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Abstract: Agricultural systems have entered a period of significant disruption due to impacts from
change drivers, increasingly stringent environmental regulations and the need to reduce unwanted
discharges, and emerging technologies and biotechnologies. Governments and industries are devel-
oping strategies to respond to the risks and opportunities associated with these disruptors. Modelling
is a useful tool for system conceptualisation, understanding, and scenario testing. Today, New
Zealand and other nations need integrated modelling tools at the national scale to help industries
and stakeholders plan for future disruptive changes. In this paper, following a scoping review
process, we analyse modelling approaches and available agricultural systems’ model examples per
thematic applications at the regional to national scale to define the best options for the national
policy development. Each modelling approach has specificities, such as stakeholder engagement
capacity, complex systems reproduction, predictive or prospective scenario testing, and users should
consider coupling approaches for greater added value. The efficiency of spatial decision support
tools working with a system dynamics approach can help holistically in stakeholders’ participation
and understanding, and for improving land planning and policy. This model combination appears to
be the most appropriate for the New Zealand national context.

Keywords: decision-making support; integrated modelling; policy development; regional to national
scale; data and skills

1. Introduction

The future of agriculture depends on the system’s responses to the global challenges
of climate change adaptation, carbon emission reduction, water availability, water quality
restoration, and ecosystem services’ provision. Policy, technology and science have a key
role to play in addressing these challenges [1–3]. Climate change, the most studied of global
change challenges, is already causing major disruptions in food supply due to yield losses
and subsequent chain reactions on socio-economic systems [4,5]. However, a larger range
of disruptions are putting agricultural systems under pressure and could lead to major
disruptions to the agro-economical system: diseases or pandemics like the Asian Swine
Fever outbreak [6,7], socio economic factors (war, conflict, etc.), trade restrictions/barriers
or agreements [8], new food consumption trends [9,10], and disruptive technologies such as
cowless milk [11]. Technology can also be a positive factor: precision agriculture to optimise
yields and minimise nutrient losses [12,13], biotechnology such as the use of seaweed
for reduction of methane emissions [14,15], water/irrigation optimisation, and efficiency
improvements [16], and others. The range of potential beneficial and detrimental disruptive
elements highlight the urgent need to address long-term sustainability of agricultural
systems [17,18].
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Since the 2000s, the international community through multilateral agreements and
Non-Governmental Organisations (NGOs) have advocated for countries to restore or limit
their impacts on the environment, based on policy informed by science. Agricultural
activity, that represents almost 40% of global land use worldwide [19], is a significant
contributor to Greenhouse Gas (GHG) emissions [20,21], soil and water quality loss [22–24],
biodiversity loss [25–27], and thus environmental sustainability. At the international scale,
several institutions have guided recommendations, incentives, and warnings over the past
two decades. The Intergovernmental Panel on Climate Change (IPCC) provides assess-
ments of climate change, its impacts and future risks, and recommendations; the Paris
Agreement was adopted by 196 countries to limit global warming; the United Nations (UN)
adopted the 17 Sustainable Development Goals (SDGs) [28,29], and the Millennium Ecosys-
tem Assessment [30], by the Aichi Biodiversity Targets were formulated for conservation
and restoration of biodiversity and ecosystem services by 2020 [31]. These environmental
goals need to be synergistic with agricultural productivity and food security goals and
thus the Food and Agriculture Organisation (FAO) is leading international efforts to de-
feat hunger, and provide adequate nutrition for all people. All these international efforts
link policy and science at a global scale and incentivise nations to tackle global change
challenges, and national governments are the key players in setting policy to enhance
sustainability, resilience, productivity, and trade opportunities. Policy implementation
often requires global coordination, comprehensive, integrated, and multi-sectoral analyses
to support national target-setting [32]. The national scale is thus a key scale to define policy,
laws, and regulations, and also to negotiate and organise international market trade espe-
cially for food security purposes or national sustainable profitability [33,34]. Agricultural
systems need to strive for more flexibility and more adaptation options to gain resilience
under economic, environment, and social disruptions [35].

Modelling is a useful tool for system conceptualisation, understanding, projection
of future scenarios, and hypothesis testing about the impact of disruptions in a system’s
overall behaviour in relation to changes in its components. Models are generally defined
by two ways: (1) their approach, i.e., how the internal process is working, and (2) their
thematic application, i.e., the thematic question they are being used for. The choice of
approaches regarding the thematic questions is crucial for successful modelling processes.
Many different modelling approaches exist and each of these have a different degree of
complexity, requiring different data and application skill levels, and are not equal for
system conceptualisation, analysis, prediction or prospection [36,37]. However, all the
approaches provide some level of useful knowledge of agricultural systems and can help
decision-making. Most agricultural models were developed from science knowledge for
policy development and focus on agricultural sustainability and resilience [38–42]. Some of
the available models group a wide range of indicators, such as the integrated Sustainable
Development Goals model (iSDG, [40]), which is customisable for all countries, or the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVest), a multi-ecosystem-
services modelling platform [43]. Other models only focus on one part of the system,
such as crop models, water models, energy models, GHG emission calculators, or climate
models. The selection of model thus depends on the application scale, the questions
needing answers, system complexity, and data availability.

With more than six decades of multidisciplinary contribution to concepts and tools for
agricultural systems modelling, the scientific community considers models critical to make
informed agricultural decisions [39]. However, today, only few countries seem to have
either appropriate agricultural systems models or decision tools to support policy develop-
ment under disruptive changes (i.e., EU with their CAPRI model, [41]). In New Zealand,
but also more widely in other Pacific countries, there is an urgent need for assessing the
different pathways and interventions for a sustainable future of the agricultural sector
under disruptive changes. Numerical and participative modelling is an option considered
by the New Zealand government, and has been requested by the industry and sectoral
organisations to gain in global understanding of the future of NZ agriculture and help
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define efficient long-term policies. As several modelling options are available, there is
a need of synthesis knowledge to assist modellers and model users in selecting the most
appropriate option for future application.

The aim of this paper is (1) to analyse agricultural system modelling approaches and
(2) identify available model examples for thematic applications (3) to help address current
NZ needs and support policy development. Agricultural system modelling knowledge
is synthesised to help stakeholders with model selection and future model development.
Agricultural system modelling approaches are analysed and currently available, and freely
accessible (non-commercial) models are listed per thematic application. Model processes are
described, as well as requirements in terms of skills and data needs, strengths, weaknesses,
and the questions each is intended to answer. Discussion focuses on model usability
and limitations.

