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Abstract: The growing market of wearables is expanding into different areas of application such
as devices designed to improve and monitor sport activities. This in turn is pushing research
on low-cost, very low-power wearable systems with increased analysis capabilities. This paper
proposes integrated energy-aware techniques and a convolutional neural network (CNN) for a
cardiac arrhythmia detection system that can be worn during sport training sessions. The dynamic
power management strategy (DPMS) is programmed into an ultra-low-power microcontroller, and in
combination with a photovoltaic (PV) energy harvesting (EH) circuit, achieves a battery-life extension
towards a self-powered operation. The CNN-based analysis filters, scales the image, and using a
bicubic technique, interpolates the measurements to subsequently classify the electrocardiogram
(ECG) signal into normal and abnormal patterns. Experimental results show that the EH-DPMS
achieves an extension in the battery charge for a total of 14.34% more energy available, which
represents 12 consecutive workouts of 45 min without the need to manually recharge it. Furthermore,
an arrhythmia detection precision of 98.6% is achieved among the experimental sessions using
55,222 images for training the system with the MIT-BIH, QT, and long-term ST databases, and
1320 implemented on a wearable system. Therefore, the proposed wearable system can be used to
monitor an athlete’s condition, reducing the risk of abnormal heart conditions during sports activities.

Keywords: convolutional neural network; dynamic power management; energy harvesting; artificial
intelligence-of-things; sport wearable

1. Introduction

Recent years have shown an increased demand of smart monitoring systems using
wearable devices. Among many applications, there is a special interest in developing
wearable health devices (WHDs) tailored for sports activities [1,2]. These WHDs can help
in observing, classifying, and improving an athlete’s performance [3], or they can be used
to monitor their body response in real time during intense training [4–9]. The latter is
particularly important to avoid possible injuries or sudden death due to abnormal cardiac
activity. Therefore, the analysis of electrical abnormalities in the heart during training
sessions is of broad general interest [10]. As electrocardiogram (ECG) signals can be used
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to distinguish between normal and pathological heart activity, then the influence of type
and length of exercise in athletes can be assessed with the classification of ECG signals
during training sessions [4,11]. In this regard, Artificial Intelligence (AI) has created new
opportunities to automate and expedite the solution of complex problems in medical
practice that in the past, depended heavily in human expertise. For example, pattern
recognition with deep neural networks can be used to help interpret images from medical
scans, X-rays, tissue samples, among others, improving diagnosis accuracy and reducing
the possibility of human error [12–15]. Neural networks can also be used to interpret
different vital bio signals. Different studies to classify ECG signals have already been
proposed, using optimum-path forest (OPF) [16], Hidden Markov models (HMM) [17],
independent component analysis (ICA) [18], cluster analysis (CA) [19], probabilistic neural
networks (PNN) [20], recurrent neural networks (RNN) [21] and support vector machines
(SVM) [22]. However, none of these works develop an Internet of Things (IoT) wearable
solution leveraging such AI methods. The artificial intelligence-of-things (AIoT) combines
AI with IoT technology. AIoT uses the existing IoT standards with a wearable embedded
system to support intelligent data exchange between devices [23,24].

In recent years, diverse IoT wearable systems for ECG signal acquisition and analysis
were proposed [25–30]. Their integration usually contains a low-power microcontroller
(MCU), sensors, and smartphone interfaces with low-energy wireless data communication
to store data in real time and exchange information with other devices. However, energy-
aware techniques for a battery extension operation are not always incorporated, and the
use of machine learning on sports wearable devices has not been fully explored [31].
The complexity lies in the amount of data required in artificial intelligence algorithms and
the low-power processing for wearable electronic systems. Therefore, the challenge remains
in developing energy-saving techniques for an autonomous, smart detection of underlying
cardiac pathologies that may lead to increased risk in the athlete. Such a system must
consist of wearable devices with the potential to perform AI pattern recognition. These
features would allow the real-time monitoring of ECG signals while exercising for long
periods, and detecting the pathological physiology of heart activity.

