap access
to BKPT by setting the mdcr_el2 register (breakpoint control register). This means that
any program that triggers a breakpoint enters the Nanovisor. Since there are systems that

Appl. Sci. 2022, 12, 2669 7 of 18

require debug infrastructure, only when the protected program executes the trap is set, and
after the scheduler switches the process, it is unset. The C-FLAT framework names the
protected ELF sections “.attest”. Each program invocation triggers a scan for the “.attest”
ELF sections. Then, the Nanovisor enables the trap for the protected process. Thus, any
other process that triggers a breakpoint does not enter the Nanovisor.

To summarize, when possible, we can set C-FLAT to execute arbitrarily, thus improving
performance and reducing processor cycles and heat.

5.2. GPOS Considerations

Original C-FLAT runs on an embedded ARM-based system without a general purpose
operating system (GPOS). For example, Linux, being a GPOS, allows execution of processes
on multi-core architectures, thus enabling processes to migrate from one core to another.
Figure 7 demonstrates how multiple C-FLAT threads of the same process run concurrently.
This aspect requires our solution to be deployed on all cores.

Q

t1 t2 t3

Figure 7. C-FLAT multi-core server.

Another facet of GPOS is context switching. Assuming that a protected program P
is infected by a virus, and thereby it refrains access to the Nanovisor. When C_FLAT is
executing in a non GPOS, it is likely, that most if not all of the time, a single process occupy
the processor. Therefore, after some time that C-FLAT did not execute, the system may be
infected by a virus. In a GPOS, we cannot make that assumption, as other processes may
pre-empt the protected program or that the protected program is not executing. For that,
we need to know that a C-FLAT process executes, and when it does, we expect C-FLAT to
trigger shortly. For this reason, in each context switch, we also check whether the C-FLAT
program enters or leaves the processor and record the time and the traps count.

Multi-threading also challenges C-FLAT because threads are created and destroyed
ad-hoc. We, therefore, offer that each thread state is kept in a table entry in the C-FLAT
server. Once a thread is destroyed, we mark this entry as free. We use the TLS (thread-local
storage) [41] to differentiate between the different threads and processes. The Linux kernel
in ARM puts on the tpidr_el0 register the TLS value, which is accessible in the Nanovisor.

Multiple C-FLAT processes are possible. Multi-processes design is similar to the
multiple threads design we discussed.

5.3. The Hyplet Nanovisor

Here, we describe the Nanovisor technology that we referred to as the hyplet [42,43].
ARM8v-a specifications offer to distinct between user-space addresses and kernel space
addresses by the MSB (most significant bits). The user-space addresses of Normal World
and the hypervisor use the same format of addresses.

These unique characteristics are what make the hyplet possible. The Nanovisor can
execute user-space position-independent code without preparations. Consider the code
snippet at Figure 8. The ARM hypervisor can access this code’s relative addresses (adrp),
stack (sp_el0) etcetera without pre-processing. From the Nanovisor perspective, Figure 8 is
a native code. Here, for example, address 0 × 400,000 is used both by the Nanovisor and
the user.

Appl. Sci. 2022, 12, 2669 8 of 18

400610: foo:
400614: stp x16, x30, [sp,#−16]!
400618: adrp x16, 0x41161c
40061c: ldr x0, [sp,#8]
400620: add x16, x16, 0xba8
400624: br x17
400628: ret

Figure 8. A simple hyplet .

So, if we map part of a Linux process code and data to a Nanovisor, it can be executed
by it.

To make sure that the program code and data are always accessible and resident, it
is essential to disable evacuation of the program’s translation table and cache from the
processor. Therefore, we chose to constantly accommodate (cache) the code and data in
the hypervisor translation registers in EL2 cache and TLB. To map the user-space program,
we modified the Linux ARM-KVM [44] mappings infrastructure to map a user-space code
with kernel space data.

Figure 9 demonstrates how identical addresses may be mapped to the same virtual
addresses in two separate exception levels. The dark shared section is part of EL2 and,
therefore, accessible from EL2. However, when executing in EL2, EL1 data is not accessible
without previous mapping to EL2. Figure 9 presents the leverage of a Linux process from
two exception levels to three.

Process

EL0
EL1
EL2MMUEL2

MMUEL0,EL1

Figure 9. Asymmetric dual view. Two exception levels access the same physical frame with the
same virtual address of some process. However, the page tables of the two exception levels are
not identical.

