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Abstract: The use of UAV (unmanned aerial vehicle) technology has allowed for advances in the area
of robotics in control processes and application development. Such is the case of image processing, in
which, by the use of aerial photographs taken by these aircrafts, it is possible to perform surveillance
and monitoring tasks. As an example, we can mention the use of aerial photographs for the generation
of panoramic images through the process of stitching images without losing image resolution. Some
applications are photogrammetry and mapping, where the main problems to be solved are image
alignment and ghosting images, for which different stitching techniques can be applied. These
methodologies can be categorized into direct methods or feature-based methods. This paper aims to
show an overview of the most frequently applied mosaicing techniques in UAVs by providing an
introduction to those interested in developing in this area. For this purpose, a summary of the most
applied techniques and their applications is given, showing the trend of the research field and the
contribution of different countries over time.

Keywords: blending methods; feature matching; filtering algorithms; homography; image mosaicing;
image registration; image stitching; panoramic image; review; UAV images

1. Introduction

The aerial mosaic has different applications, such as surveillance mapping and track-
ing [1–5], search and rescue [6,7], 3D scene reconstruction [8,9], inspection in heritage and
archeological applications [10–12], and vegetation and forest surveillance [13–15]. For these
applications, aerial mosaic panorama generation is applied to stitch multiple images into
a single image based upon overlapped regions [16,17]. Different approaches have been
developed for the stitching process, for example, direct methods (pixel-based) [18–20] and
feature-based methods [21] or mosaicing based on registration and mosaicing based on
blending [22]. In aerial panoramas, image acquisition can be performed by satellites or UAV
systems, but satellite technology provides a higher coverage area than that of other systems
such as UAVs [23]. One advantage is that satellite image acquisition is faster than that of
UAVs [24]. However, there are important factors to evaluate for the use of satellite image
acquisition: firstly, if an analysis of a specific section is required, it is necessary to check if
any satellite is available for the specific coordinates or has recent information on the area of
interest; additionally, if the area is small, when zooming to focus on it, the resolution will
be lower in comparison to that of a medium-size UAV camera; an additional consideration
is UAVs’ dependence on the state of the clouds, owing to the fact that satellites are not
subjected to weather inclemency, such as storms, as UAVs are; for satellite aerial panorama,
the methods for mosaicing images are based on cross-correlation, Fourier-based, phase cor-
relation, and area-based approaches [25–29]. In the case of UAVs, aerial image panoramas
are mainly based on feature-based methods [1,3], due to their flexibility to fly in a specific
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area, which allows them to focus on the selected region, obtaining images with greater
accuracy and sufficient distinctive features [1,3,30–33]. Another advantage of UAVs is that
they can carry different types of sensors, such as fish-eye cameras, thermographic cameras,
LIDAR sensors, and proximity sensors. The aforementioned features make them ideal for
surveillance and monitoring tasks. Each system has its own advantages depending on
the application. However, this work will focus on aerial images obtained through UAVs
due to their high resolution, precision, ease, and flexibility [34]. Table 1 summarizes the
comparisons of the characteristics of satellites and UAVs [35].

Table 1. UAV and satellite characteristics comparison.

Characteristics UAVs Satellites

Flexibility High Low

Cloud dependence No Yes

Direct meteorological constraint Wind and precipitation No

Operator required Yes No

Payload Interchangeable Permanent

Legislation Restrictive None

Data update Constant Refreshing Periodical

Working Time Short (battery life) Long (Limited to
satellite life)

2. Panorama Generation

The basis for image stitching is to relate two images using a geometry model that
associates the motion from one image with another; the motion that best fits this relation
is the projective transformation, also called the homography matrix [36], which gives an
aligned eight-parameter model preserving the straight lines [37,38]. For feature-based
methods, the most acknowledged approaches are global single transformation and local
hybrid transformation [39]. The sequence followed by these techniques, shown in Figure 1,
generates a mosaic.

Figure 1. Mosaicing process.

The first stage is image acquisition. This can be achieved by using one camera for
translational or rotational acquisition, as shown in Figure 2. This task can be performed in
different ways: by using a moving camera, by using more than one camera [40–42] fixed
on a frame to acquire multiple images at once from different angles, or by using a video
camera sequence [43]. To perform the relations between the images, it is important to obtain
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the camera parameters, such as focal length, that are used in the perspective and projection
algorithms [44,45].

Figure 2. Image acquisition: (a) multiple-camera translational and rotational acquisition; (b) single-
camera rotational acquisition.