In this work, an energy-efficient framework adapted to a wearable artificial intelligence-
of-things (AIoT) embedded system for arrhythmia detection during training sessions is
proposed. The integration of an EH circuit with a Dynamic Power Management Strategy
(DPMS) for a battery extension operation is developed. The DPMS is programmed into an
ultra-low-power microcontroller unit adjusting the ECG signal sampling and transmission
to the corresponding intensity training period, therefore reducing the energy consumption
of the system. A Convolutional Neural Networks (CNN) is proposed to analyze ECG
signals of different heart rates and automatically detect arrhythmias in real time with high
accuracy. Moreover, a visual interface is implemented in a mobile device to analyze the
signals and generate a list with the sequence of arrhythmias in real time. This interface
enables clinicians to identify during training sessions which part of the ECG signal is
significantly associated with a cardiac event. Figure 1 illustrates the conceptualization
of the proposed self-powered and wearable AIoT cardiac arrhythmia detection system.
Experimental results show that the EH-DPMS achieves an extension in the battery charge
for a total of 14.34% more energy. Moreover, the CNN-based arrhythmia detection algo-
rithm achieves a precision of 98.6% using 55,222 ECG samples for training the system
from different databases, such as MIT-BIH, ECG-ID, Long Term ST, QT, among others, and
1320 ECG samples were acquired and used to validate the system.

The rest of this paper is organized as follows. The design of the wearable ECG proto-
type and the dynamic power management strategy are presented in Section 2. The AIoT
architecture based on CNN is described in Section 3, and the database and experimental
results with test-case scenarios for high-performance athletes are assessed in Section 4.
Finally, discussion and conclusion are drawn in Sections 5 and 6, respectively.
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Figure 1. Conceptual idea of the self-powered and wearable AIoT cardiac arrhythmia detection system.

2. Wearable ECG Design and Dynamic Power Management Strategy

In this section, the dynamic power management strategy and the design of an ultra-
low-power wearable electrocardiogram monitoring prototype are described.

2.1. Ultra-Low-Power Wearable ECG Design

The wearable system is composed of four sections: the energy harvester circuit, analog
front-end, digital control unit, and wireless communication module.

2.1.1. Energy Harvester Circuit

The design of this module is focused on providing the system with enough energy
for a training session of 45 min. For this purpose, the BQ25570 EH integrated circuit is
selected. This is a power management device with maximum power point tracking (MPPT)
capability that enables it to extract energy from low-voltage, inexpensive, small-size sources,
with a typical current consumption lower than 500 nA. The BQ25570 contains a highly
efficient boost charger that can charge a 2600 mAh Li-Ion battery and integrates a nano-
power buck converter to regulate the supply voltage of the digital control unit. A 6 V, 1 W,
monocrystalline PV panel is selected, which has been characterized with an open-circuit
voltage of 5.89 V and a short circuit current of 180 mA. Furthermore, its voltage (current) at
the maximum power point (MPP) is 5.1 V (157.38 mA) at standard irradiance conditions
(∼1000 W/m2). The ultra-low-power EH module has been designed to deliver a regulated
voltage of VCC = 3.3 V to all the other system’s modules.

2.1.2. Front-End Design

The wearable ECG device is based on the AD8232 integrated circuit (IC) to condition
cardiac signals for heart rate monitoring [32]. This circuit has a low-power consumption
of 170 µA (typical) and contains an instrumentation amplifier that amplifies the cardiac
signals. The common-mode rejection ratio is up to 80 dB (DC to 60 Hz). The AD8232 IC
also contains a 2-pole adjustable high-pass filter and a 3-pole adjustable low-pass filter with
adjustable gain. A right leg drive (RLD) amplifier is used to invert the common-mode signal
at the inputs of the instrumentation amplifier. When the right leg drive output current
is injected into the user, it counteracts common-mode voltage variations, thus improving
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the common-mode rejection. The AD8232 operates from a single supply of 2.0 V to 3.5 V
and a reference buffer is created with a virtual ground between the supply voltage and the
system ground.

2.1.3. Digital Control Unit

The nRF52840 is an ultra-low-power microcontroller (MCU) device incorporated
as a controller unit for this self-powered and wearable ECG system with the following
characteristics: 32-bit ARM Cortex-M4F at 64 MHz supporting a supply voltage range from
1.7 V to 5.5 V and up to 256 KB of non-volatile random access memory (RAM). The MCU
also contains a +96 dBm Sensitivity for Bluetooth Low Energy (BLE), ARM CryptoCell
CC310 cryptographic security module, and a high-speed SPI interface at 32 MHz.