5.3.1. The Hyplet Protection

The natural way of memory mapping is that EL1 is responsible for EL1/EL0 memory
tables, and EL2 is responsible for its memory table, in the sense that each privileged
exception level accesses its memory tables. However, this would have put the Nanovisor at
risk, as it might overwrite or otherwise garble its page tables. As noted earlier, on ARM8v-a,
The hypervisor has a single memory address space (unlike TrustZone that has two, for
kernel and user). The ARM architecture does not coerce an exception level to control its
memory tables. This makes it possible to map the EL2 page table in EL1. Therefore, only
EL1 can manipulate the Nanovisor page tables. We refer to this hyplet architecture as a Non-
VHE hyplet. Additionally, to further reduce the risk, we offer to run the hyplet in injection
mode. Injection mode means that once the hyplet is mapped to EL2, the encapsulating
process is removed from the operating system kernel, but its hyplet’s pages are not released
from the Nanovisor, and the kernel may not re-acquire them. It is similar to any dynamic
kernel module insertion.

In processors that support VHE (Virtual Host Extension), EL2 has an additional
translation table that would map the kernel address space. In a VHE hyplet, it is possible
to execute the hyplet in the user space of EL2 without endangering the hypervisor. A
hyplet of a Linux process in EL0EL1 (EL0 is EL1 user-space) is mapped to EL0EL2 (EL2

Appl. Sci. 2022, 12, 2669 9 of 18

user-space). Additionally, the hyplet cannot access EL2 page tables because the table is
accessible only in the kernel mode of EL2. VHE resembles TrustZone as it has two distinct
address spaces, user and kernel. Operating systems, such as QSEE (Qualcomm Secure
Execution Environment) and OP-TEE [45], are accessed through an up-call and execute the
user-space in TrustZone. Unfortunately, at the time of writing, only modern ARM boards
offer VHE extension (ARMv8.2-a) and therefore, this paper demonstrates benchmarks on
older boards.

5.3.2. The Hyplet Security

As noted, VHE hardware is not available at the time of this writing, and, as such, we
are forced to use software measures to protect the hypervisor. On older ARM boards, it can
be argued that a security bug at hypervisor privilege levels may cause greater damages
compared to a bug at the user process or kernel levels, thus poising system risk.

The hyplet also escalates privilege levels, from exception level 0 (user mode) or 1 (OS
mode) to exception level 2 (hypervisor mode). Since the hyplet executes in EL2, it has
access to EL2 and EL1 special registers. For example, the hyplet has access to the level 1
exception vector. Therefore, it can be argued that the hyplet comes with security costs on
processors that do not include ARM VHE.

The hyplet uses multiple exception levels and escalates privilege levels. So, it can be
argued that using hyplets may damage application security. Against this claim, we have
the following arguments.

We claim that this risk is superficial and acceptable, for processors without VHE
support. Most embedded systems and mobile phones do not include a hypervisor and do
not run multiple operating system.

In the case where no hypervisor is installed, code in EL1 (OS) has complete control of
the machine. It does not have a lesser access code running in EL2, since no EL2 hypervisor
is present. Likewise, code running in EL2 can affect all operating systems running under
the hypervisor. Code running in EL1 can only affect the current operating system. When
only one OS is running, the two are identical.

Therefore, from the machine standpoint, code running in EL1 when EL2 is not present
has similar access privileges to code running in EL2 with only one OS running, as in the
hyplet use case.

The hyplet changes the system from a system that includes only EL0 and EL1 to a
system that includes EL0, EL1, and EL2. The hyplet system moves a code that was running
on EL1 without a hypervisor to EL2 with only one OS. Many real-time implementations
move user code from EL0 to EL1. The hyplet moves it to EL2; however, this gains no extra
permissions; running rogue code in EL1 with no EL2 is just as dangerous as moving code
to EL2 within the hyplet system. Additionally, it is expected that the hyplet would be a
signed code; otherwise, the hypervisor would not execute it.

The hypervisor can maintain a key to verify the signature and ensure that the lower
privilege level code cannot access the key.

Furthermore, real-time systems may eliminate even user and kernel mode separation
for minor performance gains. We argue that escalating privileges for real performance and
real-time capabilities is acceptable on older hardware without VHE where hyplets might
consist of a security risk. On current ARM architecture with VHE support, the hyplet do
not add extra risk.

5.3.3. Static Analysis to Eliminate Security Concerns

Most memory (including EL1 and EL2 MMUs and the hypervisor page tables) is not
mapped to the hypervisor. The non-sensitive part of the calling process memory is mapped
to EL2. The hyplet does not map (and, thus, has no access to) kernel-space code or data.
Thus, the hyplet does not pose a threat of unintentional corrupting kernel’s data or any
other user process unless additional memory is mapped or EL1 registers are accessed.

Appl. Sci. 2022, 12, 2669 10 of 18

Thus, it is sufficient to detect and prevent access to EL1 and EL2 registers to prevent
rogue code affecting the OS memory from the hypervisor. We coded a static analyzer that
prevents access to EL1 and EL2 registers and filters any special commands.

