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Abstract: Non-uniform structures and composite materials have advantages in engineering appli-
cations, such as light weight design, multi-functionality, and better buckling/flutter load capacity.
For composite structures under dynamic loading conditions, reliability is a key problem to be ana-
lyzed during practical operations. However, there is little research work on non-uniform composite
structural reliability analysis under random load. The forced vibration response of non-uniform
composite beam under random load is firstly solved by the Adomian Decomposition Method (ADM)
and iterative process for reliability analysis. Different variation laws of the cross-section rigidity
and mass distribution along the length of the non-uniform composite beam structures are analyzed.
Various angular frequency and amplitude of random base motion acceleration following Gaussian
distribution are considered. Influences of different random excitations and structural design on
vibration responses and reliability are studied. The larger mean and variance of excitation frequency
leads to the smaller amplitude and strain of the beam, while greater mean and variance of the base
motion excitation amplitude will induce the higher maximum amplitude and strain values and lower
reliability. The influences of structural design on reliability are studied. The reliability increases with
the increment of taper ratios of the host beam and composite layer. The iteration mathematical model
and numerical solutions proposed in this paper can be used to solve and analyze vibration responses
and reliability of general non-uniform composite beam structures under arbitrary excitation during a
certain period of time.

Keywords: vibration; reliability; non-uniform beam; composite beam; random load; adomian
decomposition method

1. Introduction

Non-uniform composite beams, including functionally graded materials (FGM) beams,
have important applications in engineering because they can change geometric and material
properties, while most of the excitations applied on mechanical structures in nature and
engineering practice are random forces. In recent years, the problems of mechanical
structure damage caused by vibration have achieved more and more attention, which make
the vibration reliability analysis of non-uniform composite beam structures under random
load of great significance.

Before the study of non-uniform composite beams, researchers have done a lot of
work on uniform composite beams dynamics. In references [1–9], the free vibration of a
composite beam structure is solved by the finite element method. In addition to the finite
element method, there are some other methods to solve the free vibration responses of
composite beams. By using a global higher order beam theory, Matsunaga analyzed natural
frequencies and buckling stresses of simply supported multilayered composite beams
through the method of power series expansion of displacement components [10]. Atlihan
et al. used differential quadrature method (DQM) to analyze the free vibration of laminated
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composite beams [11]. The natural frequencies of longitudinal and transverse vibration
modes have been obtained by using the method of power series [12]. Except for the free
vibration analysis, Raja, Prathap and Sinha developed a control scheme based on the linear
quadratic regulator/independent modal space control (LQR/IMSC) method and used
this to do the active vibration control of composite sandwich beams [13]. Ramanamurthy,
Chandrasekaran and Nishant used finite element method for damage detection [14]. Xu
et al. proved the feasibility of the ultrasonic non-destructive testing with the combination of
a strain measurement for fatigue crack details detection of headed shear studs in composite
beams [15]. Tao et al. obtained the fitting formula for calculating the equivalent flexural
stiffness of composite beams through extensive parameter analysis, and they studied
and analyzed the equivalent flexural stiffness of composite frame beams to evaluate their
vertical deflection [16]. Kim et al. studied the free and forced vibration of cracked laminated
composite beam through the Jacobi–Ritz method and the first-order shear deformation
theory (FSDT) [17,18].