2.1.4. BLE Wireless Communication Module

Bluetooth is a full wireless protocol that allows devices to communicate over radio
waves. Other radio frequency (RF) technologies for low-power, short-range wireless
communications are ANT, Zigbee, RF4CE, Nike+, and Wi-Fi, among others. Although these
technologies are also designed for low-power, short-range, and modest data transfer, they
have different range, throughput, robustness, and coexistence capabilities [33]. In this
study, Bluetooth-5 (BLE-5) is selected. BLE-5 is the low energy version built-in in the
small package Nordic nRF52820 MCU. This circuit represents a good fit for the design of
a wearable ECG device. nRF52820 supports all Bluetooth 5.2 features in addition to the
Direction Finding, high-throughput 2 Mbps, and long-range features. This chip has an
extended temperature range of −40 to 105 °C, 1.7–5.5 V supply voltage range, and a system
current consumption of 0.6 µA in sleep mode and 4.8 mA TX at 0 dBm.

2.1.5. Wearable Prototype

Wearable operation for AIoT cardiac arrhythmia detection is achieved with the in-
tegration of the ultra-low-power EH circuit, analog ECG front-end, MCU digital control,
and the wireless BLE device on the athlete. Figure 2 shows the prototype design con-
cept. Two sections are identified, i.e., the power management module adapted on the
arm, and the wireless digital controller located on a PCB on the athlete’s chest. The pho-
tovoltaic cell and the EH circuit are embedded in an arm cloth support, which is made of
an elastic band and velcro. The wireless controller is fixed to the chest by the elastic band,
in which three metallic electrodes are directly in contact with the athlete’s pectoral muscles.
The system is implemented using 3-D printing, which allows low-cost custom prototyping.
The material used is thermoplastic polyurethane (TPU) and the structural design of the
system integrates the wireless control unit, a battery, and analog front-end.

PV  Cell

Electrodes

Textile band 
container

ECG Prototype

Figure 2. AIoT cardiac arrhythmia detection prototype.
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2.2. Dynamic Power Management Strategy

The DPMS is programmed into the nRF52840 MCU. The strategy follows a sequence
of states which manages the MCU low-power modes, i.e., an IDLE mode with 0.7 µA
current consumption, a Sleep mode of up to 0.5 µA current consumption, and 1.5 µA for an
active mode. These power modes are necessary for extending the battery energy; especially,
for IoT applications based on EH techniques, where the energy source, i.e., solar PV, is
power limited. In this study, the PMS is proposed according to the athlete’s training session
towards a self-power operation and wearable functionality. The DPMS is based on the
three-intensity-zone model [34] of the athlete training session as illustrated in Figure 3.
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140
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Medium
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Low
intensity

Sleep Period 1

Sleep Period 2

180
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Data 
Sample

5’ 29’ 34’ 40’

Figure 3. PMS based on three-intensity-zone model.

Following the athlete’s training model, the microcontroller employs two different
sampling rates. In the first and last 19 and 5 min, 1 sample/min is configured by the system
because it is less probable that a cardiac abnormality would occur. In the next 21 min,
the rate increases to 2 sample/min in which the elite athlete performs the high-intensity
interval training with short periods of recoveries. Each sample of 1000 measurements is
stored, processed, and transmitted in a single package after 10 s. Figure 4 shows the MCU
states of the DPMS methodology for energy improvement. The figure shows the current
consumption on each state of the model taken from datasheets. The model starts in the
Idle stage, then MCU is activated to acquire the ECG measurements. The acquired data are
stored and processed, passing through the Idle state; after that, data are transmitted and
the MCU reaches the sleep stage. It is worth mentioning that the proposed DPMS can be
configured for different sport training scenarios.
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Figure 4. MCU state diagram.

3. AIoT Cardiac Arrhythmia Detection

A convolutional neural network (CNN) is a Deep Learning (DL) model used for real-
time classification and prediction of non-stationary physiological ECG signals. Among a
variety of optimal methods, CNN is considered a more suitable technique for ECG clas-
sification purposes [35,36]. The proposed CNN architecture for the arrhythmia detection
system is illustrated in Figure 5.
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Figure 5. Intelligent cardiac arrhythmia detection system based on CNN.