We borrowed this idea from eBPF [46]. The code analyzer scans the hyplet opcodes
and checks that are no references to any black-listed registers or special commands. Except
for the clock register and general-purpose registers, any other registers are not allowed.
The hyplet framework prevents new mappings after the hyplet was scanned to prevent
malicious code insertions. Another threat is the possibility of the insertion of a data pointer
as its execution code (In the case of SIGBUS of SEGFAULT, the hyplet would abort, and the
process terminates). To prevent this, we check that the hyplet’s function pointer, when set,
is in the executable section of the program.

Furthermore, the ARM architecture features the TrustZone mode that can monitor
EL1 and EL2. The TrustZone may be configured to trap illegal access attempts to special
registers and prevent any malicious tampering of these registers.

The Nanovisor is 768 lines of code. It includes the interrupt vector (300 lines) and the
hyplet’s user-kernel interface. It is part of the Linux kernel and, therefore, open-source. Its
tiny size eases code analysis and its protection (ex. Hypersafe [47]). As noted, we reused
Linux’s KVM infrastructure. KVM is well-debugged, and thus it reduces risks of errors;
Additionally, future development in the area of virtualization in Linux may be adapted to
the hyplet.

Control flow attestation demands a facility for static remote attestation capable of
attesting the instrumented code. Otherwise, the control flow might be easily spoofed by
an adversary that adds or removes instrumentation or traps. Therefore, we suggest en-
crypting the ensuring function, as suggested in Ben Yehuda et al. [2]. Ben Yehuda et al. [2]
presented a technique to sign pieces of code (functions and data) digitally through the use
of the hyplet.

6. Evaluation

This section provides the evaluation results of our system. The evaluation was perform
on Raspberry PI3 boards, whose specification is provided in Table 1. This section describes
several tests that were executed to assess the performance of C-FLAT Linux and its security.
Each test is designed to reveal a certain aspect of C-FLAT Linux performance and security.
The first test estimates the transition latency to the Nanovisor. The second test builds on
this result and dissects the overall latency to its components. The third test demonstrates
the performance of C-FLAT Linux in a real-world scenario. The fourth test demonstrates
the performance of C-FLAT Linux during the execution of the Apache2 web server. Finally,
in the last test, we demonstrate the security aspect of C-FLAT Linux.

Table 1. PI3 specifications.

Soc Broadcom BCM2837

CPU 4 cores, ARM Cortex A53, 1.2 GHz, (clocked to 700 MHz)

RAM 1GB LPDDR2 (900 MHz)

Clock 19.2 Mhz

6.1. Test 1: Transition Latency

In order to estimate the performance overhead due to transition from and to the
Nanovisor, we set a trap on the BRK opcode from the trampoline to the attestation server.

Table 2 presents the time to move from user space to the Nanovisor.

Appl. Sci. 2022, 12, 2669 11 of 18

Table 2. Transition latency.

Measure BRK Trap

Avg 92 ns

StdDev 41 ns

Max 156 ns

Min 52 ns

6.2. Test 2: Latency Dissection

In order to measure the overhead of C-FLAT Linux in its two modes of operation, we
have written and executed a CPU-intensive program depicted in Figure 10. The functions
do_odd and do_parity multiply their two arguments and return the result. The function
foo runs a 100,000 iterations loop that alternately invokes the do_odd and do_parity
functions. The program was compiled and executed 10 times in each of the following
configurations:

• Without C-FLAT Linux—to establish the baseline performance;
• With C-FLAT Linux with its BKPT opcodes replaced by the NOP opcode—to measure

the degradation associated with the presence of C-FLAT Linux;
• With C-FLAT Linux and full instrumentation—to measure the maximum performance

degradation.

Table 3 presents the execution times of the compiled program in each configuration.

extern void do_odd(int x,int y);
extern void do_parity(int x,int y);

void foo(int loops)
{
for(int i = 0; i < loops; i++){
if (i % 2)
do_odd(i,loops);
else
do_parity(i, loops);
}
}
int main() {
foo(100000);
}

Figure 10. Measurement program for C-FLAT Linux.

Table 3. Program execution times in µ-seconds.

Test Avg Max Min Std Dev

No C-FLAT 5188 5823 5055 241

C-FLAT with NOPs 37,097 37,237 36,979 92

C-FLAT with BKPT 148,056 154,086 146,994 2174

In order to calculate the attestation latency, we use the following observations:

• In each operation, the program jumps to the trampoline twice: in the condition of the
for and in the condition of the if ;

• The number of iterations if 100,000;
• The number of trampoline invocations is 200,000;

Appl. Sci. 2022, 12, 2669 12 of 18

• According to Table 2, a single entry to the Nanovisor takes 92 nanoseconds; 200,000 en-
tries will take 18,400 µs.