The second stage is feature registration, where different features are detected and
matched. These features can be: points, lines, or their combinations in general [46]. The
third stage is transformation estimation. Once features are established, a register of both
images is created from the features detected. Some cases lead to a mismatch between the
key points. For this, different algorithms are used to search for the features with the closest
distances between the images, as KD-tree, k-nearest neighbor (KNN) pattern classification,
and Hamming distance [2,47–49] search for the closest distance from the query location.

x̃′ = Hx̃ (1)

where x̃′ is x in homogeneous coordinates and H ∈ R3×3 defines the homography [49].
Different techniques are proposed to calculate the homography. In practice, robust

statistical techniques are employed on a large number of matching points or lines after
normalizing the data; these techniques reduce the adverse effects of noise by using the sum
of squared difference method or an iterative mathematical model, such as RANSAC (ran-
dom sample consensus) [50], PROSAC (progressive sample consensus) [51], or direct linear
transformation (DLT), to relate the features and reduce the matching points. For feature-
based methods, the most used techniques are DLT and RANSAC for their performance
and robustness [52]. RANSAC uses the smallest data set possible and proceeds to enlarge
this set with consistent data points [53]. The goal is to determine a set of inliers from
the presented correspondences so that the homography can be estimated optimally from
these inliers [52]. The fourth stage is the warping or stitching phase, where the images are
overlapped to stitch together as one. After the matching, the not overlapped region has re-
projection errors. In order to solve this problem, the algorithm of bundle adjustment is used.
Bundle adjustment is the problem of refining a visual reconstruction to produce jointly
optimal 3D structure and viewing parameter (camera pose and/or calibration) estimates.
Optimal means that the parameter estimates are found by minimizing some cost function
that quantifies the model fitting error and jointly that the solution is simultaneously optimal
concerning both structure and camera variations [54]. This optimization problem is usually
formulated as a nonlinear least squares problem, where the error is the squared L2 norm of
the difference between the observed feature location and the projection of the correspond-
ing 3D point on the image plane of the camera [55]. The image composition is the last stage,
where, when the illumination and brightness of the images stitched may not be continuous,
different algorithms can be applied to postprocess the image and blend the mosaic images
as one. A method based on the use of gain compensation and multiband blending is
proposed in [33]. Gain compensation adjusts the intensity of the mosaic by computing the
local mean brightness of the image. Nevertheless, simply adjusting the gain to give all
regions the same medium intensity will tend to reduce the intensity in regions with high
brightness and increase the dark or low-intensity regions [56]. Multiband image blending
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is proposed in [57], and it is one of the most popular applications for image fusion due to
its easy implementation and its advantage of being insensitive to misalignment. The basic
idea of this process is to decompose the original image into a pyramidal representation and
blend the images at each level [58,59]. Another approach is presented in [60], with a variant
of Gaussian function as the weighting function, and it proposes improved implementation
and improvement of the weighted mean method to eliminate the edges.

3. Stitching Methods

Feature-based methods are also algorithms that extract common features or descrip-
tors from an image that define them, being the most common features used: points, lines,
edges, corners, pixels, colors, histograms, or geometric entities [61]. These are extracted
from features and compared and matched to their characteristics. These methods have a sig-
nificant advantage over direct pixel-by-pixel methods, in which the relation is determined
by directly minimizing pixel-to-pixel dissimilarities [21]. The feature-based methods can be
divided into two categories: the global single transformation, where the main processes are
feature detection and registration to perform the global projective transformation, and the
local hybrid transformation.

3.1. Feature-Based: Global Single Transformation

The feature descriptors must have different characteristics and must be found through-
out the image so that the points of coincidence in both images are distinguished. There
must be a high number of descriptors; in case of geometric changes, the identifiers can
relate images efficiently. Among the most used feature algorithms are the Harris Corner
Detector [62], FAST [63], ORB [64], BRIEF [65], BRISK [66], SIFT [67], and SURF [32].

3.1.1. Harris Corner

The Harris Corner Detector [62] was one of the first feature detection methods and
it is based on the Moravec Corner Detector. This method uses a small window to scan in
different directions for changes in the average light intensity of the image; then, the center
point of the window is extracted as a corner point, shifting the window. Should there be a
flat region, it will show no change of intensity in all directions. If an edge region is found,
then there will be no change of intensity along the edge direction. However, if a corner is
found, then there will be a significant change of intensity in all directions [68].

The corresponding eigenvalues provide the actual value amounts of these increases.
λ1 and λ2 are the eigenvalues of matrix M. Then, the corner, edge, and flat area of the
image can be computed from the eigenvalues as follows:

• Flat area: both λ1 and λ2 are very small.
• Edge: one of λ1 and λ2 is smaller and the other is bigger.
• Corner: both λ1 and λ2 are bigger and are nearly equal.