In addition to research and understanding of the uniform composite beam, some
researchers have also used various methods to solve and analyze vibration responses of the
non-uniform beams. For the geometrically non-uniform beams, the vibration responses of
non-uniform beams were solved and analyzed by the amatrix transfer method in [19–22].
In addition, Wu investigated the free vibration characteristics of a non-uniform cantilever
beam carrying multiple two degree-of-freedom spring–damper–mass systems by means
of two finite element methods, FEM1 and FEM2 [23]. Ho and Chen used Timoshenko
beam theory, Hamilton principle and differential transformation method (DTM) to study
the vibration of axially loaded non-uniform spinning twisted Timoshenko beam [24].
Martinez Castro et al. gave the semi-analytic solution of moving load problem, which is
used to analyze the stress of multi-span uniform beam and non-uniform beam under a
moving load [25]. Mazanoglu and Sabuncu studied the bending vibration of non-uniform
Rayleigh beams with single-edge and double-edge cracks [26]. Chen et al. presented
the design, test and analysis of a non-uniform thickness piezoelectric beam for impact
vibration energy harvesting. [27]. Clementi et al. determined the frequency response
curve of a non-uniform beam under nonlinear vibration by the multiple time scale method
analytically [28]. Based on the nonlocal elastic theory, Chakraverty and Behera studied
the free vibration of non-uniform Euler–Bernoulli nanobeams by using the Rayleigh–Ritz
method [29]. Celik studied the free vibration of non-uniform Euler–Bernoulli beams under
different support conditions through the Chebyshev wavelet collocation method [30]. For
beam structures with anisotropic material properties (FGM), the finite element method was
used to solve and analysis the free vibration of FGM beam in references [31–33]. Differential
transformation method and transfer matrix method (TMM) were also used to study the
free vibration of an FGM beam in references [34,35]. Abdelrahman et al. developed an
analytical solution method using Navier’s procedure to study the dynamic behavior of
carbon nanotube reinforced functional gradient (FG) beams on two parameter elastic
foundation under a moving load [36]. Esen et al. studied and analyzed the free vibration
and dynamic response of an S-shaped FG Timoshenko beam model under a moving load
based on Navier’s method [37]. There is also some research work on the non-uniform
FGM beam. Rajasekaran used the differential transformation (DT) based dynamic stiffness
approach to study the free vibration of axially functionally graded non-uniform beams
under different boundary conditions [38]. Heshmati and Daneshmand described the effect
of different profile variations on vibrational properties of non-uniform beams made of
graded porous materials [39]. Under the framework of nonlocal strain gradient theory,
Rajasekaran and Khaniki used the Lagrange interpolation method, Gaussian quadrature
method and Wilson multiplier method to study the bending, buckling and vibration
behavior of depth functionally graded in depth direction non-uniform nanobeams [40].
Adomian Decomposition Method (ADM) has been used to analyze the free and forced
vibration of general non-uniform cone beams with axial functionally graded material by
Keshmiri et al. [41–43].
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Based on dynamic modeling and analysis of different structures, their reliability
analysis under random load excitation can be conducted. Siddiqui and Ahmad carried
out nonlinear dynamic analysis of the platform for response calculation. The response
history obtained has been used for the fatigue reliability analysis of Tension leg platform
(TLP) tethers under long crested random sea and associated wind [44]. Jensen et al. used a
standard gradient-based algorithm with a line search to solve the reliability optimization
problem of a structural system under random load [45]. Liu and Zhang deduced the
calculation expression of the mean value of structural dynamic reliability under stationary
random excitation, and conveniently obtained the dynamic reliability analysis results of
random structures under random excitation [46]. Singh et al. determined the fatigue
reliability of an automotive crankshaft by stochastically inducing random loads [47]. In
summary, there have been many studies on the dynamic analysis of composite structures
and non-uniform beams, and the vibration and reliability analysis of uniform structures
and mechanical parts with certain design under random loads is also a common and well-
studied problem in engineering. However, to the best of the authors’ knowledge, there is
no research on the vibration reliability analysis of a non-uniform composite beam under a
random load. Considering the various mechanical properties as well as unknown response
and strain/stress distribution of the non-uniform structures made from multiple composite
layers, the reliability of such structures can be different from traditional uniform structures
as novel research [48,49], especially under different random dynamic loads. There is no
explicit expression for the random load whose excitation frequency and amplitude are
changing, so the analytical solution of forced vibration at each time point needs to be
solved by iterative method. To deal with this challenge, a model combining ADM and
iteration numerical process is proposed to solve the vibration response and dynamic stress-
distribution of the non-uniform composite beams for reliability analysis in this research.

In this paper, the vibration responses and reliability of a general non-uniform beam
with tapered composite layers and host beam under random load are calculated and
analyzed. The cross-section rigidity and mass distribution can be adjusted by changing the
volume proportion of different materials of the non-uniform laminated composite beam.
The angular frequency and amplitude of random base motion acceleration accord with
Gaussian distribution. The vibration mode shapes and nature frequencies are calculated,
and the vibration solution under random base motion excitation is solved by the iteration
numerical method. In the parameter studies, the influences of the base motion excitation
frequencies variation on amplitude and strain of beam are studied. Then, the effects of
base motion excitation amplitudes on vibration responses and reliability are analyzed. In
addition, the vibration responses and reliability in different periods of time are calculated.
Finally, the reliability of non-uniform beams with different taper ratios of composite layers
and host beam is solved and analyzed.

2. Theoretical Model

In this section, ADM is used to solve the natures (nature frequencies and mode shapes)
of the non-uniform composite beam. Then, an iterative model is used to describe and
solve the vibration response and reliability of the non-uniform composite beam under
random load. This random excitation is caused by base motion, and its angular frequency
and amplitude of acceleration conform to Gaussian distribution with specified mean and
variance. Finally, the definition and calculation method of vibration reliability are given.

2.1. Natures (Nature Frequencies and Mode Shapes) of Non-Uniform Composite Beam

In this study, a sample non-uniform rectangular composite cantilever beam structure
with varied cross section is analyzed and shown in Figure 1. In the middle of the composite
beam is a host beam made of aluminum, and composite layers of piezoelectric ceramic
material are pasted above and below the host beam. At the left fixed end, the length, width
and thickness of the composite beam and the thickness of the host beam are L, b0, 2H0,
and 2h0, respectively. The thicknesses of the host beam and composite layer at x position
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are 2h1(x) and 2h2(x). x is the position variable along the beam length. The width and
thickness of the composite beam at x position are b(x) and 2H(x) = 2h1(x)+ 2h2(x). F(x, t)
is the random excitation.
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Figure 1. Main and right views of a non-uniform composite beam. 
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The mass distribution and cross-section rigidity at x position of the composite beam
are

ρ(x)A(x) = ρ1 A1(x) + ρ2 A2(x), (1)

E(x)I(x) = (2/3)b(x)h1
3(x)(E1 − E2) + (2/3)E2b(x)H3(x), (2)

where A(x) = 2H(x)b(x), ρ1, A1(x), E1, ρ2, A2(x) and E2 are mass density, cross-sectional
area and modulus of elasticity of host beam and composite layer.