Therefore, the attestation latency can be expressed as follows:

148,056− 5188− 37,097− 18,400 = 87,371µs

where:

• 148,056 represents the total execution time in the “C-FLAT with BKPT” configuration;
• 5188 the total execution time in the “No C-FLAT” configuration;
• 37,097 the total execution time in the “C-FLAT with NOPs” configuration;
• 18,400 represents the time required to enter the Nanovisor.

The attestation itself is responsible for 87
148 = 58% of the total execution time.

6.3. Test 3: Real-World Performance

In this test we execute the AdvanceCOMP 2.1 [48] to compress PNG images. Due to
its documented vulnerability (CVE-2019-9210), some inputs cause the program to crash.
We have executed the program 10 times with legal and erroneous inputs and measured its
average execution times. Table 4 presents the obtained results.

Table 4. AdvanceCOMP 2.1 performance.

Input Test Avg Max Min Std Dev

Legal No C-FLAT 1628 1688 1606 31.8

Legal C-FLAT with BKPT 2655 2795 2625 52

Erroneous No C-FLAT 21.7 23 21 0.67

Erroneous C-FLAT with BKPT 113 119 111 3

From Table 4 it is evident that C-FLAT incurs an overhead. In the erroneous input,
the overhead is five times larger, while in the good input, it is two times larger. The
reason is that the good input is much bigger (1/2 MB on average) than the erroneous input
(200 bytes), and, therefore, less I/O activity is involved. The standard deviation of the
erroneous input is 4.5 times bigger in the C-FLAT mode, while it is only 1.6 times bigger
for the legal input. We believe that this can be explained by the additional, time-consuming
activities performed by the operating system due to the program’s abnormal termination
in case of an erroneous input.

6.4. Test 4: Web Server Performance

We used C-FLAT Linux to detect the SlowLoris Denial of Service (DoS) attack [49,50]
on the Apache2 [51] web server (version 2.2.3). SlowLoris does not necessarily alters the
dataflow path, but rather it changes the rate at which certain operations are performed.
The Apache2 web server is a multi-process program. After its initialization, it spawns
six processes. During an active attack this number raises to 240. We use the Apache
web server to demonstrate that C-FLAT Linux is capable of analyzing control flow of
multi-process programs. Each Apache2 process may execute on any processor, and it is
being invoked arbitrarily. To accommodate this behavior we deployed the C-FLAT Linux
attestation on all the processors as in Figure 7.

For our test, we have selected the following Apache2 routines for attestation, which
resulted in 46 hooks, covering part of the program’s control flow:

• unixd_accept;
• default_handler;
• core_create_req;
• core_create_conn;
• core_pre_connection.

Appl. Sci. 2022, 12, 2669 13 of 18

After instrumenting the Apache2 web server, we used SlowHttpTest [52] (version 1.6)
to test the server in two configurations: “No C-FLAT” and “C-FLAT with BKPT”. During
both tests, the web server was running on Raspberry PI. The exact command line is given
in Figure 11. The command should be interpreted as follows: (-c) initiate 500 connections,
(-g) generate CSV files, (-H) use SlowLoris mode, i.e., send unfinished HTTP requests, in a
rate (-r) of 200 connections per second, (-t) use the HTTP verb GET, (-x) follow up 24 bytes
of data for SlowLoris and POST tests, and probe a connection for 2 s.

slowhttptest -c 500 -H -g -o ./outfile
-i 10 -r 200 -t GET -u http://192.168.1.13
-x 24 -p 2 -l 20

Figure 11. SlowHttpTest command line

Figures 12 and 13 demonstrate that C-FLAT Linux does not affect the performance of
the web server under the SlowHttpTest benchmarking tool.

The PI processor did not show any difference in its consumption between the two
runs. The Apache2 consumed on average, 2% of the CPU time.

Figure 12. SlowLoris protected.

Appl. Sci. 2022, 12, 2669 14 of 18

Figure 13. SlowLoris unprotected.

6.5. Test 5: Security

To detect the SlowLoris attack we recorded a legal access flow of the Firefox web
browser (version 75.0 64bit), Chrome web browser (version 80.0.3987.132 64-bit) and wget
(version 1.19.4). We accessed the Apache2 remotely over wireless from an Ubuntu machine.

Table 5 demonstrates the program flow between INIT and QUOTE in the three runs. The
hooked opcodes here are the pop operation (marked p) the branch operation (marked b).
Pop is the hook for the “pop of frame pointer and returns address off stack” instruction,
and “branch” is the hook for the “branch” instruction.