2. The New Zealand Context

In New Zealand, nearly half of GHG emissions come from agriculture [44]. The main
source of agricultural emissions is methane from livestock digestive systems and manure
management which makes up around three quarters of the agriculture emissions. The
next largest source is nitrous oxide from nitrogen added to soils. Nitrogen also leaches to
groundwater and pollutes waterways through runoff. As a result of climate change and the
Paris Agreement ratification, and the need to improve degraded water bodies, wetlands,
streams, and groundwater, the New Zealand government has set up two major actions in
the law, the Zero Carbon Amendment Act (2019), and the National Policy Statement for
Freshwater Management (2020).

The NZ food and fiber export revenue represents a third of the country’s total export
revenue. However, with a strong market-driven agricultural system, and despite numeric
environmental targets and fixed deadlines, the NZ government (i.e., Ministry of Primary
Industries, regional councils, policy-makers, regulators), industries (i.e., agritech organisa-
tions, lobby groups), and sectoral stakeholders (i.e., from dairy, beef and lamb, fisheries,
horticulture, crops, or forestry sectors) still struggle to have a clear vision of the future of
agriculture (Figure 1).
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A NZ agricultural system model designed for policy-making purposes under disrup-
tive changes should be able to address the key questions from government and industry
organisations (Figure 1). For example, climate change disruptions (i.e., recurrent droughts,
flooding events, or other extreme events such as storms or spring frosts) raise questions
about agricultural production, mechanisms to adapt to changes, or new agricultural op-
portunities and actions that need to be developed to reduce anthropogenic impact on
climate change. Environmental impacts of agricultural production (i.e., the reduction of
water quality, the increase of food demand, the loss of biodiversity, and the increase of
GHG emissions) raise questions about actions that need to be developed regarding sectoral
footprints on the environment and the need for new technology or new infrastructure to
address these impacts. New disruptive technologies or the generalisation (i.e., connectivity)
of precision agriculture and new biotechnology raise questions on the gain in environment
resilience, sustainability, and profitability that can be expected with new developments.
Similarly, a model could be used to answer questions on how new policy and incentives
limit environmental impacts.

3. Method

We conducted a literature-based scoping review [45], that consists in identification,
selection, and synthesis of research studies to ‘map’ relevant knowledge and gaps in
the field of interest. Here, the scoping review was conducted to synthesise knowledge
about the main agricultural systems modelling approaches and available models. To this
end, we identified, selected, and synthesised research studies, methods, and associated
modelling tools.

For the analysis of approaches to model agricultural systems (Section 4), a search for
bibliographic references was carried out using Google Scholar, ScienceDirect, Open edition,
MDPI, and ResearchGate, searching for the following keywords: agricultural modelling,
agricultural system modelling, agricultural national framework, and environmental mod-
elling approaches. The following six main types of modelling approaches emerged from
the literature review: participatory, deterministic, probabilistic, system dynamics, agent-
based, and artificial intelligence. A search of these approaches combined with agriculture
modelling in the titles, key words, or abstracts was also carried out. Article reference lists
were also checked for other pertinent articles. We focused on recent publications in order
to analyse the current scientific modelling knowledge.

For the analysis of existing models by thematic applications (Section 5), research was
carried out online with a focus on NGOs’ initiatives like the Food and Agriculture Organi-
sation, the United Nations, the Natural Capital Initiative, or policy support organisations.
Governmental websites of primary industries of developed countries were also explored
(mainly in USA, Canada, Europe, Australia, and New Zealand, as these provide broad
access to data and models). From a methodological point of view, we used a set of key
word searches on Google Scholar (related to decision support tools, agricultural modelling,
agricultural policy model, agriculture, and ecosystem model, etc.), and a wider literature
review of recent agricultural modelling reviews. We focused on developed countries’ model
examples that contribute to define national policy developments. Model thematic appli-
cations identified through the review process were grouped as follows: Decision Support
Tools (DST), crop models, water models, Greenhouse Gas emissions (GHG) calculators,
climate models, and multi-ecosystem-services’ modelling platforms.

4. Analysis of Approaches to Modelling Agricultural Systems

Six main modelling approaches with different levels of complexity in terms of skills
and data needs were identified (Figure 2), as well as their characteristics. Each approach
is further described below, highlighting requirements for application, and their strengths
and weaknesses.
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4.1. Participatory Approach

The participatory approach is based on the active participation of experts or stakehold-
ers. This approach is particularly useful and powerful when there is a lack of measured
data (Figure 2). A conceptual framework of questions and systems thinking allows for
the development of theoretical models or design concepts based on expert knowledge
or stakeholders’ engagement [46]. This approach is also useful to resolve conflicts of
interest [47,48].

Coupling different types of expertise during the process helps strengthen the develop-
ment of a conceptual model [46] or to initiate other types of more complex modelling and
scenario simulations [47,49]. Participatory approaches for system modelling or scenario de-
velopment are useful to bring together expert and stakeholder knowledge from academic,
political, and civil sectors. Engaging stakeholders along with scientists is increasingly
used in environmental research for analysing global change impacts [50] or sustainable
futures [51,52]. Some tools have been developed to structure the participatory approach
and to help follow scientific protocols. For example, the RIO approach (Dutch acronym
for Reflexive Interactive Design) aims to structurally address complex trade-offs and to
contribute by process and design to change perspectives towards sustainable development
avoiding conflict [46,53,54].

While the participatory approach works very well at a fine scale to help farmers on
economically viable and environmentally strong decisions related to farm management [55],
it is often used as a discussion tool for structuring environmental problems and design
solutions (i.e., climate change adaptation roadmap, water management, sustainability of
agricultural sector) at a larger scale (regional to national) [46,56–58].

Strengths:

• At a regional to national scale, the participatory approach is well designed for policy-
and decision-making if it is sustained by upstream numerical modelling.

• Expert consultation can be a quicker process than numerical modelling and it does not
necessarily need data or modelling skills.
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• When coupled with another approach, participatory process has a real benefit to
integrate stakeholders’ participation (no data can fill the “real-world” knowledge gap).

• When decision-making is the main aim, the participatory process is fundamental to
gaining stakeholder buy-in.

Weaknesses:

• The participatory approach can suffer several biases, including group think, depending
on the point of view of experts/stakeholders.

• It is a qualitative approach and therefore hard to quantify for coupling with other type
of approaches.