The equation of free vibration of a non-uniform composite beam without considering
damping is given below,

ρ(x)A(x)
∂2w(x, t)

∂t2 +
∂2

∂x2

[
E(x)I(x)

∂2w(x, t)
∂x2

]
= 0, (3)

where w(x, t) is the deflection function and t is the time.
The boundary conditions are defined as: w(x, t)|x=0 = 0

∂w(x,t)
∂x

∣∣∣
x=0

= 0
, (4)


E(x)I(x) ∂2w(x,t)

∂x2

∣∣∣
x=L

= 0

∂
∂x

[
E(x)I(x) ∂2w(x,t)

∂x2

]∣∣∣
x=L

= 0
= 0. (5)

By using the mode superposition method, w(x, t) in Equation (2) can be decomposed
into two parts,

w(x, t) = ∑∞
i=1 Wi(x)qi(t), (6)

where Wi(x) is the i-th mode shape and qi(t) is the i-th corresponding generalized coordi-
nate of the free vibration response or external force. For free vibration analysis solving the
natural frequencies and mode shape functions, considering the orthogonality of a linear
vibration problem, substituting Equation (6) into Equation (3), one ordinary differential
equation corresponding to the i-th mode is obtained as,

E(x)I(x) d4Wi(x)
dx4 + 2 d

dx [E(x)I(x)] d3Wi(x)
dx3 + d2

dx2 [E(x)I(x)] d2Wi(x)
dx2 −

ω2
i ρ(x)A(x)Wi(x) = 0,

(7)
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where ωi is the i-th natural frequency. In order to solve the above equation, ADM is applied.
The operator form of the Equation (7) is rewritten as,

Lx[Wi(x)] =
−2 d

dx [E(x)I(x)]Wi
′′′ (x)

E(x)I(x)
−

d2

dx2 [E(x)I(x)]Wi
′′ (x)

E(x)I(x)
+ ω2

i
ρ(x)A(x)Wi(x)

E(x)I(x)
, (8)

where Lx is the fourth order differential operator.
Lx
−1 is applied on the both sides of Equation (8) at the same time, where Lx

−1 is the
fourth-order integral operator.

Wi(x) = C1 + C2x + C3
x2

2! + C4
x3

3!

−L−1
x

[
2 d

dx [E(x)I(x)]Wi
′′′ (x)

E(x)I(x) +
d2

dx2 [E(x)I(x)]Wi
′′ (x)

E(x)I(x) −ω2
i

ρ(x)A(x)Wi(x)
E(x)I(x)

]
,

(9)

where C1 to C4 are constants that can be determined by boundary conditions, the detailed
progress defining C1–C4 can be found in [36–38].

Wi(x) is written in series form,

Wi(x) = ∑∞
k=0 Wki (x), (10)

where k is the number of terms in series form. The larger the value of k, the more accurate
the solution. A precise solution is often obtained with very small values of k [50].

Substituting Equation (10) into Equation (9), we have,

∞
∑

k=0
Wki (x) = C1 + C2x + C3

x2

2! + C4
x3

3!

−L−1
x

[
2 d

dx [E(x)I(x)]
E(x)I(x)

∞
∑

k=0
W ′′′

ki
(x)

+
d2

dx2 [E(x)I(x)]
E(x)I(x)

∞
∑

k=0
W ′′

ki
(x)−ω2

i
ρ(x)A(x)∑∞

k=0 Wki
(x)

E(x)I(x)

]
.

(11)

For each term in the series, we can have,

W0i (x) = C1 + C2x + C3
x2

2!
+ C4

x3

3!
, (12)

Wk+1i (x) =

−L−1
x

[
2 d

dx [E(x)I(x)]
E(x)I(x) Wki

′′′ (x) +
d2

dx2 [E(x)I(x)]
E(x)I(x) Wki

′′ (x)−ω2
i

ρ(x)A(x)Wki
(x)

E(x)I(x)

]
k ≥ 0.

(13)

The natural frequencies can be obtained by introducing the mode functions into the
boundary conditions and solving the eigenvalue problem. The detailed solving process of
the mode shape functions and nature frequencies of the non-uniform composite beam can
be found in references [41–43] and is hence not provided here.

2.2. Vibration Model of Non-Uniform Composite Beam under Random Load

After the natures of the beam structure are solved by free vibration analysis and ADM,
the forced vibration response can be solved using the modal analysis and Duhamel integral.
The forced vibration governing equation of non-uniform composite beam considering
damping under action of random load F(x, t) is given below,

ρ(x)A(x) ∂2w(x,t)
∂t2 + ∂2

∂x2

[
E(x)I(x) ∂2w(x,t)

∂x2 + C(x)I(x) ∂3w(x,t)
∂x2∂t

]
= F(x, t) =

−ρ(x)A(x)ϕ2Y sin(ϕt),
(14)
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where C(x) is the strain rate damping coefficient. −ρ(x)A(x)ϕ2Y sin(ϕt) is the distribution
force generated by base motion. The displacement and acceleration of base motion are
y = Y sin(ϕt) and a = −ϕ2Y sin(ϕt), and Aa = ϕ2Y is the amplitude of acceleration. Y
and ϕ are amplitude and angular frequency of base motion.

Substituting Equation (6) into Equation (14), the following equation can be obtained,

ρ(x)A(x)∑∞
i=1 Wi(x) d2qi(t)

dt2

+ d2

dx2

[
E(x)I(x)∑∞

i=1 qi(t)
d2Wi(x)

dx2 + C(x)I(x)∑∞
i=1

dqi(t)
dt

d2Wi(x)
dx2

]
= −ρ(x)A(x)ϕ2Y sin(ϕt).

(15)

Based on the understanding from the free vibration governing equation, for the i-th
mode of free vibration, we have,

d2

dx2

[
E(x)I(x)

d2Wi(x)
dx2

]
= ρ(x)A(x)ω2

i Wi(x). (16)

With the understanding from the relationship given in the above equation, both sides
of Equation (15) multiplied by Wj(x) and integrated from 0 to L in space domain leads to,∫ L

0 ρ(x)A(x)
∞
∑

i=1
Wi(x) d2qi(t)

dt2 Wj(x)dx

+
∫ L

0
d2

dx2

[
E(x)I(x)

∞
∑

i=1
qi(t)

d2Wi(x)
dx2 + C(x)I(x)

∞
∑

i=1

dqi(t)
dt

d2Wi(x)
dx2

]
Wj(x)dx

= −Y sin(ϕt)
∫ L

0 ρ(x)ϕ2 A(x)Wj(x)dx.