Table 5. Browser vs. SlowLoris.

SlowLoris b b b b p b b p b

Browser b b b b b b b

wget b b b b b

From Table 5 it is evident that the number of operations is different, and the program
flow is different. The INIT to QUOTE in the SlowLoris run belongs to a single process and is a
repeated snippet of 4600 operations recorded. Therefore, the SlowLoris attack is detectable
by C-FLAT Linux.

7. Discussion

The first notable advantage of C-FLAT Linux is its low (≈92 ns) overhead for transi-
tions to the Nanovisor, as is evident from Table 2. For comparison, as was shown previ-
ously [2], the latency of transitions to the operating system is ≈500 ns. However, despite
such low transitions costs, their frequency renders the overall performance inapplicable

Appl. Sci. 2022, 12, 2669 15 of 18

to CPU-intensive programs. As shown in Table 3, the instrumentation alone degrades the
performance by a factor of 7; transitions to the Nanovisor adds a factor of 4. From the
overall performance degradation ≈ 58% are due to the attestation algorithm. We conclude
that C-FLAT and, therefore, C-FLAT Linux are inappropriate for full control flow attestation
of CPU-intensive programs. However, C-FLAT Linux achieves negligible performance
overhead in IO-intensive programs, as demonstrated by Figures 12 and 13.

8. Summary
8.1. Future Work

The trampoline is 40% of the total penalty. Therefore, to improve the mitigation, we
intend to replace the trampoline code of the running process by the NOP opcode.

We intend to add to C-FLAT the ability to analyze and instrument a process dynami-
cally. We intend to inject hooks into a running program. As the program loads, we examine
in each context switch where the program counter is, record its position, and at some point,
inject hooks to the most accessed code in the program.

8.2. Conclusions

It is only fair to say that other technologies, such as MOSKG [31] or KSP [30] pro-
vide only a few percentage overheads for micro-benchmarks. However, as noted, these
technologies do not offer a versatile solution as C-FLAT Linux.

We conclude that though this paper lessons the performance penalty, there is still
work to do in this area. Thus, C-FLAT Linux may be used in non-CPU intensive applica-
tions, such as web servers or command-line utilities, and it may also be used in an I/O
intensive programs.

Author Contributions: All authors had equal contribution. Conceptualization R.B.Y. and N.J.Z.;
Methodology, M.K. and N.J.Z.; Software R.B.Y.; Validation, R.B.Y. and N.J.Z.; formal analysis M.K.;
Investigation, R.B.Y.; resources N.J.Z. and M.K. writing—original draft preparation, R.B.Y.; writing—
review and editing, M.K. and N.J.Z.; visualization, R.B.Y.; supervision, N.J.Z.; project administration,
N.J.Z. funding acquisition, M.K. and N.J.Z. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please contact Raz Ben Yehuda for sources and exact benchmark data.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
Glossary:
VHE Virtual Host Extension
EL Exception Level
BKPT Breakpoint
TEE Trusted Execution Environment
RPC Remote Procedure Call
ISR Interrupt Service Routine
ELF Executable and Linking Format
SMC System Monitor Call
SVC System Supervisor Call
Ver Verifier
Prv Prover
MOSKG Multiple Operating Systems Kernel Guard
DKOM Dynamic Kernel Object Manipulation
ROP Return Oriented Programming

Appl. Sci. 2022, 12, 2669 16 of 18

KSP Kernel Stack Protect
DOS Denial Of Service
CFI Control Flow Inspection
CPI Control Pointer Integrity
PAC Pointer Authentication Code
NOP No Operation
TLS Thread Local Storage
QSEE Qualcomm Secure Execution Environment
OP-TEE Open Portable Trusted Execution Environment

References
1. Abera, T.; Asokan, N.; Davi, L.; Ekberg, J.E.; Nyman, T.; Paverd, A.; Sadeghi, A.R.; Tsudik, G. C-FLAT: Control-flow attestation for

embedded systems software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016; pp. 743–754.

2. Yehuda, R.B.; Zaidenberg, N.J. Protection against reverse engineering in ARM. Int. J. Inf. Secur. 2020, 19, 39–51. [CrossRef]
3. Flur, S.; Gray, K.E.; Pulte, C.; Sarkar, S.; Sezgin, A.; Maranget, L.; Deacon, W.; Sewell, P. Modelling the ARMv8 architecture,

operationally: Concurrency and ISA. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, St. Petersburg, FL, USA 20–22 January 2016; Volume 51; pp. 608–621.

4. Tice, C.; Roeder, T.; Collingbourne, P.; Checkoway, S.; Erlingsson, Ú.; Lozano, L.; Pike, G. Enforcing Forward-Edge Control-Flow
Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA,
20–22 August 2014; pp. 941–955.