3.1. ECG Dataset

ECG signals are acquired for processing by the wearable prototype. For the learning
process, normal and abnormal ECG databases were used from MIT-BIH arrhythmia, ECG-
ID, MIT-BIH supraventricular arrhythmias, MIT-BIH atrial fibrillation, QT, and long-term
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ST. The complete database is composed of 55,222 images, half of them, i.e., 27,611 ECGs’
images, are used as normal, and the other half as abnormal or arrhythmia. These images
were used to learn the wearable system with 10 epochs of convergence, and 1320 ECG
samples were acquired during sport training and used for validation. The classification
results are 0/1 sequences, where each element represents a positive or negative result of
the cardiac arrhythmia detection.

3.2. CNN Architecture

A CNN architecture for intelligent cardiac arrhythmia detection is proposed following
Figures 5 and 6. Each incoming image is pre-processed due to heart rate variations, i.e., de-
noising, filtering, image scaled, and bicubic interpolation without deforming patterns,
and subsequently classifies it. A predictor made of a sequence of four 2D-convolutional
(Conv2D) and MaxPooling layers is employed. The inputs are images processed by filters
in each stage. The MaxPooling layers, inserted between the successive convolutional
layers, progressively reduce the spatial size using the max operation. After that, a flatten
and two dense layers are computed sequentially. In this study, the convolutional layers
transform the original image, layer by layer, from the input image values to the final
classification, i.e., arrhythmia or normal. Table 1 shows the pseudocode for the Tensor Flow
Lite implementation. From the analysis, one can see that the first two Conv2D layers use
3 × 3 kernel sizes of 64 filters. In the third and final Conv2D layers, the number of filters is
reduced to 32 and 16, respectively.

ECG signals
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Image generation

Dataset

CNN algorithm

Time (s)

Vo
lta

ge
 (m

V)

0
-0.5

0.5
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Figure 6. Processing chain methodology for cardiac arrhythmia detection.
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Table 1. Pseudocode of the CNN implementation using TensorFlow Lite.

Tensor Flow-Keras

Layer Type Output Shape Param #

conv2d_1 (Conv2D) (None, 98, 98, 64) 640
max_pooling2D_1 MaxPooling2 (None, 49, 49, 64) 0
conv2d_2 (Conv2D) (None, 47, 47, 64) 36,928
max_pooling2D_2 MaxPooling2 (None, 23, 23, 64) 0
conv2d_3 (Conv2D) (None, 21, 21, 128) 73,856
max_pooling2D_3 MaxPooling2 (None, 10, 10, 128) 0
conv2d_4 (Conv2D) (None, 8, 8, 128) 147,584
max_pooling2D_4 MaxPooling2 (None, 4, 4, 128) 0
flatten_1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 64) 131,136
dense_2 (Dense) (None, 1) 65
Total params: 390,209
Input details tf file: Array (1, 100, 100, 1) Type = float32
Output details tf file: Array (1, 1) Type = float32

3.3. Intelligent IoT Cardiac System

An Android application system was developed for training configuration, online
data visualization, and analysis in the Web and mobile devices. The software interface
is implemented using Google’s UI toolkit, Flutter, and Amazon Web Service (AWS) for
database storage and analysis. Likewise, to comply with intelligent processing, data are
processed and classified with TensorFlow Lite API and generates the intelligent ECG
classification and cardiac arrhythmia detection. The upper part of the user’s interface
application displays the raw data from the ECG signal and the bottom shows the results
for the arrhythmia CNN classification as illustrated in Figure 7.

Figure 7. Experimental results with ECG AIoT Application for cardiac arrhythmia detection.

A list of incidences was generated with the time and training section of each abnormal
arrhythmia signal. Data are managed from the cloud platform employing the MySQL Lite
tool for Flutter.
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4. Experimental Results

The results of the proposed cardiac detection prototype are reported in this section.
The dynamic power management strategy and the ECG performance prediction during
sport training sessions were evaluated, i.e., in the athlete’s environment. A group of
seven athletes of the Universidad Autónoma de Yucatán volunteered to participate and
gave a signed informed consent before the involvement in this study. All selected athletes
had been in a high-performance program for at least one year.