4.2. Deterministic Approach

The deterministic approach consists of mathematical modelling using measured and
known input parameters, with no degree of randomness. Deterministic models are based
on the hypothesis that models, once calibrated, are able to project output events and
magnitude of consequences (Figure 2). They are mostly based on phenomenological,
mechanistic, or functional relationships between physical or biological elements.

Deterministic approaches are widely used for crop models to simulate plant growth
under climate/soil/water conditions. For example, the multidisciplinary simulator for stan-
dard crops model (Simulateur mulTIdisciplinaire pour les Cultures Standard—STICS) [59,60]
has been developed to simulate crop water and nitrogen balance under environmental
(climate, soil) and agricultural conditions (cropping system), and to determine best sowing
dates or predict yields. Deterministic models are also used in agronomy, for example, to
predict sugar concentration of grapes from field observation and temperature-based mod-
els [61] that could help farmers to anticipate grape harvesting. Other agricultural-based
modelling efforts have been developed using deterministic approaches for land use and
crop yields’ mapping [62], crop rotation modelling [63], or environment-ecosystem process
simulation [64,65].

Strengths:

• At a regional to national scale, the deterministic approach is well designed for pre-
diction that is required for decision-making and policy solution design, for example,
climate change predictions and government actions [66,67].

• Many models are freely available, while some are free of charge, free of copyright, and
free of restrictions for modification (see Section 5). Many of these models are already
parameterised for an easier application.

• Models based on deterministic approach can be coupled with all other approaches to add
stochasticity or stakeholders’ involvement and be part of different scenario modelling.

Weaknesses:

• Deterministic models can be highly complex and difficult to readily adapt to specific
study areas.

• It requires very specific data to develop precise and complex modelling [59,63,68].
• Upscaling or downscaling these models is a challenge and requires coupling with

multiple source of data [69–71].

4.3. Probabilistic Approach

The probabilistic approach consists of adding stochastic components to a deterministic
approach. This approach is based on statistical, frequentist, or Bayesian statistical mod-
els, using historical dataset to capture variability, and the use of optimisation techniques
(Figure 2). Multiple linear regression, logistic regression, Poisson regression, generalised
Pareto distribution, Monte Carlo simulation, weights of evidence, and geographically
weighted regression are commonly used in probabilistic approaches [72,73]. Probabilistic
models are less sensitive than deterministic ones to the non-stationarity of model param-
eters (i.e., great variations or disruptions). For example, probabilistic approaches work
well for flood hazard and estimation of the 1-in-100 year flood extent where the model
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question is already a probability that needs mapping representation [74]. Many statistical
models are developed using quantitative data table that can be coupled with a deterministic
system response (i.e., crop yield, milk production, or farmers–consumers’ prices) [39]. The
probabilistic approach, however, lacks extrapolation power because of the data dependency
for parameterisation.

The probabilistic approach is also useful for understanding statistical relationships
between drivers of changes. This type of approach works well for Land Use and Land
Cover Change (LULCC) modelling by coupling statistical methods like Markov chain for
quantifying change over years, and to integrate probability in changes in maps [75,76],
or for agricultural–economic production relationship analysis [77], historical data, and
reconstruction of crop sequences [78], or allocation-optimisation based on statistical multi-
criteria analysis [79].

Strengths:

• At a regional to national scale, this approach is well designed for land-use change
dynamic analysis and for policy adaptation [75,80,81].

• With a large amount of data available freely, the probabilistic approach can be easily
considered both for statistical and spatial trend analysis.

• Coupling deterministic and probabilistic approaches can lead to powerful modelling
of the climate change adaptation for agriculture and land-use strategies.

Weaknesses:

• Statistical models are inherently unsuited to predict the impact of major disruptions
because of the historical data/parameterisation dependency for this approach.

• Analysis tools are freely available (R, Q-GIS), but advanced skills in data processing
are needed.

4.4. System Dynamics Approach

The system dynamics (SD) approach is a scientific framework for addressing complex
and non-linear feedback systems [82]. This systems thinking approach contrasts with
probabilistic and deterministic approaches by their ability to describe non-linearity of the
changes in system states responding to external drivers [83] (Figure 2). SD models are
usually used for energy policy development, environmental policy analysis, innovation
impact evaluation, strategic planning, and public policy evaluation [84–86]. The SD pro-
cess is iterative and interactive, and stakeholders can be involved at every stage of the
process from question definition, to conceptual/mental model building, formal model
development strategy, and scenario testing feedback. SD models are designed to address
the “What if?” question of a complex problem and are useful for prospective scenario
testing. Consequently, they are widely used to develop efficient Decision Support Tools
(DST) to help in policy development and decision-making, and are often coupled with
other types of models (see Section 4, and Table 1).

SD approach has been widely used in hydrology and water resources management [87–89],
agricultural land and soil resources [90,91], or food system resilience [92–95].

Strengths:

• At a regional to national scale, the system dynamics approach is well designed for
scenario testing and policy prospection.

• SD approach allows multi-disciplinary and multi-method integration. Other approaches
can be coupled/linked with SD (participatory, deterministic, probabilistic approaches) to
better emphasise the complexity of agricultural and natural resources issues.

• SD approach is suitable to reproduce agricultural systems’ organisation and to design
new strategies or to experiment management/policy scenarios [96].
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Weaknesses:

• The main difficulty in SD approach is validation. Especially when modelling disrup-
tive scenarios, and when internal (model behaviour) and external (outputs) validation
possibilities are limited [97]. However, a range of tools can be used to help for valida-
tion: the use of local knowledge (participatory-expertise approach) and historical data
for calibration (probabilistic approach); running sensitivity analysis of key variables, or
analysing scenarios and results in comparison with expert opinions (expert modellers
and expert stakeholders).

• There is a risk of formulating erroneous policy by trusting simulations of invalidated
models [91].

4.5. Agent-Based Approach

The agent-based approach consists in modelling a system with autonomous decision-
making entities interacting with their environment [98]. Agent-based models (ABMs) aim to
reproduce real-world-like complexity (Figure 2). ABMs are usually based on a parsimonious
paradigm [99] that leads to simple models with great explanatory power. This modelling
approach is the only multi-level approach, allowing emergence of processes and feedback
loops that mean behaviour adaptation of individuals or groups of individuals [99–102].
This makes the ABMs very useful to simulate behaviour adaptation to new incentives, or
new policy, especially for scenario testing [103].