5. Abadi, M.; Budiu, M.; Erlingsson, Ú.; Ligatti, J. Control-flow integrity principles, implementations, and applications. ACM Trans.
Inf. Syst. Secur. (TISSEC) 2009, 13, 4. [CrossRef]

6. Dessouky, G.; Zeitouni, S.; Nyman, T.; Paverd, A.; Davi, L.; Koeberl, P.; Asokan, N.; Sadeghi, A.R. Lo-fat: Low-overhead control
flow attestation in hardware. In Proceedings of the 54th Annual Design Automation Conference 2017, Austin, TX, USA, 18–22
June 2017; pp. 1–6.

7. Clements, A.A.; Almakhdhub, N.S.; Saab, K.S.; Srivastava, P.; Koo, J.; Bagchi, S.; Payer, M. Protecting bare-metal embedded
systems with privilege overlays. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
22–26 May 2017; pp. 289–303.

8. Liu, J.; Yu, Q.; Liu, W.; Zhao, S.; Feng, D.; Luo, W. Log-Based Control Flow Attestation for Embedded Devices. In Cyberspace
Safety and Security; Vaidya, J., Zhang, X., Li, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 117–132.

9. Zhang, Y.; Liu, X.; Sun, C.; Zeng, D.; Tan, G.; Kan, X.; Ma, S., ReCFA: Resilient Control-Flow Attestation. In Annual Computer
Security Applications Conference; Association for Computing Machinery: New York, NY, USA, 2021; pp. 311–322.

10. De Oliveira Nunes, I.; Jakkamsetti, S.; Tsudik, G. Tiny-CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of
Execution. In Proceedings of the 2021 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 1–5
February 2021; pp. 641–646. doi: [CrossRef]

11. Hu, J.; Huo, D.; Wang, M.; Wang, Y.; Zhang, Y.; Li, Y. A Probability Prediction Based Mutable Control-Flow Attestation Scheme on
Embedded Platforms. In Proceedings of the 2019 18th IEEE International Conference On Trust, Security and Privacy in Computing
and Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua,
New Zealand, 5–8 August 2019; pp. 530–537. doi: [CrossRef]

12. Moreira, J.; Rigo, S.; Polychronakis, M.; Kemerlis, V.P. Drop the Rop fine-grained control-flow integrity for the Linux kernel.
Black Hat Asia. 2017. Available online: https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-
Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf (accessed on 17 February 2022).

13. Davi, L.; Dmitrienko, A.; Egele, M.; Fischer, T.; Holz, T.; Hund, R.; Nürnberger, S.; Sadeghi, A.R. MoCFI: A Framework to
Mitigate Control-Flow Attacks on Smartphones. In Proceedings of the NDSS, San Diego, CA, USA, 5–8 February 2012; Volume 26,
pp. 27–40.

14. Van der Veen, V.; Andriesse, D.; Göktaş, E.; Gras, B.; Sambuc, L.; Slowinska, A.; Bos, H.; Giufida, C. Practical context-sensitive
CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; pp. 927–940.

15. Pappas, V. kBouncer: Efficient and transparent ROP mitigation. Apr 2012, 1, 1–2.
16. Seshadri, A.; Perrig, A.; Van Doorn, L.; Khosla, P. SWATT: Software-based attestation for embedded devices. In Proceedings of

the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12 May 2004; pp. 272–282.
17. Seshadri, A.; Luk, M.; Shi, E.; Perrig, A.; Van Doorn, L.; Khosla, P. Pioneer: Verifying code integrity and enforcing untampered

code execution on legacy systems. In Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, Brighton,
UK, 23–26 October 2005; pp. 1–16.

18. Li, Y.; McCune, J.M.; Perrig, A. VIPER: Verifying the integrity of PERipherals’ firmware. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, Chicago, IL, USA, 17–21 October 2011; pp. 3–16.

19. Eldefrawy, K.; Tsudik, G.; Francillon, A.; Perito, D. SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust. In Proceedings of the NDSS, San Diego, CA, USA, 5–8 February 2012; Volume 12, pp. 1–15.

http://doi.org/10.1007/s10207-019-00450-1
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.23919/DATE51398.2021.9474029
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00077
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Moreira-Drop-The-Rop-Fine-Grained-Control-Flow-Integrity-For-The-Linux-Kernel-wp.pdf

Appl. Sci. 2022, 12, 2669 17 of 18

20. Koeberl, P.; Schulz, S.; Sadeghi, A.R.; Varadharajan, V. TrustLite: A security architecture for tiny embedded devices. In
Proceedings of the Ninth European Conference on Computer Systems, Amsterdam, The Netherlands, 14–16 April 2014; pp. 1–14.