(17)

Since in general, the damping function does not possess the orthogonality property, it
is assumed that the structural damping is in the form of C(x) = αE(x) where α is a constant.
According to the orthogonality of normal vibration modes, Equation (18) for the i-th mode
can be obtained, while αω2

i = 2ξiωi is defined,

d2qi(t)
dt2 + 2ξiωi

dqi(t)
dt

+ ω2
i qi(t) = Fi(t) =

−ϕ2Y sin(ϕt)
∫ L

0 ρ(x)A(x)Wi(x)dx∫ L
0 ρ(x)A(x)W2

i (x)dx
, (18)

where ξi is the modal damping ratio of the corresponding i-th order natural mode.
Equation (18) can be solved by the Duhamel integral, and the final time domain

solution for i-th mode is,

qi(t) = 1
ωdi

∫ t
0 Fi(τ)·e−ξiωi(t−τ)· sin

(
ωdi (t− τ)

)
dτ

= −
((∫ L

0 ρ(x)A(x)Wi(x)dx
)(
− (−2ωdi

ξiωi cos
(
ωdi

t
)
+ sin

(
ωdi

t
)(
−ξ2

i ω2
i − ϕ2

+ωdi
2))ϕe−ξiωit +

(
(ξ2

i ω2
i − ϕ2 + ωdi

2) sin(ϕt)− 2ξi ϕωi cos(ϕt)
)
ωdi

)
ϕ2Y

)
/((ωdi

5 +
(
2ξ2

i ω2
i − 2ϕ2)ωdi

3 +
(
ξ2

i ω2
i + ϕ2)2(

ξ2
i ω2

i + ϕ2)2
ωdi

)(∫ L
0 ρ(x)A(x)Wi

2(x)dx)
)

,

(19)

where ωdi
is the damped frequency corresponding to the i-th vibration mode,

ωdi
=
√

1− ξ2
i ωi, Fi(t) is the force coefficient corresponding to the i-th vibration mode.

According to Equations (12), (14) and (19), the response of the non-uniform composite
beam structure is,

w f orce(x, t) = ∑∞
i=1 Wi(x)qi(t) = ∑∞

i=1
Wi(x)

ωdi

∫ t

0
Fi(t)·e−ξiωi(t−τ) sin

(
ωdi (t− τ)

)
dτ. (20)
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2.3. Iteration Process Considering Random Load

The premise of the iterative method is that at t = 0 s, the initial condition of vibration
is known, and there is no force applied to the beam. At this time, the beam is considered to
be at rest, and the deflection and velocity at any position of the beam are,{

w(x, t) = 0
dw(x,t)

dt = 0
. (21)

Because some variables, like deflection, corresponding generalized coordinate, excita-
tion, in each iteration step are different in the process of iteration of the system, they are
defined by iteration step subscripts. The subscript 1 represents these variables in the first
time period/iteration step in period t1–t2. The subscript 2 represents these variables in the
second time period/iteration step in period t2–t3 and so on. The subscript n represents
these variables in the n-th time period/iteration step in period tn–tn+1.

According to the engineering experience, the step length of each iteration is determined
by base motion excitation frequency, ∆t=tn+1− tn= 1

10× f (n) , 1 ≤ n ≤ ∞, and n is the number
of iteration steps, f (n) is the base motion excitation frequency during time period tn–tn+1.

The initial condition for time t1 (t1 = 0 s) is, w(x, t1) = 0
dw(x,t)

dt

∣∣∣
t=t1

= 0
. (22)

When the time is in t1–t2, there is no free vibration and the response of the forced
vibration is,

w1(x, t) = ∑∞
i=1 Wi(x)q1i (t) = ∑∞

i=1 Wi(x) 1
ωdi

∫ t−t1
0 F1i (τ + t1) · e−ξiωi(t−t1−τ)·

sin
(
ωdi
· (t− t1 − τ)

)
dτ (t1 ≤ t ≤ t2).

(23)

To clarify the iteration progress, we start the derivation from the second time step,
t2–t3, while the first step vibration solutions is only from the Duhamel integral assuming
the structure is at rest before excitation as described in Equation (23). The free vibration
response from the initial condition at t2 is,

w f ree2(x, t) =
∞
∑

i=1
Wi(x) · q f ree2i

(t)

=
∞
∑

i=1
Wi(x) · e−ξiωit(A2i cos ωdi

t + B2i sin ωdi
t) (t2 ≤ t ≤ t3),

(24)

A2i and B2i are determined by q1i(t2) and dq1 i(t)
dt at t = t2.

e−ξiωit2
(

A2i cos ωdi
t2 + B2i sin ωdi

t2
)
= q1i(t2), (25)

(
ωdi

cos ωdi
t2 − ξiωi sin ωdi

t2
)
e−ξiωit2 B2i

−
(
ωdi

sin ωdi
t2 + ξiωi cos ωdi

t2
)
e−ξiωit2 A2i =

dq1 i(t)
dt

∣∣∣
t=t2

.
(26)

A2i and B2i can be obtained by the above formula,

B2i =

eξiωdi
t2 ·
((

ξiωiq1i(t2) +
dq1 i(t)

dt

∣∣∣
t=t2

)
cos(ωdi

t2) + ωdi
q1i(t2) sin(ωdi

t2)