ABMs can be used as spatially explicit models. Using real (i.e., GIS layers or pixel
grids) or virtual landscapes accounting for the spatial dimension, distance, and time
concepts, ABMs allow coupling with LULCC models to analyse the processes causing the
changes [102,104]. For example, farming decisions depend on incentives and interactions
at different levels of organisation, such as interactions with other farmers, institutions,
associations, markets, or other networks [100,101,104,105]. ABMs are also useful to test
individual and collective adaptations to new policy, for example, GHG price effect [102], or
adaptation capacity of winegrowers to climate change [106].

Strengths:

• At a regional to national scale, the ABM approach is well designed to simulate society
or stakeholders’ behaviour facing new policy.

• ABM approach allows coupling of models (using additional physical deterministic
models like crop or climate models).

• ABM approach allows for the development of conceptual models to test simple agent
behaviours or the combination of behaviours under different incentives.

• ABM approach can simulate disruptions and agent adaptation capacities to a system
at different organisation levels and scales.

Weaknesses:

• Like SD, it is difficult to validate ABMs, but a range of tools can be used: the validation
of the conceptual framework (by external experts or stakeholders), a robust sensitivity
analysis to make sure conclusions fit with the model [104].

• ABMs are not suitable for prediction but powerful for scenario testing.

4.6. Artificial Intelligence

Artificial Intelligence (AI) is an interdisciplinary approach consisting of a set of algo-
rithms trying to mimic human intelligence. AI is already widely used for fraud detection
and prediction models, image recognition patterns, spam filters, speech and audio recogni-
tion (Google, Siri, Cortana, Alexa, etc.) and others [107]. Machine learning algorithms and
deep learning tools are commonly used to automatically learn from data, such as sensor
data or databases, to recognize complex patterns and make intelligent decisions based
on data [108]. AI allows for analysing big data quickly [109], regardless of complexity
(Figure 2). In agricultural sciences, AI is widely used for predicting crop yields [110], for
precision agriculture [107], agriculture automation [111], disease detection, and weed, crop,
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livestock, water, soil, and irrigation management [112,113] by supporting, for example,
better management practices for irrigation as well as pesticide and nutrient application.

Moreover, AI is often used to analyse multi-temporal Remote Sensing data [114],
and with new satellite mission initiatives (e.g., the Trishna initiative—Thermal infraRed
Imaging Satellite for High-resolution Natural resource Assessment), it is a very promis-
ing tool for more systematic use of precision agriculture and a deeper understanding of
environmental processes at real-time (e.g., like monitoring water status of continental
ecosystems, improving the understanding of crop water requirements and water balances).
The analysis of this data has the potential for better irrigation management and earlier
potential drought warnings.

Strengths:

• At a regional to national scale, the AI approach is well designed for big data exploration
and sense-making from various datasets that can help to inform policy.

• AI approach is widely used for prediction and management.
• AI allows coupling various types of data and is powerful for big data analysis.
• AI techniques improve classification and prediction.

Weaknesses:

• AI modelling techniques require high skills, large datasets, and complex training procedures.
• AI approach allows for learning problems very well, but the generalisation is not

possible beyond the boundaries of data and model developed (for anything untrained).

5. Analysis of Existing Models by Thematic Applications

In this section, we analyse existing models focusing on agricultural systems by main
thematic applications with an emphasis on models used for agricultural policy development
at the national level. The analysis focuses on an existing suite of models, skills and data
needed to run the models, and how they are used to address global sustainability and
adaptation challenges. A wide range of skills are needed to run the models, such as GIS
knowledge, statistical or geostatistical knowledge, crop/soils/climate knowledge, and
computer skills like programming. The models selected are organised into six thematic
applications where DST directly informs policy and the decision-making process, and other
environmental models create knowledge of environmental issues and can be used directly
or as inputs of DST to inform policy of decision-making (Table 1):

• Decision Support Tools (DST) are developed to support decision-makers in addressing
policy or conservation questions (Table 1). For example, the Integrated Sustainable
Development Goals (iSDG) is a DST that was developed by the UN via the Millennium
Institute to analyse the 17 SDG goals and impacts of changes for each country to
help in the development of appropriate policies. The European Common Agricul-
tural Policy Regionalised Impact (CAPRI) Modelling System is another DST example
that was developed to support decision-making related to the Common Agricultural
Policy [41]. The American Trade-Off Analysis-Multidimensional (TOA-MD) impact
assessment model simulates economic, environmental, and social impacts of agri-
cultural systems [38]. The Australian Multi-Criteria Analysis Shell (MCAS-S) for
Spatial Decision Support allows stakeholders seeing the effects of land-use change de-
cisions [115]. The American Agricultural Conservation Planning Framework (ACPF)
identifies site-specific opportunities to install conservation practices across small wa-
tersheds [116–118]. The Reflexive Interactive Design (RIO) conceptual approach works
as an expert consultation guideline [119,120].

• Crop models are simulation models describing the crop growth processes and devel-
opment for varying weather, soil, and management conditions. Widely used crop
models (Table 1) include the Agricultural Model Intercomparison and Improvement
Project (AgMip) linking climate, crop, and economic modelling to improve models and
project scenarios under climate change conditions for several agricultural sectors [121].
The Agricultural Production System sIMulator (APSIM) [93], the Decision Support
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System for Agrotechnology Transfer (DSSAT) [122], or Aquacrop model to assess crop
growth, crop yield or food security issues [123]. Other crop models not presented
in Table 1 included models that are focussed on enhancing scientific understanding,
more complex to use, and required a large amount of data and skills.

• General water models (Table 1) are developed to understand or manage water quality
and quantity of hydrological processes under different physical and management con-
ditions. Two water models provided by FAO are CropWat, that links crop and water
modelling to calculate crop water and irrigation requirements based on soil, climate,
and crop data [124], and Aquastats, which monitors the SDG 6 (ensure availability and
sustainable management of water and sanitation for all), and in particular on water
stress and water use efficiency [125]. Other widely used water models include Wa-
terWorld [126], developed to understand hydrological processes and water resources,
and the Soil and Water Assessment Tool (SWAT), a small watershed to river basin-scale
model used to simulate the quality and quantity of surface and ground water, and
predict the environmental impact of land use, land management practices, and climate
change [127,128]. Additionally, many multi-service platforms provide general water
modelling tools.