3.1.2. SIFT

One of the feature methodologies most widely used for its performance is SIFT (Scale
Invariant Feature Transform) [67]. This low-level feature methodology has the advantage
of being robust to occlusion, clutter, and noise with a good quantity of key points generated
for even small objects [69]. SIFT uses a sequence of four stages. An image pyramid is
constructed by repeatedly convolving input images with Gaussians, including a set of scale-
space images, shown on the left, and subtracting the adjacent Gaussian images to produce
a difference-of-Gaussian (DoG) pyramid. The scale space is constructed by convolving
an image repeatedly using a Gaussian filter, which changes the scales and groups the
outputs into octaves [67,68]. After the scale-space construction is complete, DoG images
are computed from adjacent Gaussian-blurred images in each octave [21].
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3.1.3. FAST

The Features from Accelerated Segment Test (FAST) [63,70] is a corner detection
method which can be used to extract feature points and later used to track and map objects
in many computer vision tasks. A corner detector should satisfy the following criteria:
consistent, insensitive to the variation of noise, detected as close as possible to the correct
positions (accuracy), and fast enough (speed) [69]. The segment test criteria operate by
considering a circle of sixteen pixels around the corner candidate feature p. The original
detector classifies p as a corner if there is a set of n contiguous pixels in the circle which are
all brighter than the intensity of the candidate pixel p plus a threshold t or all darker than
Ip minus t [71].

3.1.4. ORB

The feature matching ORB (Oriented FAST and Rotated BRIEF) algorithm is a de-
scriptor method comparable to SIFT, with low cost and high speed; it is based on BRIEF
(Binary Robust Independent Elementary Features) and FAST. One disadvantage of FAST is
its lack of an orientation component. For this, ORB uses a multiscale image pyramid that
consists of a sequence of images with different resolutions. After locating the key points,
ORB assigns an orientation to each key point depending on its level of intensity. BRIEF
takes all key points found by the FAST algorithm and converts them into a binary feature
vector so that together they can represent an object. A binary feature vector—also known
as a binary feature descriptor—is a feature vector that only contains 1 and 0. To sum up,
each key point is described by a feature vector which has 128–512 string bits [64,65].

3.1.5. SURF

Speeded Up Robust Features (SURF) is a scale and rotation invariant feature interest
point detector and descriptor proposed by [32]. This algorithm has advantages over
previous systems, such as SIFT, because it presents similar results of matching points,
but its calculations are faster. The approach for interest point detection uses a basic Hessian
matrix approximation by relying on integral images for image convolutions: the Hessian
matrix He(x, σ) in x at scale σ as the convolution of the Gaussian second-order derivative,
with the image I in point x, and similarly for Lxy(x, σ) and Lyy(x, σ) to calculate the
determinant of the Hessian matrix. These approximate second-order Gaussian derivatives
are evaluated at a very low computational cost using integral images, and regardless of
size, they allow fast calculation.

3.1.6. BRISK

The Binary Robust Invariant Scalable Keypoints (BRISK) algorithm [66] is a feature
point detection and description algorithm with scale invariance and rotation invariance.
It constructs the feature descriptor of the local image through the grayscale relationship
of random point pairs in the neighborhood of the local image and obtains the binary
feature descriptor. The key concept of the BRISK descriptor makes use of a pattern used for
sampling the neighborhood of the key point. Two subsets of distance pairings are defined:
one each for the short-distance and long-distance pairings, S and E, respectively. BRISK
loses information about the image colors, which can provide more key points for matching
points. Owing to this reason, a CBRISK algorithm is proposed to maintain the information
of the RGB color channels [72]. To decrease computation time, the SBRISK development
shifts the binary vector rather than rotating the image pattern or constellation, as many
other descriptors do [73].

3.2. Feature-Based: Local Hybrid Transformation

Feature-based panorama generation based on global single transformation has shown
good results for pure rotational moves and planar scenes, but in real practice, this condition
is rarely satisfied due to movement of the UAV, as shown in Figure 3 [41]. Therefore,
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ghosting effects frequently happen when the images are aligned. Moreover, the parallax
problem remains due to the move of the optical center [74].

Figure 3. Parallax introduced by the discrepancy of the camera.

Local hybrid transformation is where mesh-based alignment is reviewed, since it is
complemented by the other methodologies [61]. Mesh-based alignment divides images into
uniform meshes. Each mesh corresponds to an estimated transformation where there are
two regions: the overlapped region, which is aligned by the projective transformation, and
the nonoverlapped region, which is generally warped by using a similarity transformation
by calculating the local homography model to avoid potential distortions.

3.2.1. APAP

One mesh-based algorithm is proposed by Zaragoza [74]. Their algorithm, named As
Projective As Possible (APAP), is based on the DLT used to calculate the global homography.
Instead, they calculate location-dependent homography (local homography) using moving
DLT (MDLT); this produces flexible warps but also maintains the global homography as
much as possible. Given the estimated H to align the images and arbitrary pixel at position
x∗ in the source, image I is warped to the position x′∗ in the target image I′ by:

x̃′∗ = H∗ x̃∗ (2)

The result shows an overlapped mesh, as the horizontal lines are reserved, reducing
the parallax error.