)
ωdi

, (27)

A2i =
q1i(t2) · eξiωit2 − B2i sin(ωdi

t2)

cos(ωdi
t2)

. (28)
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During the period, t2–t3, the total vibration response is,

w2(x, t)=
∞
∑

i=1
Wi(x)q2i (t) = ∑∞

i=1 Wi(x)
(

q f ree2i
(t) + q f orce2i

(t)
)

=
∞
∑

i=1
Wi(x)·

(
e−ξiωit ·

(
A2i cos ωdi

t + B2i sin ωdi
t
)

+ 1
ωdi

∫ t−t2
0 F2i (τ + t2) · e−ξiωi(t−t2−τ)·

sin
(
ωdi
· (t− t2 − τ)

)
dτ

)
(t2 ≤ t ≤ t3),

(29)

where q f ree2i
(t) is i-th corresponding generalized coordinate of free vibration during t2–t3,

q f orce2i
(t) is i-th corresponding generalized coordinate of the external force induced vibra-

tion during t2–t3.
For general vibration solution during the iteration, when the time is tn–tn+1, the total

vibration response is, hence,

wn(x, t)=
∞
∑

i=1
Wi(x)qni (t) = ∑∞

i=1 Wi(x)
(

q f reeni
(t) + q f orceni

(t)
)

=
∞
∑

i=1
Wi(x)·

(
e−ξiωit ·

(
Ani cos ωdi

t + Bni sin ωdi
t
)

+ 1
ωdi

∫ t−tn
0 Fni (τ + tn) · e−ξiωi(t−tn−τ)·

sin
(
ωdi
· (t− tn − τ)

)
dτ

)
(tn ≤ t ≤ tn+1),

(30)

where q f reeni
(t) is i-th corresponding generalized coordinate of free vibration during

tn–tn+1, q f orceni
(t) is i-th corresponding generalized coordinate of the external force during

tn–tn+1.
Ani and Bni are given as follows with known qn−1i (tn) from the previous iteration step,

Bni =

eξiωdi
tn ·
((

ξiωiqn−1i(tn) +
dqn−1 i(t)

dt

∣∣∣
t=tn

)
cos(ωdi

tn) + ωdi
qn−1i(tn) sin(ωdi

tn)

)
ωdi

, (31)

Ani =
qn−1i(tn) · eξiωitn − Bni sin(ωdi

tn)

cos(ωdi
tn)

. (32)

2.4. Vibration Reliability Analysis

In the process of vibration, the excessive vibration response (stress or amplitude) of
the structure will lead to the damage and failure of the structure or system. According to
the reliability theory, the state function of general system with vibration is defined as,{

Gij
(
ε j, εi

)
= ε j − εi − γ ≤ 0 security

Gij
(
ε j, εi

)
= ε j − εi − γ > 0 invalid

, (33)

where ε j is the deflection of non-uniform composite beam under a random load at a certain
time point, εi is the reference safety value of the strain of the Bernoulli–Euler beam with the
parameters researched in this work, γ is a specific value and is generally 10% times of εi.

The vibration reliability of the non-uniform composite beam under a random load
during a period of time is,

R = P
(
Gij
(
ε j, εi

)
≤ 0

)
=

NGij(ε j ,εi)≤0

Ntotal
, (34)



Appl. Sci. 2022, 12, 2700 9 of 20

where NGij(ε j ,εi)≤0 is the number of iteration points satisfying the state function greater than
0, and Ntotal is the total number of iteration points in the iterative calculation results within
a period of time.

3. Numerical Studies, Results and Discussion

A non-uniform rectangular cantilever composite beam with positive exponential cross-
section variation function is chosen for numerical case studies. The length of the beam is
fixed as L = 0.2 m and the thickness of the left end of the non-uniform composite beam is
H0 = 0.003 m. The dimensions at x position along the length of the beam are b(x) = b0ehx,
h1(x) = h0enx and h2(x) = (H0 − h0)emx. h is the taper ratio of the width variation of the
composite beam. n and m are taper ratios for the variations of thickness of the host beam
and the composite layers, respectively. The material properties of the composite beam are
ρ1 = 2.7 × 103 kg/m3, ρ2 = 7.8 × 103 kg/m3, E1 = 7 × 1010 Pa, E2 = 68.9 × 109 Pa, for the
host beam and composite layers, respectively. The reference value of maximum strain is
εi = 0.0035.

3.1. Model Validation

In order to prove the correctness of the mathematical model proposed in this paper,
the first two order dimensionless natural frequencies of the non-uniform composite beam
structure shown in Figure 1 and the non-uniform beam structure in reference [43] are
calculated and compared. The thickness of the composite layer in the current model is set
to be a very small value of 0.00001 m to match the structure studied in reference [43]. The
parameters are shown in Table 1. The calculation results are shown in Table 2.

Table 1. Parameters in model validation.

Parameters Method in Reference [43] Present Method

b0 (m) 0.1 0.1
h0 (m) 0.00499 -
H0 (m) 0.005 0.005

h 0 -
n 0.1 0.1
m 0 -

ρ1 (kg/m3) 7.8 × 103 7.8 × 103

ρ2 (kg/m3) 7.8 × 103 -
E1 (Pa) 2.1 × 1011 2.1 × 1011

E2 (Pa) 68.9 × 109 -
L (m) 0.3 0.3

Table 2. Comparison of the first two natural frequencies.