4.1. Experiment Setup

The training session follows the three intensity zone model [34] of Figure 3 with
periods of a low, medium, and high-intensity work. The prototype continuously monitors
the ECG signals during running, sprint, or jumping exercises. Addressing the DPMS in the
training session, two different sleep periods of 15 and 45 s are employed in combination
with the ECG data acquisition, storing, and processing for 5 s, which means data rates of 1
and 2 ECG samples per min, respectively.

4.2. Power Consumption and Battery Extension Analysis

Power consumption is evaluated at the circuit level. NTS = 66 samples, 1000 measure-
ments each, are implemented during the 45 min training. Two different sample periods
were used, in a high-intensity section of 21 min with NHS = 42 samples, and in a low-
intensity during the first and last 19 and 5 min, with NLS = 24. BLE advertising interval
increase to optimize the current consumption by incorporating empty packets to keep the
connection alive. The transmit power was also adjusted to 0 dBm, which is enough to
cover the 10 to 15 m range along the training, and also, to maintain the power consumption.
The prototype’s current consumption (mA) analysis is the following:

Q = NTS(IECGTECG + IPROTPRO + ISTOTSTO + ...

IBLETBLE) + NLS(ISTS1) + NHS(ISTS2)
(1)

where IECG = 1.5 µA is the MCU average current consumption in active mode with the
analog font-end at each data acquisition period TECG of 4.7 s, IBLE requires an average
of 0.357 mA to send data packets in TBLE = 10 s, ISTO = 1.53 µA is the current to data
store in TSTO = 0.1 s, IPRO = 1.5 µA is the current to process the data in TPRO = 0.2 s,
and IS = 0.5 µA is the average current consumption of the MCU in sleep mode for the
sleep periods of TS1 = 45 s and TS2 = 15 s.

Considering a session discharge of Q = 237.5 mA for 45 min training (or Q = 316.7 mAh),
and a 3.7 V battery with a nominal capacity of 2600 mAh and 90% DC-DC converter effi-
ciency, the battery duration can be estimated (without energy harvesting) for approximately
7.3885 h, or 9.8513 training sessions. The selected mono-crystalline PV module of dimen-
sion 113 × 89 × 5 mm for the intelligent ECG device produces 157.34 mAh at a typical STC
(i.e., 1000 W/m2 and a cell temperature of 25 °C). Regarding a capture efficiency of 35%
for a wearable operation of the solar PV module [37,38], the harvester system provides
≈55.1 mAh, which means a battery life extension for 1.7 more training sessions without the
need for manually recharging or replacing the battery.

4.3. CNN Performance Evaluation

Remark that the proposed CNN architecture used 55,222 images for training, and
1320 images were acquired during the 20 sport trainings and used for validation. Figure 8
illustrates the evaluation results of all processing stages of the CNN architecture for the
intelligent cardiac classification. Each CNN architecture output layer is displayed when
processing an image for the normal or arrhythmia category. It shows the changes as they
are processed on each layer until a numerical value is obtained, which is represented in the
figure with white if the value is close to one, or black if it is close to zero.
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Figure 8. Experimental performance of the proposed CNN model for a normal and abnormal testcases.

Table 2 also shows the output result at each epoch iteration, achieving a maximum of
98.6% during validation.

The classification performance during the athlete’s training are presented in Table 3.
Considering the ECG samples of each athlete, the arrhythmia accuracy detection and the
intensity training section have been calculated following [39].

From the analysis of Table 3, one can deduce a 42.85% of athletes with normal ECG’s
signals, 28.57% with one arrhythmia, and 28.58% with two non-consecutive arrhythmias.
In this study, we confirm that only non-consecutive arrhythmias were detected with the
supervision of a cardiac specialist. Please note that our proposed software application
generates an incident list of the detected arrhythmia, highlighting time, the training section,
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and the complete ECG record of each athlete on the Cloud. The ECG database information
on the cloud is available as supplementary material of this work in [40].

Table 2. CNN precision evaluation results at each epoch.