3.2.2. SPHP

As previously presented, the APAP result is a global projective warp with the problem
of shape/area distortion in the nonoverlapping area; part of the image is stretched and
nonuniformly enlarged. This problem is produced for the single perspective with a wide
FOV; for this reason, a multiperspective warp is employed in [75]. Based on a projective
warp for the overlapped areas and a similarity warp for the nonoverlapped section, we
have the shape-preserving half-projective warp (SPHP).x′

y′

1

 ∼
ĥ1 ĥ2 ĥ3

ĥ4 ĥ5 ĥ6
c 0 1

u
v
1

 (3)

For RL the transformation, the projective transform goes from H(u, v) → S(u, v),
which reduces the distortion images generated from the projective transform.
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3.2.3. AANAP

The global similarity transform performed by SPHP may result in a mismatch if the
overlapped region contains distinct image plans due to the use of all points to obtain the
similarity transform. Due to this, an optimal similarity transformation is proposed in [76].
Between the target and the reference images, the process begins with the feature points’
matches, and then extrapolation between the nonoverlapping areas using homography
linearization occurs. The resultant image has fewer perspective distortions than the result
using APAP. Once the global similarity transform is calculated, it is used to mitigate the
perspective distortion, using it as a warp on the target image.

Ĥ(t)
i = µh H(t)

i + µsS (4)

Ĥ(r)
i = Ĥ(t)

i + (H(t)
i )−1 (5)

The local homography is represented by H(t)
i , Ĥ(t)

i represents the updated local trans-
formation, and S is the global similarity transform.

4. Aerial Panorama Applications

In the previous section, an introduction of the most used feature-based algorithms
was shown. In this section, a résumé of aerial panoramic applications is presented; these
applications were developed to generate aerial panoramas as the principal task or to use
the stitching methodology as a complementary method for a different application.

4.1. Feature-Based: Global Single Transformation
4.1.1. Harris Corner

Harris Corner is still a widely used method for its low computational cost. New
improvements have been proposed, such as applying a prefilter of the characteristic points
detected using Harris Corner, to reduce the ghosting and luminance problems [77]. An-
other proposal is an improvement replacing the Gaussian Window function for a B-spline
function; then, the corner points are preselected to obtain candidate corners, and an autoad-
aptive threshold method improves the adaptability of the algorithm. Another approach
of Harris corner improvement is applying an adaptive nonmaximal corner suppression
algorithm to reduce the pixels that cannot be corners. The local representative corners
are retained, which reduces the corner detection time by 30.2%, improving the stitching
speed [78]. The use of distinct algorithms on the matching process enhances the method-
ology: as an example, by applying Harris corner in a correlation on the registration, the
accuracy and robustness of aerial panoramas are improved [79]. Another proposal is to
combine it with another feature algorithm, such as SURF, in one process, making it possible
to achieve a more robust algorithm than a simple Harris corner, as proposed in [80]. In
Table 2, a résumé of Harris Corner applied on UAV examples is presented.

Table 2. Harris Corner Applied on UAVs.

Author Advantage

X. Yuanting et al. (2019) [78] This algorithm improves the stitching speed.

C. Cheng et al. (2017) [80] Image matching accuracy is improved with less processing time.

Y. Hong et al. (2013) [79] Efficiency and accuracy are improved by registration constraint.

4.1.2. SIFT

SIFT is one of the most used algorithms for a scaled invariant detector. Although
it is efficient at detecting matching points, the time needed to compute operations is its
disadvantage. To improve the processing time, different approaches are proposed, such as
the one presented in [81]. They propose a binary local image based on SIFT, reducing the
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complex operations and speeding up almost 50% faster than the original algorithm. An
improved SIFT method called AH-SIFT is proposed in [29]. In this method, the descriptor
performs more efficiently than the original SIFT, undergoing various levels of geometric
and photometric transformations. An optimized projective transformation method to
improve SIFT thermal infrared images is proposed using M-least squares to join images
obtained by uncooled thermal infrared video in [82]. An approach presented in [83]
enhances the speed estimation of a drone and adjusts the velocity of image acquisition,
reducing the ghosting effects. A global motion model is used to predict the overlapped
region based on the world coordinate frame. Then, SIFT stitching is applied and image
quality is evaluated based on gray relational analysis, improving the accuracy [84]. Using
a graphics processing unit (GPU), an implementation called the CUDA-SIFT (Compute
Unified Device Architecture) approach [85] achieves real-time mosaic generation and
tracking. Another approach presented by [82] is a SIFT stitching process based on random
M-least square algorithm and super-resolution processes. Some applications use the SIFT
process for an earthquake rescue system, where the image mosaicing is used for an image
earthquake damage degree (EDD) analysis. This is performed by evaluating the gray level
co-occurrence matrix (GLCM) features along with coarseness, contrast, metric, and filters to
analyze the EDD [86]. Following the disaster evaluation developed in [87], a methodology
to evaluate open-source systems for Urban Search and Rescue (USaR) is used to determine
the location of possible trapped victims for fast 3D modeling of fully or partially collapsed
buildings using images from UAVs. In the inspection area, some applications use the SIFT
mosaicing approach for inspecting photovoltaic systems (PVs) using UAVs with thermal
cameras to record videos using GPS for the trajectory. These images will be used to generate
a high-resolution image of a PV zone by using SIFT [88]. A measurable aerial panorama
based on panoramic images and multiview oblique images is proposed in [89], and it
is divided into major stages: projection, matching, and back projection. The stitching
process applied is the SIFT methodology to stitch the projected aerial panorama with a
down-looking oblique image and the aerial panoramic image after matching the images
by their proposed method. Table 3 shows some of the most recent implementations of the
SIFT algorithm in UAVs.