• Greenhouse gas emission (GHG) calculators mostly focus on deterministically es-
timating carbon and methane emissions (Table 1). Among GHG calculators [129],
easy-to-use models that provide great added value on mitigation possibilities include
the Ex-Ante Carbon-balance Value Chain Tool (Ex-ACT VC) developed by FAO to
increase resilience of populations and ecosystems, and to decarbonize the global
economy [130,131], the Agro Chain Greenhouse Gas Emission calculator (ACGE),
which estimates total GHG emissions associated with food products [132], and the Cli-
mate Change, Agriculture and Food Security-Mitigation Options Tool (CCAFS-MOT),
a mitigation options tool estimating GHG emissions from multiple crop and livestock
management practices [133].

• Climate models take into account complex atmosphere–ocean–land surface–cryosphere
interactions through physics-based knowledge. A full review of climate models is out
of the scope of this paper, but the Climate Analogues model provided by FAO [134]
caught our attention for its adaptation-focus approach (Table 1). This model identifies
areas that experience statistically similar climatic conditions, but which may be sepa-
rated temporally and/or spatially. The approach allows locating areas whose climate
today is similar to the projected future climate of a place of interest, or vice versa.
The approach allows comparing agricultural systems working in “future” climate
conditions to help define adaptation strategies.

• Multi-service platforms are a shell of models related to Ecosystem Services quantifi-
cation, mapping, and modelling. They group agricultural production, carbon stock,
pollination, water quality, and other models together (Table 1). Multi-service platforms
include the widely used Integrated Valuation of Ecosystem Services and Tradeoffs
(InVest) [43], the Toolkit for Ecosystem Service Site-Based Assessment (TESSA) [135],
or the Co$ting Nature platforms developed to explore how changes in ecosystems can
lead to changes in the flows of many different benefits to people [136].
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Table 1. Examples and thematic applications of national and regional agro-environmental models.

Model
Application

Modelling
Approach Model Name Spatial Scale Input Data Needs Model Aim Skills Needed Strengths (+)/

Weaknesses (−) Comments References

D
ec

is
io

n
su

pp
or

tt
oo

l

Sy
st

em
dy

na
m

ic
s

Integrated
Sustainable

Development
Goals (iSDG)

National scale,
country-based

model.

Worldwide data on
social, economic,

and environmental
sectors.

Policy simulation tool
designed to help

policy-makers and
stakeholders make sense of

interconnections between the
SDGs. iSDG focuses the

dynamic interactions within
the SDG system to reveal the
best paths and progression

towards achieving the SDGs.

Model open for
collaboration

with the iSDG
team to develop
own country’s

example.

+: Already implemented
model around the

17 SDGs defined by the
Millennium Institute.

Developed first for
food security issues;
also used for other
questions like clean

energy use in the USA.
Could be interested to

develop for
a carbon-neutral

objective.

[40]
https://www.
millennium-

institute.org/isdg
(accessed on

1 December 2021)

−: Not agricultural
system model only.

Wider than agricultural
sector.

Non-spatial modelling.
Indicator scores only.

Sy
st

em
dy

na
m

ic
s Common

Agricultural
Policy

Regionalised
Impact

(CAPRI)
modelling

system

European Union
(27) +Norway,

Western Balkans,
Turkey scale,
NUTS2 scale
(280 regions),
and 10 farm

types for each
region.

Economic data,
farm/market

balance, unit value
prices, policy

variables. Data
provided by

FAOSTAT and
Eurostat.

Economic model developed
by EU to support

decision-making related to
the Common Agricultural
Policy based on scientific

quantitative analysis.

High skills (GIS,
programma-

tion).

+: Already developed,
stable, and complete

process for EU. Spatial
modelling.

Multifunctionality
indicators analysis

(food security,
landscape,

environment, rural
viability), applied to

the agricultural sector,
with an economic

model.

[41]
https://www.

capri-model.org/
dokuwiki/doku.
php (accessed on
1 December 2021)

−: Can be adapted to
other countries around

the world but with
heavy development to

plan.

Sy
st

em
dy

na
m

ic
s

Tradeoff
Analysis—

Multi
Dimensional

impact
assessment
(TOA-MD)

National,
regional to local

scale.

Whole farm system
(crops, livestock,

aquaculture,
income), simulating
economic indicators,
threshold indicators

for any other
quantifiable
economic,

environmental, or
social outcome.

Model developed to improve
the understanding of
agricultural system

sustainability and inform
policy decisions. TOA-MD

can be used to analyse
technology adoption,

payment of ecosystem
services, environmental

change impact, and
adaptation.

Medium to high
skills.

+: Already developed,
stable, and complete

process.
Free and easy access to
the full model. Model
link with AgMIP crop

model.
Spatial modelling.

Developed by Oregon
State University/USA
Can be requested by

registration form
online.

[38]
https://agsci.

oregonstate.edu/
tradeoffs/about-
toa (accessed on

1 December 2021)

D
et

er
m

in
is

ti
c/

Pr
ob

ab
ili

st
ic

Multi-Criteria
Analysis Shell

for Spatial
Decision
Support

(MCAS-S)

International,
national,

regional, and
catchment scale.

GIS data/map
layers.

MCAS-S informs spatial
decision-making and help

with stakeholder
engagement. Model shows
transparently how mapped

information can be combined
to meet an objective. Model
allows stakeholders to see

the effects that their
decisions may have.

Medium to high
GIS skills.

+: Already developed,
stable, and complete

process.
Free and easy access to
the full model. Already

used for several
resources management

and adaptation.
Spatial and multi-criteria

statistical modelling.

Developed by the
Australian

Department of
Agriculture, Water and

the Environment.
Download available

for free.

[115]
https://www.

agriculture.gov.
au/abares/

aclump/multi-
criteria-analysis

(accessed on
1 December 2021)

https://www.millennium-institute.org/isdg
https://www.millennium-institute.org/isdg
https://www.millennium-institute.org/isdg
https://www.capri-model.org/dokuwiki/doku.php
https://www.capri-model.org/dokuwiki/doku.php
https://www.capri-model.org/dokuwiki/doku.php
https://www.capri-model.org/dokuwiki/doku.php
https://agsci.oregonstate.edu/tradeoffs/about-toa
https://agsci.oregonstate.edu/tradeoffs/about-toa
https://agsci.oregonstate.edu/tradeoffs/about-toa
https://agsci.oregonstate.edu/tradeoffs/about-toa
https://www.agriculture.gov.au/abares/aclump/multi-criteria-analysis
https://www.agriculture.gov.au/abares/aclump/multi-criteria-analysis
https://www.agriculture.gov.au/abares/aclump/multi-criteria-analysis
https://www.agriculture.gov.au/abares/aclump/multi-criteria-analysis
https://www.agriculture.gov.au/abares/aclump/multi-criteria-analysis
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Table 1. Cont.