21. Brasser, F.; El Mahjoub, B.; Sadeghi, A.R.; Wachsmann, C.; Koeberl, P. TyTAN: Tiny trust anchor for tiny devices. In Proceedings
of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

22. Zhang, C.; Wei, T.; Chen, Z.; Duan, L.; Szekeres, L.; McCamant, S.; Song, D.; Zou, W. Practical control flow integrity and
randomization for binary executables. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
19–22 May 2013; pp. 559–573.

23. Zhang, M.; Sekar, R. Control flow integrity for COTS binaries. In Proceedings of the 22nd USENIX Security Symposium (USENIX
Security 13), Washington, DC, USA, 14–16 August 2013; pp. 337–352.

24. Kuznetzov, V.; Szekeres, L.; Payer, M.; Candea, G.; Sekar, R.; Song, D. Code-pointer integrity. In The Continuing Arms Race:
Code-Reuse Attacks and Defenses; ACM: New York, NY, USA, 2018; pp. 81–116.

25. Evans, I.; Fingeret, S.; Gonzalez, J.; Otgonbaatar, U.; Tang, T.; Shrobe, H.; Sidiroglou-Douskos, S.; Rinard, M.; Okhravi, H. Missing
the point (er): On the effectiveness of code pointer integrity. In Proceedings of the 2015 IEEE Symposium on Security and Privacy,
San Jose, CA, USA, 17–21 May 2015; pp. 781–796.

26. Nagarajan, A.; Varadharajan, V.; Hitchens, M.; Gallery, E. Property based attestation and trusted computing: Analysis and
challenges. In Proceedings of the 2009 Third International Conference on Network and System Security, Gold Coast, QLD,
Australia, 19–21 October 2009; pp. 278–285.

27. Sadeghi, A.R.; Stüble, C. Property-based attestation for computing platforms: Caring about properties, not mechanisms. In
Proceedings of the 2004 Workshop on New Security Paradigms, Victoria, BC, Canada, 20–23 September 2004; pp. 67–77.

28. Chen, L.; Landfermann, R.; Löhr, H.; Rohe, M.; Sadeghi, A.R.; Stüble, C. A protocol for property-based attestation. In Proceedings
of the First ACM Workshop on Scalable Trusted Computing, Alexandria, VA, USA, 3 November 2006; pp. 7–16.

29. Seshadri, A.; Luk, M.; Qu, N.; Perrig, A. SecVisor: A tiny hypervisor to provide lifetime kernel code integrity for commodity
OSes. In Proceedings of the Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, Stevenson, WA, USA,
14–17 October 2007; pp. 335–350.

30. Liu, W.; Luo, S.; Liu, Y.; Pan, L.; Safi, Q.G.K. A kernel stack protection model against attacks from kernel execution units. Comput.
Secur. 2018, 72, 96–106. [CrossRef]

31. Yan, G.; Luo, S.; Feng, F.; Pan, L.; Safi, Q.G.K. MOSKG: Countering kernel rootkits with a secure paging mechanism. Secur.
Commun. Netw. 2015, 8, 3580–3591. [CrossRef]

32. Azab, A.M.; Ning, P.; Sezer, E.C.; Zhang, X. HIMA: A hypervisor-based integrity measurement agent. In Proceedings of the 2009
Annual Computer Security Applications Conference, Honolulu, HI, USA, 7–11 December 2009; pp. 461–470.

33. Khen, E.; Zaidenberg, N.J.; Averbuch, A.; Fraimovitch, E. Lgdb 2.0: Using lguest for kernel profiling, code coverage and simulation.
In Proceedings of the 2013 International Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS), Toronto, ON, Canada, 7–10 July 2013; pp. 78–85.

34. Zaidenberg, N.J.; Khen, E. Detecting kernel vulnerabilities during the development phase. In Proceedings of the 2015 IEEE 2nd
International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 3–5 November 2015; pp. 224–230.

35. Kiperberg, M.; Leon, R.; Resh, A.; Algawi, A.; Zaidenberg, N. Hypervisor-assisted Atomic Memory Acquisition in Modern
Systems. In International Conference on Information Systems Security and Privacy; SCITEPRESS Science And Technology Publications:
Setúbal, Portugal, 2019.

36. Ligh, M.H.; Case, A.; Levy, J.; Walters, A. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory; John Wiley & Sons: Hoboken, NJ, USA, 2014.

37. Case, A.; Richard III, G.G. Memory forensics: The path forward. Digit. Investig. 2017, 20, 23–33. [CrossRef]
38. Aljaedi, A.; Lindskog, D.; Zavarsky, P.; Ruhl, R.; Almari, F. Comparative analysis of volatile memory forensics: Live response vs.

memory imaging. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011
IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 1253–1258.