Table 3. SIFT applied on UAVs.

Author Advantage

D. Ghosh et al. (2013) [2] The SR algorithm improves in effectiviness.

J. Ye et al. (2018) [83] The speed estimation performs the aerial panorama in a short
time with appropriate aspect ratios and good visual quality.

P. Tsao et al. (2019) [4]

A positioning system based on image stitching and top-view
transformation is proposed, relating it to the GPS data to
calculate the relative UAV position for distance measurements
and object localization.

J. Xiaoyue et al. (2018) [84] Stitching region prediction based on IMU and GPS
information is used for image stitching using SIFT.

S. Verykokou et al. (2018) [87]
A FAST 3D modeling of fully or partially collapsed buildings
using images from UAVs for the Urban Search and
Rescue task is proposed.

4.1.3. FAST

In comparison with Harris Corner, the FAST algorithm can detect more features at the
same time, yet, compared with SIFT, the number of features detected is less than half. This
can lead to the wrong assumption that SIFT is better than FAST. Nevertheless, in processing
time, FAST accomplishes feature detection with simple operations that make it faster than
SIFT [90]. This has to be considered to choose the best fit implementation according to the
application. A SIFT variation using FAST in each pyramid instead of DoG is proposed
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in [91]. Such an approach achieves a robust and faster algorithm with more features than
what is achieved just using FAST and faster than SIFT. As aforementioned, FAST has
the advantage of speed computation; for this case, [92] proposes a real-time application
using the FAST feature detector with the correspondence algorithm Bag-of-Word (BoW)
to improve the time correspondences compared to the brute-force matching algorithm.
Sometimes the stitching process uses multitemporal images, which present more changes in
lighting and contrast than when applying any of the feature detection methods. The process
will have errors due to the change in the grayscale. Reference [93] applies the use of phase
congruency (PC) to maintain the image structure, regardless of the change in the grayscale,
once the PC images are obtained. A crowd density estimated by jointly clustering analysis
is presented in [94], where two versions of FAST are tested to detect the crowd features.
The filtering procedures are used to eliminate the feature points which did not belong to
crowd features. Some applications of the algorithm used with drone images are presented
in Table 4.

Table 4. FAST applied on UAVs.

Author Advantage

T. Botterill, S. Mills, R. Green [92] Images are registered and stitched together seamlessly
in real time.

X. Zhang, Q. Hu, M. Ai et al. [93] By applying phase congruence, the images are stitched
evenly with color changes and illumination.

Ali Almagbile [94]
Accuracy of FAST-9 and FAST-12 methodology,
compared in terms of completeness and correctness, is
improved.

4.1.4. ORB

As previously stated, ORB methodology has the advantage of speeding up com-
putation compared to most of the feature-based methodologies. As an example is the
application of the aerial image mosaicing process based on ORB to remove the mismatch
from thousands of putative correspondences by applying locality-preserving matching
(LPM), cited in [95]. Another approach based on Bayesian frameworks aims to formu-
late it as a maximum likelihood problem and solve the geometric algorithm using the
expectation maximization (EM) algorithm. To reduce the matching process, principal
component analysis (PCA) is used, reducing dimensions and facilitating the feature ex-
traction process without compromising accuracy, as shown in the root mean square errors
(RMSE) results [96], improving the time process by using a GPU with CUDA, obtaining
a faster matching process compared to SIFT and SURF. Other developments in the ORB
methodology may concur in the implementation of techniques to relate the features; in the
case of [97], a preprocess phase correlation method is used to obtain the overlapping area
between the to-be-stitched image and the reference image, reducing the feature calcula-
tion. Then, using Hamming distance, the relation between the image matching points is
improved compared to the classical ORB methodology. Similarly, using a mask to register
local clustered ORB features and nonmaximal suppression to remove clustered points, only
the feature point with the largest response value is retained [98]. Hamming distance is
used for the matching step, and finally, PROSAC is applied to eliminate the wrong matches
and calculate the transformation matrix between images. The result is an improvement on
the correct matching points, slightly less than that of SIFT and almost the same speed as
classic ORB. Table 5 presents a summary of the implementations using ORB.
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Table 5. ORB applied on UAVs.