Model
Application

Modelling
Approach Model Name Spatial Scale Input Data Needs Model Aim Skills Needed Strengths (+)/

Weaknesses (−) Comments References
D

et
er

m
in

is
ti

c/
Pr

ob
ab

ili
st

ic Agricultural
Conservation

Planning
Framework

(ACPF)

Watershed to
regional scale.

GIS land use and
soils.

ACPF informs and engages
local producers in

agricultural conservation. It
helps in engaging with

stakeholders and building
conservation solutions.

Medium to high
GIS skills.

+: ArcGis toolbox
module.

Users are able to build
their own database.

Spatial and multi-criteria
statistical modelling.

Model available for
free as an ArcGis

module. Already used
by conservation
planners, project

coordinators, agency
staff etc.

[116–118]
https://acpf4

watersheds.org/
(accessed on

1 December 2021)

Pa
rt

ic
ip

at
or

y
ap

pr
oa

ch Reflexive
Interactive

Design
(RIO)

Aspatial,
conceptual

process.

Expert consultation
approach, need for

knowledge, not data.

RIO structurally addresses
complex trade-offs and

contributes by process and
design to change towards
sustainable development.

Low skills, but
high field or

system
knowledge

needed.

+: First step to design
a new system approach.

Interesting for
stakeholders’

engagement without any
skills requested.

–

[119,120]
ActionCatalogue-

method
(accessed on

1 December 2021)−: No quantification nor
spatial analysis. Only
conceptual approach.

C
ro

p
M

od
el

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c Agricultural
Model Inter-
comparison

and
Improvement

Project
(AgMIP)

World to
national scale.

Worldwide data on
climate, crops, and

economy.

AgMIP was developed to
improve agricultural models

for assessing impacts of
climate variability and

change and other driving
forces on agriculture, food

security, and poverty.

Medium to low
computational

skills.

+: Use worldwide
dataset, good for

country comparisons.
Online model with data

translator. Developed for food
security issues.

[121]
https:

//agmip.org/
(accessed on

1 December 2021)−: Only sectoral
applications, no general
overview of agricultural

systems.

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

Agricultural
Production

System
Simulator
(APSIM)

Global to local
scale.

Field data and
observation needed.

APSIM is a highly advanced
model for modelling and
simulation of agricultural

systems. It contains a suite of
modules that enable the

simulation of systems for
a diverse range of plant,
animal, soil, climate, and
management interactions.

High skills on
crop modelling

needed.

+: Very precise farming
model.

More than only crops.
Online download
available for free.

Based on crop model,
with other parameters
larger than only crops

(like livestock, and
climate variability

effects). Developed in
Australia and New

Zealand.

[93]
https://www.

apsim.info/
(accessed on

1 December 2021)
−: Not easy to use.

Require very precise
agronomic knowledge.
No spatial component.

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c Decision
Support

System for
Agrotechnol-
ogy Transfer

(DSSAT)

Aspatial model.

42 crops
implemented,

database
management for soil,

weather, crop
management,

experimental data.

The DSSAT crop model
simulates growth,

development, and yield as
a function of the

soil–plant–atmosphere
dynamics.

High skills on
crop modelling

needed.

+: already implemented
for 42 crops.

Online download
available for free.

[122]
https://dssat.net/

about/
(accessed on

1 December 2021)
−: Crop model only.

https://acpf4watersheds.org/
https://acpf4watersheds.org/
https://agmip.org/
https://agmip.org/
https://www.apsim.info/
https://www.apsim.info/
https://dssat.net/about/
https://dssat.net/about/
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Table 1. Cont.

Model
Application

Modelling
Approach Model Name Spatial Scale Input Data Needs Model Aim Skills Needed Strengths (+)/

Weaknesses (−) Comments References
Ph

ys
ic

al
/

D
et

er
m

in
is

ti
c

AquaCrop Aspatial model.

Weather data, crop
and soil

characteristics,
management

practices.

Crop growth model
developed by the Land and
Water Division of FAO to

address food security and to
assess the effect of
environment and

management on crop
production. Crop yield
prediction model under

vertical conditions.

Medium to high
skills in crop

modelling and
agronomy.

+: Good to assist for
management decisions
on irrigation or on crop

response to
environmental changes. Software available

online for free.
Provided by FAO.

[123]
http://www.fao.
org/aquacrop/

overview/
whatisaquacrop/
en/ (accessed on
1 December 2021)

−: No spatial
component.

W
at

er
/C

ro
p

m
od

el

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

CropWat
Aspatial, farmer

to landscape
resolution.

Crop, soil, climate
data. Decade and

daily calculation of
crop water

requirements.

Calculation of crop water
requirements and irrigation
requirements based on soil,

climate, and crop data.
CROPWAT can also be used

to evaluate farmers’
irrigation practices and to
estimate crop performance

under both rain-fed and
irrigated conditions.

Medium
agronomical

skills.

+: Software freely
available online.

Allow the development
of irrigation schedule.

Provided by FAO.

[124] http://www.
fao.org/land-

water/databases-
and-software/
cropwat/en/
(accessed on

1 December 2021)

−: Work firstly at farm
scale; can be used at

small catchment scale.

W
at

er
/C

ro
p

m
od

el

Ph
ys

ic
al

/D
et

er
m

in
is

ti
c

Soil and Water
Assessment

Tool
(SWAT)

Small watershed
to river basin.

GIS topography,
land use, soil,
climate data.

Simulation of the quality and
quantity of surface and

ground water. Prediction of
the environmental impact of
land use, land management

practices, and climate
change.

High water, GIS
and, modelling

skills.

+: Spatial modelling.
Already widely used in

assessing soil erosion
prevention and control,

non-point source
pollution control, and

regional management in
watersheds.

Software available for
free with a GIS

connection.

Data can be provided
online from available

world data to help
build own model.

[127,128]
https:

//swat.tamu.edu/
(accessed on

1 December 2021)

W
at

er

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

AQUASTAT
Global, regional,

national scale.

Worldwide data on
water resources,
water use, and

agricultural water
management.

AQUASTAT is monitoring of
the Sustainable

Development Goal 6 that
sets out to “ensure

availability and sustainable
management of water and
sanitation for all”, and, in
particular, on water stress
and water use efficiency.

Medium data
analysis skills to
collect and bring

together
information.

+: Model outputs
already available.

Provided by FAO.