First Order Second Order

Method in reference [43] 2.605947663 19.41237317
Present method 2.605957440 19.41239643

It can be seen from Table 2 that when the thickness of the composite layer is very small,
the first two natural frequencies of the two beam structures are very close, which proves
the correctness of the mathematical model in this paper.

3.2. Influences of Different Design Parameters on Natural Frequencies

For composite structures, different design parameters will change the inherent proper-
ties of the structure. By adjusting the structural design parameters, the damage caused by
excessive structural amplitude (resonance) can be effectively avoided. The influences of
different design parameters on the natural frequencies (first three orders, unit rad/s) of
non-uniform composite beam are shown in Tables 3–7. Constant parameters for each study
are shown in the table captions. The variation ranges of m and n are to study the influence
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trend of different parameters taper ratios of different composite layers and host beam on
the natural frequency of non-uniform composite non-uniform beam structure. As for the
core material in the composite beam in our paper with relatively less effect on stiffness, the
variation of the host beam taper ratio, n, is set in a relatively larger range to see its effect on
natural frequency variation more obviously.

Table 3. Influences of b0 on natural frequencies with m = 2.5, n = 2, h = 1.5, h0 = 0.001 m.

b0 (m) First Order (rad/s) Second Order (rad/s) Third Order (rad/s)

0.006 439.2005197 3555.383187 10,832.33073
0.005 439.2005440 3555.383473 10,832.32140
0.004 439.2005114 3555.383653 10,832.34972

Table 4. Influences of h0 on natural frequencies with m = 2.5, n = 2, h = 1.5, b0 = 0.005 m.

h0 (m) First Order (rad/s) Second Order (rad/s) Third Order (rad/s)

0.0015 471.2057080 3814.396863 11,586.11082
0.001 439.2005440 3555.383473 10,832.32140

0.0005 415.1947195 3348.452939 10,236.74275

Table 5. Influences of n on natural frequencies with m = 2.5, h0 = 0.001 m, h = 1.5, b0 = 0.005 m.

n First Order (rad/s) Second Order (rad/s) Third Order (rad/s)

2.5 449.5161197 3593.463773 11,030.09338
2 439.2005440 3555.383473 10,832.32140

1.5 434.2614730 3510.591430 10,642.28582

Table 6. Influences of m on natural frequencies with n = 2, h0 = 0.001 m, h = 1.5, b0 = 0.005 m.

m First Order (rad/s) Second Order (rad/s) Third Order (rad/s)

2.7 443.3222433 3564.154774 10,935.10283
2.5 439.2005440 3555.383473 10,832.32140
2.3 438.8676019 3540.852252 10,729.68121

Table 7. Influences of h on natural frequencies with n = 2, m = 2.5, h0 = 0.001 m, b0 = 0.005 m.

h First Order (rad/s) Second Order (rad/s) Third Order (rad/s)

2 434.4623766 3506.966372 10,798.87618
1.5 439.2005440 3555.383473 10,832.32140
1 449.5261585 3596.047007 10,863.78753

It can be seen from the results in Tables 3–7 that within the range of parameters studied,
for the three layered non-uniform composite beam with parameter variation ranges in this
paper, the nature frequencies increase with the increment of h0, n, m and decrease a bit with
the increment of h. b0 has little effect on nature frequencies. First, for the change of h and
b0 (change of width), both stiffness and mass at certain cross section of the beam changes
linearly with the beam width variation leading to less effect on natural frequency variation.
However, for the ranges studied of h0, n and m, their increment will increase the thickness
and stiffness of the beam structure in cubic function but the mass linearly. Therefore,
within a certain change range, the more significant increment of stiffness compared with
the mass change will lead to the increase of natural frequency. On the other hand, for
the first vibration mode as an example, if n and m are further increased, the mass can be
more concentrated at the beam free end, where the large beam thickness will not affect the
whole modal stiffness significantly, so the natural frequency can decrease. In summary,
for different non-uniform composite beams, natural frequencies variations for different
modes depend on the stiffness and mass distribution following different shapes of the



Appl. Sci. 2022, 12, 2700 11 of 20

cross-section variation along the beam length. It is almost impossible to show all natural
frequency variations of different non-uniform composite beam. The studied parameter
ranges were just chosen to show a clear natural frequency variation trend.

3.3. Vibration Responses under Random Base Motion Excitation

In order to study the influences of the random base motion excitation on the vibration
characteristics of non-uniform composite beam, the vibration responses of non-uniform
composite beam with b0 = 0.005 m, h0 = 0.001 m, n = 2, m = 2.5 and h = 1.5 under base
motion with random frequency and amplitude of acceleration and harmonic base motion
were simulated and compared based on the proposed iterative method. The frequency
and amplitude of acceleration of random load accord with ϕ ∼ N

(
200, (200/15)2

)
rad/s

and Aa ∼ N
(
50, 102) m/s2, respectively, while the constant frequency and amplitude

of acceleration of the base motion are 200 rad/s and 50 m/s2, which are the mid-values
of the random base motion excitation case. The vibration responses in time domain at
the free end of the non-uniform composite beam are shown in Figure 2a,b. The power
spectral density (PSD) plots of the time domain signal are shown in Figure 2c,d. The PSD
function of MATLAB software is used to convert the time-domain vibration response into
power/frequency (dB/Hz) with decibel notation definition of the corresponding power
concept, which makes the PSD analysis results easier to read.
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random frequency and amplitude of acceleration and harmonic base motion: (a) vibration responses
under random frequency and amplitude of base motion acceleration; (b) vibration responses under
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random frequency and amplitude of base motion acceleration; (d) PSD of time domain signal under
constant frequency and amplitude of base motion acceleration.