Author Advantage

J. Chen et al. (2018) [95]
The LPM with Bayesian framework improves the computation
time and the efficiency while ensuring accuracy compared with
the state-of-the-art methods.

O. Zia et al. (2019) [42] By using fisheye lenses, a good region of overlap is obtained
between adjacent cameras.

C. Yeh et al. (2018) [96]
ORB / PCA splice detection is faster and more accurate than the
classic SIFT and SURF approaches. In addition, the GPU
performs the test 2.6 times faster than the CPU test.

Y. Zhang et al. (2019) [97]
The methodology reduces the calculation time of completing
the reconstruction of the panorama compared to SIFT and
classic ORB.

R. Reboucas et al. (2013) [53] A fast visual odometry tracking system is developed.

4.1.5. SURF

SURF-based aerial panoramas are attractive for their accuracy, comparable to SIFT in
a shorter period of time. An example is the implementation of the process on workflow
technology and a geoprocessing workflow tool called GeoJModelBuilder as a four-step pro-
cess. First is detecting and registering; second is KNN for matching points [99]. RANSAC
is used for transforming estimation and finally warping all images to the same coordinate
system. The workflow approach is proposed to provide users a flexible way to create a
workflow to fulfill their needs. The workflows could be bound to different algorithms for
better results or less time consumption. Tests of the SURF algorithm with fast approximate
nearest neighbor search (FANN) feature matching [100] were carried out through ROS
using Google Maps for the simulation of the panoramic images. In the tracking object
case, the methodology can be used with a Kanade–Lucas–Tomasi tracker (KLT) to track
a region of interest [101]. The stitching process can be used for position estimation, as
presented in [102], where position estimation methodology is applied for path planning
and distance calculation by the triangle similarity principle and fusion images. In Table 6
these implementations are presented.

Table 6. SURF applied on UAVs.

Author Advantage

E. Hadrovic, D. Osmankovic,
J. Velagic. [100]

The algorithm is relatively fast compared to alignment
algorithms based on SIFT feature matching with a
high-quality alignment.

M. Yue, Q. Yan [102]
A real-time reconnaissance and monitoring application can
achieve an accurate positioning without the need of
increasing the camera accuracy.

A. Micheal, K. Vani [101]
Implementing a semiautomatic object tracking method
using SIFT or SURF with a high detection rate, the region of
interest is specified by the user.

Z. Wu, P. Yue, M. Zhang et al. [99]
The workflow approach generates an automatic mosaic of
UAV images with the flexibility to edit the workflow
depending on the user needs.

4.1.6. BRISK

Comparable with BRIEF applied in ORB, BRISK methodology outperforms SIFT and
SURF in speed. With similar results and low calculation cost, this makes it ideal for UAV
aerial panoramas, as shown with previous methods. An improved BRISK methodology
developed to acquire reliable control points for image registration is presented in [103].
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The spatial relationship is analyzed, with the key points derived from the coincidence of
descriptors to eliminate the corresponding false points. This methodology proves to be
4.7 times faster than classic BRISK. The use of ground control points allows a more accurate
position, as shown in [15], where ground control points are used for thermal orthomosaics
generated by BRISK and an RGB camera analyzes the blooming of flowers for their apple
orchard management system. This information is summarized and presented in Table 7.

Table 7. BRISK applied on UAVs.

Author Advantage

C. Tsai, Y. Lin [103]
The positional accuracy of the UAV orthoimage by applying the
proposed image registration scheme improves the correctness of
the process.

W.Yuan, D. Choi [15] The stitching speed of 100 thermal images within 30 s and RGB
correlation and classification are improved.