[125]
http://www.fao.

org/aquastat/en/
(accessed on

1 December 2021)

−: Low resolution, but
already processed.

http://www.fao.org/aquacrop/overview/whatisaquacrop/en/
http://www.fao.org/aquacrop/overview/whatisaquacrop/en/
http://www.fao.org/aquacrop/overview/whatisaquacrop/en/
http://www.fao.org/aquacrop/overview/whatisaquacrop/en/
http://www.fao.org/aquacrop/overview/whatisaquacrop/en/
http://www.fao.org/land-water/databases-and-software/cropwat/en/
http://www.fao.org/land-water/databases-and-software/cropwat/en/
http://www.fao.org/land-water/databases-and-software/cropwat/en/
http://www.fao.org/land-water/databases-and-software/cropwat/en/
http://www.fao.org/land-water/databases-and-software/cropwat/en/
https://swat.tamu.edu/
https://swat.tamu.edu/
http://www.fao.org/aquastat/en/
http://www.fao.org/aquastat/en/
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Table 1. Cont.

Model
Application

Modelling
Approach Model Name Spatial Scale Input Data Needs Model Aim Skills Needed Strengths (+)/

Weaknesses (−) Comments References
Ph

ys
ic

al
/D

et
er

m
in

is
ti

c

WaterWorld Large to fine
scale.

Data provided from
remote sensing or

other global sources.
Own data sources

can be used.

Waterworld aims to
understand the hydrological
and water resources baseline

and water risk factors
associated with specific
activities under current
conditions, and under

scenarios for land use, land
management, and climate

change.

Medium to low
as default

parameters and
data are

provided. More
complicated to
use with own

data and precise
parameterisa-
tion at a local

scale.

+: Quick and relatively
easy to use.

Allow scenarios, spatial
model, spatial outputs.

Used detailed spatial
datasets at 1 km2 and
1 ha resolution for the
entire world. Spatial

model for biophysical
and socio-economic
processes along with
scenarios for climate,

land use, and
economic change.

[126]
http://www.

policysupport.
org/waterworld

(accessed on
1 December 2021)

G
H

G
em

is
si

on
ca

lc
ul

at
or

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

Ex-Ante
Carbon-

balance Tool
value chain

(EX-ACT VC)

From local to
national scale.

Worldwide data
provided by FAO.

EX-ACT VC aims to develop
sustainable and performant
food value chain in order to
eradicate poverty in rural

areas, to increase resilience of
populations and ecosystems,

and to decarbonize our
global economy.

Medium to low
data skills.

+: Works as a decision
support tool. Indicators

like value added,
employment, water use,
emissions, food loss and
waste, and resilience are
monitored by the model.

Excel
software/indicators
open access and free

download.
Provided by FAO.

[130,131]
http://www.fao.
org/tc/exact/ex-

act-vc/en/
(accessed on

1 December 2021)

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

Agro chain
greenhouse

gas emission
(ACGE)

From world to
regional scale,

per agricultural
production type.

Regional data,
specific data on
transport and

packaging.

ACGE estimates total GHG
emissions associated with a
food product. It addresses
the most common stages of
“linear” agro-food chains

(chains for fresh and simple
processed products: canned,
frozen, packaged, and other
minimally processed forms).

Low skill, Excel
sheet to fill.

+: Default data are
already implemented.
General indices. Large

regional indices.

Very easy to use Excel
sheet. Quick to obtain

indices on general
GHG emission per

agricultural
production type. Clear

guidelines provided.

[132]
https://ccafs.

cgiar.org/agro-
chain-greenhouse-

gas-emissions-
acge-calculator#
.Xvq6hCgzYuU

(accessed on
1 December 2021)

−: Not easy to
downscale at national

scale.

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c

Climate
Change,

Agriculture
and Food
Security—
Mitigation

Options Tool
(CCAFS-

MOT)

Regional to
national scale.

General data on
national climate, soil,
crop, and grassland

management.

Model estimates greenhouse
gas emissions from multiple

crop and livestock
management practices,

providing policy-makers
with access to reliable

information needed to make
science-informed decisions
about emission reductions

from agriculture.

Low skill, Excel
sheet to fill.

+: Easy to use.
FAO data can provide all

the needed inputs.

Very efficient tool
providing emissions

and mitigation
potentials for crops,

grasslands, and
livestock.

[133]
https://cgspace.

cgiar.org/handle/
10568/67027
(accessed on

1 December 2021)

http://www.policysupport.org/waterworld
http://www.policysupport.org/waterworld
http://www.policysupport.org/waterworld
http://www.fao.org/tc/exact/ex-act-vc/en/
http://www.fao.org/tc/exact/ex-act-vc/en/
http://www.fao.org/tc/exact/ex-act-vc/en/
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://ccafs.cgiar.org/agro-chain-greenhouse-gas-emissions-acge-calculator#.Xvq6hCgzYuU
https://cgspace.cgiar.org/handle/10568/67027
https://cgspace.cgiar.org/handle/10568/67027
https://cgspace.cgiar.org/handle/10568/67027
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Table 1. Cont.

Model
Application

Modelling
Approach Model Name Spatial Scale Input Data Needs Model Aim Skills Needed Strengths (+)/

Weaknesses (−) Comments References

C
li

m
at

e
M

od
el

s

Pr
ob

ab
ili

st
ic

Climate
Analogues Worldwide.

Use current climate
data from WorldClim

aggregated to
2 degrees,

(1970–2000). Future
climate data come

from CCAFS-Climate
for all CMIP5 and

RCPs.

The models identify areas
that experience statistically
similar climatic conditions,

but which may be separated
temporally and/or spatially.
The approach allows locating
areas whose climate today is

similar to the projected
future climate of a place of

interest, or vice versa.

Medium to low
skill.

+: Easy to use data are
already implemented.

Model is running with R.

Very interesting to
compare the future

climate of a region of
interest with other
places in the world

and what agriculture
can look like. Good for

building mitigation
options rapidly.

Provided by FAO.

[134]
https:

//www.ccafs-
analogues.org/

(accessed on
1 December 2021)

−: No downscaling
allowed.

M
ul

ti
-s

er
vi

ce
pl

at
fo

rm

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c Integrated
Valuation of
Ecosystem

Services and
Tradeoffs
(InVest)

Local to global
scale.

Spatial resolution
and data input are

flexible (wide range
of environmental

modelling).

Suite of models used to map
and value the goods and
services from nature that

sustain and fulfill human life.
It helps explore how changes

in ecosystems can lead to
changes in the flows of many
different benefits to people.