From Figure 2a,b, while the frequency and amplitude of acceleration of random base
motion excitation change with Gaussian distribution, with the increment of time, the
deflection at the free end of the non-uniform composite beam will not approach a steady
state with variable amplitude. This fully shows the randomness characteristics of the
random load. However, for a non-uniform composite beam excited by base motion with
constant frequency and amplitude of acceleration which are the average of the ones of the
random load, the vibration responses (deflection) at the free end experience a process from
transient to steady state with the time increment. The amplitude at the free end of beam
under a random load is larger than the one under base motion with constant frequency
and amplitude of acceleration, and the variation trend of deflection is unpredictable. From
Figure 2c,d, PSD of time domain signal under random frequency and amplitude has
obvious ‘volatility’. This kind of uncontrollability explains the significance of studying the
vibration reliability under a random load.

3.4. Influences of Different Ranges of Base Motion Excitation Angular Frequency on
Vibration Responses

During the vibration process under random base motion excitation, the influences
of exaction amplitude and frequency with different means and variances on vibration
characteristics are different. Firstly, the influences of base motion excitation frequency
on vibration responses were studied. The amplitude of acceleration of base motion
accord with Gaussian distribution with Aa ∼ N

(
50, 102). The amplitude of base mo-

tion is Y = Aa
ϕ2 . Four groups of base motion excitation angular frequencies with Gaus-

sian distribution and standard deviation of 1/15 of the average value were selected
for analysis. The specific base motion excitation frequency variation ranges are ϕ1 ∼
N
(

200, (200/15)2
)

rad/s, ϕ2 ∼ N
(

440, (440/15)2
)

rad/s, ϕ3 ∼ N
(

3600, (3600/15)2
)

rad/s, and ϕ4 ∼ N
(

11000, (11000/15)2
)

rad/s. The first three natural frequencies of
non-uniform composite beam with b0 = 0.005 m, h0 = 0.001 m, n = 2, m = 2.5 and h = 1.5
are 439.2 rad/s, 3555.4 rad/s and 10832.3 rad/s. The frequency ranges of ϕ2, ϕ3 and
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ϕ4 can cover the first, second and third beam natural frequency, respectively. In addi-
tion, another four groups of base motion excitation angular frequencies with Gaussian
distribution and different means and variances were selected. The specific value ranges
are ϕ5 ∼ N

(
200, 202) rad/s, ϕ6 ∼ N

(
440, 442) rad/s, ϕ7 ∼ N

(
2810, 5182) rad/s and

ϕ8 ∼ N
(
8360, 16282) rad/s. The values of ϕ6, ϕ7 and ϕ8 can ensure the following relation-

ships 1/2ω1 ≤ ϕ6 ≤ 3/2ω1, 1/2ω1 ≤ ϕ7 ≤ 3/2ω2, 1/2ω1 ≤ ϕ8 ≤ 3/2ω3 and cover the
first one, two and three beam natural frequencies, respectively. The maximum vibration
amplitude and strain at all locations along the length of the beam with different variation
ranges of base motion excitation frequency are shown in Figure 3.
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As can be seen from Figure 3, when the angular frequencies of several groups of
random loads cover the first, second and third and the first one, two and three order natural
frequencies, the larger the mean and variance of base motion excitation frequency, the
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smaller the maximum amplitude and strain of beam in the same period of time can be
excited. In engineering practice, the vibration amplitude of the structure can be controlled
by changing the base motion excitation frequency. From the iteration numbers with different
excitation frequency, we can know that when the base motion excitation frequency only
covers the third order natural frequency, the high-frequency component accounts for the
largest proportion in base motion excitation frequency within the same period of time.

3.5. Influences of Mean and Variance of Base Motion Excitation Amplitude on Vibration Responses
and Reliability

The same as base motion excitation frequency, the influences of different base mo-
tion excitation amplitudes on vibration responses and reliability were studied in this
section. The value ranges of frequency and amplitude of acceleration of base motion are
ϕ ∼ N

(
200, (200/15)2

)
rad/s and 0 ≤ Aa ≤ 100 m/s2. The amplitude of base motion is

Y = Aa
ϕ2 . The value range of base motion excitation amplitude is determined by the range

of excitation frequency and amplitude of acceleration, which is 0 ≤ Y ≤ 5.625× 10−3

m. The parameters of beam are b0 = 0.005 m, h0 = 0.001 m, n = 2, m = 2.5 and h = 1.5.
Firstly, the influences of different mean values of base motion excitation amplitude on
vibration responses and reliability under the same variance were studied. The ranges of
four groups of base motion excitation amplitudes are Y1 ∼ N

(
2× 10−3,

(
0.125× 10−3)2

)
m, Y2 ∼ N

(
3× 10−3, (0.125× 10−3)

2
)

m,Y3 ∼ N
(

4× 10−3,
(
0.125× 10−3)2

)
m and

Y4 ∼ N
(

5× 10−3,
(
0.125× 10−3)2

)
m. In addition, the influences of base motion excitation

amplitudes with different variances on vibration responses and reliability were studied. The
values ranges of base motion excitation amplitude are Y5 ∼ N

(
3× 10−3,

(
0.005× 10−3)2

)
m,

Y6 ∼ N
(

3× 10−3,
(
0.18× 10−3)2

)
m,Y7 ∼ N

(
3× 10−3,

(
0.355× 10−3)2

)
m and

Y8 ∼ N
(

3× 10−3,
(
0.525× 10−3)2

)
m. The influences of different means and variances of

base motion excitation amplitude on vibration responses and reliability of the beam are
shown in Figure 4.
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Figure 4. Influences of mean and variance of base motion excitation amplitude on vibration responses
(maximum amplitude and strain) and reliability: (a) Influences of mean of base motion excitation
amplitude on vibration responses and reliability; (b) Influences of variance of base motion excitation
amplitude on vibration responses and reliability.