4.2. Feature-Based: Local Hybrid Transformation

From the feature-based methodologies, the most accurate, mesh analyses, are based
on SIFT and SURF features. Some methods focus on image compositing. Once the UAV
obtains the aerial image, mesh-based stitching blending methods are applied to improve
the panoramic result, as presented in [104], where they propose color blending based on
superpixels, using simple linear iterative clusters after generating the SPHP panoramic
image. Since the number of superpixels is much less than that of individual pixels, such
improvement reduces the computational complexity and processing time compared to
multiband blending, color transfer based on image gradients, and color matching blending.
Another approach is suggested in [105] by calculating SURF and Harris Corner features
to obtain the global homography. Applying PROSAC and KNN, it fuses with MDLT
to improve the SPHP algorithm, reducing the ghosting on the overlapped image result.
An improvement on AANAP is proposed by using superpixel methodology to improve the
compositing image. After relating both images, AANAP improves the alignment accuracy
and reduces the perspective distortion [15]; then, seam cutting is applied with superpixel
segmentation to reduce the ghosting images, and image color blending is finally applied.
To reduce the distortion generated by the global homography, the algorithms AANAP
and SPHP use the similarity transform. However, in urban scenes, these algorithms
cannot preserve the building lines. New developments propose mixing features’ inertial
navigation systems (INS) in order to improve efficiency or time processing. An indoor
application for SIFT and INS is proposed by [106] for camera pose estimation, improving
stitch drone-captured indoor video frames. Pose estimation can be achieved by INS to
calculate the relation between image frames captured by the UAV to select the most related
and reduce the number of image stitching processes. Another option is the use of SIFT
to estimate the global transformation parameter. The result will accumulate registration
errors and disregard multiple constraints between images [107] to improve the stitching
performance. A shape-preserving transform is used to preserve the geometric similarity
before reprojecting, which attempts to retain the shapes of local regions and use multiband
fusion to process the gain compensation and obtain a natural-looking panoramic image.
A matching improvement is proposed in [108] by using the grid-based motion statistics
(GMS) algorithm as a means of encapsulating motion smoothness as a statistical likelihood
of having a certain number of feature matches between a region pair and removing the
mismatches for applying them: the RANSAC. A region-based methodology uses SIFT as
the first step to obtain the global transformation, where the overlapped region is divided
into small regions and multiple regions have different weights depending on the local
homography [109]. Then, RANSAC is used to reduce the outliers, compared to SIFT, APAP,
and AANAP. After the global projection estimation, the thin-plate spline (TPS) with a simple
radial basis function type formulates the image deformation, due to its good performance
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in both alignment quality and efficiency, by using REW (robust elastic warping) [110]. REW
is a methodology proposed by what can be regarded as a combination of the mesh-based
model and the direct deformation strategy to remove mismatches. The radial distortion
function allows us to create a perfect reconstruction due to its good alignment quality and
efficiency [111], and then, by applying global homography, we can obtain a good effect on
the nonoverlapping regions of the target image. Table 8 presents the summary of these
implementations.

Table 8. Mesh-based methods applied on UAV.

Author Advantage

F. Fang et al. [104]
A superpixel image is generated, improving the efficiency and
flexibility of the target image to reduce the color differences
between the two input images.

J. Leng, S. Wang [105] The SPHP algorithm is improved, removing the ghost image of
the stitched image and generating better stitching results.

Y. Zhou et al. (2019) [112]
Image stitching improves from the captured video by eliminating
the ghosts caused by moving objects and object detection module,
providing high detection accuracy.

Y. Yuan et al. [15]
The SLIC algorithm is used to generate superpixels in the seam
cutting and color blending stages, affording spatial coherency and
improving the efficiency.

Q. Wan et al. [107]
The local alignment model introduces parallax errors as a
constraint term into the minimum energy function and uses the
mesh-based deformation to accelerate the calculation.

L. Luo, Q. Wan,
J. Chen et al. [113]

The inaccuracy results are compared with RMS and show an
improvement compared to APAP, SPHP, and REW in time
processing.

Q. Xu, L. Luo, J.
Chen et al. [109]

The accuracy of the method is improved, compared to most used
mesh analyses, and the computational cost is comparable to that
of AANAP.

5. Discussion

The generation of aerial panoramas and mosaicing are very active fields with new
approaches each year. The growing trend of this research field can be seen in Figure 4,
wherein the period from 2017 to 2019 saw a significant increase in this research field
compared to 2020 and the first half of 2021, where the number of articles was nearly half as
much as that of the previous period. Thus, it can be assumed that the interest in this field
could increase due to the approach applied in these techniques as an effort to solve some of
the main problems of stitching methods and the development of different implementations
for new UAV applications or improvements in their processes. Some of the issues that
are addressed are time processing, matching relation, hybrid transformation to avoid the
most common errors of parallax and ghosting images, and image composition by applying
different methodologies and techniques based on feature registration mosaicing methods.
As it can be observed in Figure 5, the implementation of mosaicing methodologies has
increased by almost 46% between 2010 and 2015. In that way, the process has changed from
applying the stitching technique on aerial images to implementing it on UAVs by focusing
on solving the main problems related to image acquisition from a moving camera, where
new solutions based on preprocessing filters are used to improve the feature detection,
thus ensuring the relation for the stitching process, or by performing gain compensation
techniques on the resulting mosaic image.
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Figure 5. UAV mosaicing implementation.

This study found that the main contribution to this area is presented by the Asian
continent, locating it as a zone of interest in this research field. For this reason, it is important
to remain close to the progress generated in this region, as shown in Figure 6. As it can be
noticed, another region whose progress is important to follow is the American continent,
which has remained active in this research field. From these regions, the countries that
have contributed the most are presented in Figure 7. The first place is China, followed by
India, Taiwan, and Korea from Asia. In the case of America, the USA is the country that
has contributed the most in this region.