39. Lu, S.; Lin, Z.; Zhang, M. Kernel Vulnerability Analysis: A Survey. In Proceedings of the 2019 IEEE Fourth International
Conference on Data Science in Cyberspace (DSC), Hangzhou, China, 23–25 June 2019; pp. 549–554.

40. Lu, H. Elf: From the Programmer’s Perspective. 1995. Available online: https://www.linux.co.cr/free-unix-os/review/acrobat/
950517.pdf (accessed on 17 February 2022).

41. Drepper, U.; Molnar, I. The Native POSIX thread Library for Linux. 2003. Available online: https://www.cs.utexas.edu/~witchel/
372/lectures/POSIX_Linux_Threading.pdf (accessed on 17 February 2022).

42. Ben Yehuda, R.; Zaidenberg, N. Hyplets-Multi Exception Level Kernel towards Linux RTOS. In Proceedings of the 11th ACM
International Systems and Storage Conference, Haifa, Israel, 4–7 June 2018; pp. 116–117.

43. Ben Yehuda, R.; Zaidenberg, N. The hyplet-Joining a Program and a Nanovisor for real-time and Performance. In Proceedings
of the SPECTS, the 2020 International Symposium on Performance Evaluation of Computer and Telecommunication Systems
Conference, Madrid, Spain, 20–22 July 2020.

44. Dall, C.; Nieh, J. KVM/ARM: The design and implementation of the linux ARM hypervisor. ACM Sigarch Comput. Archit. News
2014, 42, 333–348. [CrossRef]

45. Open Portable Trusted Execution Environment. Available online: https://www.op-tee.org/ (accessed on 17 February 2022).

http://dx.doi.org/10.1016/j.cose.2017.09.008
http://dx.doi.org/10.1002/sec.1282
http://dx.doi.org/10.1016/j.diin.2016.12.004
https://www.linux.co.cr/free-unix-os/review/acrobat/950517.pdf
https://www.linux.co.cr/free-unix-os/review/acrobat/950517.pdf
https://www.cs.utexas.edu/~witchel/372/lectures/POSIX_Linux_Threading.pdf
https://www.cs.utexas.edu/~witchel/372/lectures/POSIX_Linux_Threading.pdf
http://dx.doi.org/10.1145/2654822.2541946
https://www.op-tee.org/

Appl. Sci. 2022, 12, 2669 18 of 18

46. Corbet, J. BPF Comes to Firewalls. 2018. Available online: https://lwn.net/Articles/747551/#:~:text=The%20use%20of%20BPF%
20enables,security%20to%20the%20whole%20system (accessed on 17 February 2022)

47. Wang, Z.; Jiang, X. Hypersafe: A lightweight approach to provide lifetime hypervisor control-flow integrity. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 380–395.

48. AdvanceCOMP. Available online: http://www.advancemame.it/ (accessed on 17 February 2022).
49. Damon, E.; Dale, J.; Laron, E.; Mache, J.; Land, N.; Weiss, R. Hands-on denial of service lab exercises using slowloris and rudy. In

Proceedings of the 2012 Information Security Curriculum Development Conference, Kennesaw, GA, USA, 12–13 October 2012;
pp. 21–29.

50. Cambiaso, E.; Papaleo, G.; Chiola, G.; Aiello, M. Slow DoS attacks: Definition and categorisation. Int. J. Trust. Manag. Comput.
Commun. 2013, 1, 300–319. [CrossRef]

51. Aulds, C. Linux Apache Web Server Administration; Sybex: Hoboken, NJ, USA, 2002.
52. SlowHttpTest Linux Man Page. Available online: https://linux.die.net/man/1/slowhttptest (accessed on 17 February 2022).

https://lwn.net/Articles/747551/#:~:text=The%20use%20of%20BPF%20enables,security%20to%20the%20whole%20system
https://lwn.net/Articles/747551/#:~:text=The%20use%20of%20BPF%20enables,security%20to%20the%20whole%20system
http://www.advancemame.it/
http://dx.doi.org/10.1504/IJTMCC.2013.056440
https://linux.die.net/man/1/slowhttptest

	Introduction
	Related Work
	Threat Model
	Background
	Control Flow Attestation for Linux
	Performance
	GPOS Considerations
	The Hyplet Nanovisor
	The Hyplet Protection
	The Hyplet Security
	Static Analysis to Eliminate Security Concerns

	Evaluation
	Test 1: Transition Latency
	Test 2: Latency Dissection
	Test 3: Real-World Performance
	Test 4: Web Server Performance
	Test 5: Security

	Discussion
	Summary
	Future Work
	Conclusions

	References