As can be seen from Figure 4, when the frequency and amplitude of acceleration of
base motion accord with Gaussian distribution, the greater the mean and variance of the
base motion excitation amplitude, the greater the value of the maximum amplitude and
strain and lower reliability of beam are induced. With a larger mean value of the excitation
amplitude, the upper and lower limits of the interval become larger and the reliability
hence becomes smaller. The excitation with larger variance but the same mean value
leads to a higher possibility of large strain happening on the tested structure. When the
safe and failure data points appear in the same number, the failure probability will hence
increase, and the reliability will decrease. The range and magnitude of vibration response
of non-uniform composite beam structure can be controlled and adjusted by changing the
mean and variance of excitation amplitude of the random load.

3.6. Vibration Responses and Reliability Analysis in Different Periods of Time

The uncertainty of frequency and amplitude of random base motion excitation leads
to different vibration responses and reliability results within different time periods. The
maximum amplitude and strain of beam with b0 = 0.005 m, h0 = 0.001 m, n = 2, m = 2.5
and h = 1.5 in the time periods of 0–20 s, 20–40 s, 40–60 s, 60–80 s, 80–100 s, 100–120 s,
120–140 s, 140–160 s and 160–180 s are calculated, and vibration reliability in the time points
of 20 s, 40 s, 60 s, 80 s, 100 s, 120 s, 140 s, 160 s and 180 s under the same random load with
( Aa ∼ N

(
50, 102) m/s2 and ϕ ∼ N

(
200, (200/15)2

)
rad/s) were analyzed, respectively.

The calculation results are shown in Figure 5.
As can be seen from Figure 5, the maximum amplitude and strain of beam in different

periods of time is different; because the reliability is not only related to the maximum strain
in this time period but also to the number of loading cycles. The result shows that in the
relatively short period of time (<120 s), the reliability may increase or decrease with the
increment of the time period. However, when the period of time of analysis increases above
a certain value (>120 s), the reliability shows a downward trend reaching to a converged
value as a whole. The results of reliability under different time lengths are different, and the
calculation time duration for reliability analysis should be according to the actual operation
and measurement conditions.
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periods of time.

3.7. Reliability Analysis of Non-Uniform Composite Beam with Different Design Parameters

In order to study the influences of different design parameters on the vibration reliabil-
ity, the reliability of non-uniform beam with different taper ratios, n and m, were calculated
under the same random load with ( Aa ∼ N

(
50, 102) m/s2 and ϕ ∼ N

(
200, (200/15)2

)
rad/s). Other constant parameters are b0 = 0.005 m, h0 = 0.001 m and h = 1.5. When study-
ing the influence of the change of m on vibration reliability, n is a constant of 2. Similarly,
when n changes, the value of m is a constant of 2.5. The results are shown in Figure 6.
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It can be seen from Figure 6 that within the range of parameters studied, the reliability
of the non-uniform composite beam increases with the increment of n and decreases
with the increment of m. It can be concluded that the taper design itself of the non-
uniform composite beam will affect the structural reliability. It should be noted that
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the exact structural reliability variation trend will also depend on the excitation. The
iteration mathematic model proposed in this paper can be used to solve and analyze the
vibration responses and reliability of non-uniform composite beam with different design
parameters. For the multiple layered composite beam, different design parameters lead
to different reliability results. Reasonable design under random loading condition with
certain variation range of its frequency and amplitude can enhance structural reliability.

4. Conclusions

In this paper, an iterative method is proposed to solve the forced vibration responses
and reliability of non-uniform composite beam under random load. Considering the change
of frequency and acceleration amplitude of base motion excitation in the iteration process,
the vibration response of beam in each short time period/iteration step is calculated by
ADM and Duhamel integral considering both the transient and steady response. Through
numerical studies, the results reveal the following conclusions:

(1) ADM is used to be combined with iteration progress solving non-uniform com-
posite beam structural vibration under random load. The correctness of the mathematical
model is proved. Comparing solutions under random and harmonic base motion, the vibra-
tion response under random load shows the randomness and non-frequency characteristics,
and its vibration amplitude is larger than the one under the same level harmonic excitation.

(2) Within the ranges of studied design parameters, the composite beam nature fre-
quencies increase with the increment of h0, n, m and decrease with the increment of h. b0
has little effect on nature frequencies.

(3) The higher mean value and variance of base motion excitation frequency, the
smaller amplitude and maximum strain of the non-uniform composite beam can be excited.

(4) The greater mean and variance of the base motion excitation amplitude, the greater
vibration amplitude and strain of the non-uniform composite beam, and the lower the
vibration reliability in the same time period.

(5) The vibration reliability will increase or decrease with the increment of operation
time considered, but the overall trend is downward if the operation time of the system is
long enough.

(6) The reliability of the non-uniform composite beam increases with the increment
of n and decreases with the increment of m. For the multiple layered composite beam,
different design parameters lead to different reliability results. Reasonable design can
enhance structural reliability.

(7) However, the research results obtained within the range of parameters studied
occur when the operation time is long enough. When the calculation/analysis time duration
is very short, the results may change. The statement that the operation time is long enough
means that the analyzed period should be enough to ensure that the excitation amplitude
and frequency distribution law can be illustrated and judged from the data points of the
random loads in the calculation process.
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