0 5 10 15 20 25 30

America Asia Australia & Oceania Europe

Figure 6. Development by continent.

This may be due to the development of new applications based on the mosaic of aerial
images applied in a wide variety of areas. China has been one of the main countries in-
volved in the growth and development of technologies but also one of the largest producers
of drones in the industry. They have innovated in introducing this system to daily activities,
where the use of these techniques is applied in tasks such as surveillance and monitoring
in large areas, but this process can be used for more applications, such as: photogrammetry
for archaeology and heritage maintenance, agricultural and forestry surveillance, civil engi-
neering, digital elevation models and 3D mapping, rural roads, geological infrastructure,
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road information, urban terrain reconstruction, air analysis and pollution (for environ-
mental awareness), urban configuration, and environmental monitoring, among others, as
shown in Figure 8.
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Figure 7. Development by country.
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Localization, Tracking

Photogrammetry
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Figure 8. Percentage of aerial image applications.

Among the main objectives of this review is to present the most widely applied
mosaic techniques of aerial panoramas in drones and, as presented in the previous sections,
the feature-based approaches are the most implemented methodology, as shown in Figure 9.
More specifically, the approaches based on estimation of the global single transform features,
even more than the local hybrid transformation, are more recent methods with some
advantages over the earlier methods. However, this may be related to the fact that these
methodologies are faster, more documented, and, in some cases, have a low computation
cost compared to the local hybrid transformation approaches.

80%

20%

Global Single Transform Local Single Transform

Figure 9. Most used feature methodology.
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From global single transform feature revision, the most implemented methodologies
are the Harris corner, SIFT, FAST, ORB, SURF, and BRISK; these approaches are the most
implemented in UAVs. The comparison made between these methods shows that the
classic ORB is one of the most applied methodologies due to its speed above other classic
methodologies, which makes it a good choice for real-time applications. However, a dis-
advantage of this method is its low accuracy compared to that of other methods, such as
FAST, in which it is based, and BRISK, which outperforms in cases of rotation and fast
scale changes. Even so, the SURF technique is implemented more often because of its
performance compared to that of SIFT and its speed close to that of ORB; however, if speed
is not a key factor but accuracy and robustness are desired, the most applied method is
SIFT, as shown in Figure 10, where there are new approaches based on GPU and computing
algorithms show an improvement in the speed of SIFT application.

5%
8%

8%

18%

48%

15%

BRISK FAST Harris Corner ORB SIFT SURF

Figure 10. Global single transforms implemented on UAVs.

In the local hybrid transformation area, the most notorious algorithms are SPHP and
APAP, in which SPHP has the advantage by applying local hybrid transformation with
similarity transformation to reduce the distortions and preserve the similarity constraints
(Figure 11). New approaches based on improvements in the matching and blending
methods were considered within the aforementioned categories. As it can be observed from
the tables, feature registration is the most implemented in SIFT, SURF, and ORB for recent
development. The same applies for SPHP and AANAP methodologies. In Figure 12, a plot
of the principal feature-based transform methodologies implemented on UAVs is presented.

57% 29%

14%

AANAP APAP SPHP

Figure 11. Local hybrid transform implemented on UAVs.

As it has been presented, since 2017, there has been an increase in this research
area, mainly undertaken by universities and research centers, where, it should be pointed
out, the main works are carried out in Asia. Nonetheless, many countries have joined this
research field, in which new proposals explore the use of machine learning-based systems or
artificial intelligence (AI)-based techniques. This does not mean that classic methodologies
are outdated, since new approaches propose the combination of feature-based techniques
with different algorithms, such as LPM, SR, PCA, and REW, which provide a more robust
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and efficient methodology. It is interesting to think about the new developments that can
be generated in combination with different areas of image processing.

0 2 4 6 8 10 12 14 16 18 20

AANAP

 APAP

 BRISK

 FAST

 Harris Corner 

ORB

SIFT

SPHP

SURF

2008-2010 2011-2013 2014-2016 2017-2019 2020-

Figure 12. Methodology developments by year.

6. Conclusions

As shown in this work, aerial images have been used in many fields, and only in the
last decade have new methods been developed, delivering great progress in the panoramic
image field. New approaches and methodologies were proposed in this work for different
applications. The evolution of this field has attracted the attention of different researchers,
where China is one of the countries that has contributed more heavily. More countries are
joining in the development of new mosaic-based techniques improving panoramic aerial
images by exploring different approaches. These improvements can be faster and more
accurate for the generation of aerial images or have more complex applications, such as that
of surveillance and tracking systems focused on solving specific tasks, by applying mosaic
generation with more algorithms. The results submitted here show the trend of feature-
based algorithms. They are based on machine learning and AI together with these methods
in order to improve the generation of image mosaics by correcting the errors generated
when joining images. The area of drone application has permitted image mosaicing to gain
more attention for new developments, which allows for increasing development in the
mosaicing of images.
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