Epoch Processing Time (seg)
Training Validation

Error Precision (%) Error Precision (%)

1 2138 0.6779 56.21 0.6511 61.11
2 2172 0.6132 66.60 0.5660 70.94
3 2661 0.4885 78.33 0.3891 85.48
4 1888 0.3523 85.79 0.2682 91.77
5 2123 0.2461 90.69 0.1779 94.15
6 2392 0.1773 93.84 0.1425 95.08
7 1756 0.1295 95.98 0.1869 92.57
8 1927 0.1032 96.87 0.0865 97.49
9 1879 0.0823 97.66 0.0911 97.18

10 1881 0.0684 98.15 0.0570 98.60

Table 3. ECG Cardiac arrhythmia detection results.

Age Years a Arrhythmia
(n-Sample per Training)

Results
Accuracy Training Section

1 22 2 (5), (-), (-) 1.0 Medium
2 23 1 (-), (-), (-) - -
3 20 2 (55), (-), (-) 0.949 High
4 21 2 (-), (-), (-) - -
5 22 3 (43, 63), (-) 0.998, 0.993 High, Medium
6 23 1 (14), (15), (-) 0.780, 0.916 Medium
7 22 2 (-), (-), (-) - -

a Years refers to the number of years in a high-performance training program.

5. Discussion

In this work, energy harvesting and a dynamic power management strategy are
adapted to extend the battery life of an AIoT-based wearable, automated cardiac arrhythmia
detection system. Table 4 compares this work with recent similar systems. In [30,41],
wearable systems for ECG signal monitoring are developed, but no algorithm for diagnosis
is proposed. Other works [26,27,29,42] develop algorithms for heart rate detection only.
In contrast, our system analyzes ECG signals and detects real-time arrhythmias with
high precision using ultra-low-power devices. Experimental results demonstrate a battery
charge that lasts for approximately 12 consecutive workouts of 45 min, without the need to
manually recharge or replace it, meaning an attractive feature that other studies in [26,38,39]
have not incorporated. A physiological adaptation of athletes to exercises was also shown
in training tests showing non-continuous abnormal ECG signals. This study could also
serve to determine the physiological adaptation to the training, improving the performance
of athletes. Another possible application is the prediction of cardiac pathologies in athletes,
decreasing the risk of sudden death. Further studies could also be directed to a reliability
analysis of the system performance considering the fatigue life of the system components.
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Table 4. Comparative analysis of ECG wearable systems.

[25] [38] [26] [39] [36] [29] [28] This Work

Energy Harvesting No No No No No Yes (Solar) Yes (Solar) Yes (Solar)

Diagnosis Heart rate
(ε < 10%) No Heart rate

(ε < 2%)
R-wave

(ε < 5%)
Arrhythmia

Classification No Heart rate
(ε < 2%)

Arrhythmia
detection

(ε < 1.4%)
Handheld

Monitoring Yes Yes Yes No No Yes No Yes

Battery
Capacity

(mAh)
N/A 500 620 N/A N/A 3400 No 2600

Lifetime
(h) N/A 50 335 N/A N/A 7.4 N/A 7.4

Sample Rate
(Hz) 100 Hz 250 Hz 250 Hz 250 Hz N/A 100 Hz 100 Hz 200 Hz

ECG Leads 1 3 1 1 1 1 1 1
Wireless
Protocol BLE BLE BLE No BLE BLE MAX1472 BLE

6. Conclusions

A dynamic power management strategy (DPMS) was proposed for autonomous de-
tection of cardiac arrhythmias during athlete training using a wearable system. The DPMS
adapted the ECG signal sampling and transmission according to the intensity of the train-
ing period, therefore reducing the total energy consumption of the system required for a
training session. The self-powered and wearable AIoT system operates with an energy
harvesting circuit and cloud service communication techniques. The system executes a
convolutional neural network (CNN) that analyzes and classifies the ECG signals with high
accuracy during a training session of 45 min. EH-DPMS achieves an extension in the battery
charge for a total of 14.34% more energy which means 12 consecutive workouts of 45 min,
without the need to manually recharge or replace it. Experimental results demonstrate
the accuracy of arrhythmia signal detection, and a visualization interface that generates a
list of abnormal ECG signals. The proposed AIoT-ECG system can be used to monitor an
athlete’s performance, helping to reduce the risk of heart abnormal conditions.
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