Medium to high.
Need GIS and
mapping skills
to build own

data and
analyse outputs.

+: Spatial modelling of
a wide range of ES.

Allow spatial inputs and
outputs.

Can be used with other
model outputs in a GIS.

Almost 20 models
available for free such
as: carbon, pollination,

habitat quality,
reservoir hydropower,

crop production,
habitat risk

assessment, sediment
retention, water
purification, etc.

[43]
https://

naturalcapitalproject.
stanford.edu/

software/invest
(accessed on

1 December 2021)

Ph
ys

ic
al

/
D

et
er

m
in

is
ti

c Toolkit for
Ecosystem

Service
Site-Based

Assessment
(TESSA)

Local to global
scale.

Land-use data,
default parameters

provided.

TESSA aims to understand
the impacts on natural
capital and ecosystem
services of actual and

potential changes in state at
individual sites. TESSA aims
to promote better planning
decisions to support both
biodiversity conservation

and ecosystem service
delivery.

Medium to low:
guides for

non-specialist
users through

various methods
for rapidly
quantifying
a range of
ecosystem
services.

+: Toolkit,
multi-indicators,

ES-based, developed for
decision-making.
Can be used by

non-experts.

ES approach, not
agricultural approach.

Evaluate a range of
10 ES (nutrition, water

supply, materials,
energy, regulation of

biophysical, flow,
physico-chemical,

biotic environment,
2 cultural ES).

[135]
http:

//tessa.tools/
(accessed on

1 December 2021)

Ph
ys

ic
al

/D
et

er
m

in
is

ti
c

Co$ting
Nature Worldwide.

Spatial datasets at
1 km2 and 1 ha

resolution for the
entire world.

A web-based tool for natural
capital accounting and

analysing the ecosystem
services provided by natural
environments (i.e., nature’s

benefits), identifying the
beneficiaries of these

services, and assessing the
impacts of human

interventions.

Medium to low.

+: Online platform with
already implemented

data.
Spatial models for

biophysical and
socio-economic

processes along with
scenarios for climate

and land use.

[136]
http://www.

policysupport.
org/self-paced-

training/
costingnature-

english
(accessed on

1 December 2021)

−: Target Ecosystem
Services, more for
conservation and

development, less for
only agricultural

purposes.
No downscaling

available.

https://www.ccafs-analogues.org/
https://www.ccafs-analogues.org/
https://www.ccafs-analogues.org/
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
https://naturalcapitalproject.stanford.edu/software/invest
http://tessa.tools/
http://tessa.tools/
http://www.policysupport.org/self-paced-training/costingnature-english
http://www.policysupport.org/self-paced-training/costingnature-english
http://www.policysupport.org/self-paced-training/costingnature-english
http://www.policysupport.org/self-paced-training/costingnature-english
http://www.policysupport.org/self-paced-training/costingnature-english
http://www.policysupport.org/self-paced-training/costingnature-english
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6. Discussion
6.1. Range of Model Approaches and Thematic Applications

The approaches and model examples presented in Figure 2 and Table 1 show a range
of freely and easily accessible tools, which require low to high levels of input data and ap-
plication skills. That means modelling of agricultural systems does not necessarily require
time-consuming data collection or model development for certain levels of application, but
only a few models are available for regional or national modelling applications. For exam-
ple, the FAO models can be used as-is for basic scenario modelling or for feeding another
model. The benefits from combined approaches and the use of spatial models for better land
planning are also obvious. For example, coupling a participatory approach to a quantitative
deterministic or probabilistic approach to include stakeholder engagement for scenario
design or to test stakeholder behaviours on an ABM enhances the model outputs.

A range of models are available to address specific questions faced by the NZ govern-
ment at a national or regional decision-level, related to agricultural systems technology,
disruptions, and the environment (Figure 1), but none of the currently available models or
approaches can answer all questions by themselves. A combination of several approaches
and existing models can help address individual disparate issues (Table 2).

Table 2. Synthesis of example questions and modelling process options.

Question Examples Modelling Process Options

• How will anthropogenic
climate disruption affect
agricultural systems?

- Deterministic approach to understand physical
processes (climate, crop, milk yields models, economic
models);

- Probabilistic approach to define vulnerability
(land-use model);

- Participatory approach to draw opportunities and
adaptation strategies;

- Agent-based approach with Decision Support Tools to
design incentives, regulations or policies.

- . . .

• How will disruptive
technologies change future
agriculture pathways?

- Systems Dynamics approach to simulate a new
technology disruption (non-linear system);

- Agent-based approach with Decision Support Tools to
understand new technology adoption, and scaling up
and out opportunities;

- Multi-Criteria Analysis to spatially understand and
predict consequences on land use, ecosystems, and
environment.

- . . .

• How can technology be best
used to improve the
profitability, resilience and
sustainability of agriculture?

- Systems Dynamics approach to simulate a new
technology disruption (non-linear system);

- Deterministic and probabilistic approaches to evaluate
environmental consequences (GHG emission
calculators, Ecosystem Services models, water models,
economic models);

- Multi-Criteria Analysis to spatially understand and
evaluate consequences of change.

- . . .
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Table 2. Cont.

Question Examples Modelling Process Options

• How can agricultural
infrastructure be redesigned
and improved to efficiently
supply food products for
a country and around the
world?

- Systems Dynamics approach to simulate a system
change and its disruption;

- Deterministic and probabilistic approaches to evaluate
socio-economic consequences on food supply;

- Artificial Intelligence to simulate demand and supply
capacity in real-time.

- . . .

• How can policy be used to
improve governance of
agritech and sectoral
disruptions?

- Agent-Based approach to understand behaviours
against decision levels;

- Decision Support Tools to design optimal changes in
governance system;

- Deterministic and probabilistic approaches to evaluate
economic consequences on a sector disruption
(economic models).

- . . .

Analysis of modelling approaches and model examples allows for identifying model
strengths, weaknesses, data needs, and skill requirements to select the best combination
for the NZ needs. A DST, based on an SD approach, can be the most suitable modelling
system at a regional to national scale for modelling the agricultural systems to support
policy development and anticipate main impacts. For example, the iSDG model developed
by the Millennium Institute [40] aims to model the interconnections between a large
number of objectives to help identify policy interventions (Table 1). This model focuses
on the dynamic interactions within the objectives to reveal the best pathways towards
achieving them all. The SD approach used appears to be perfectly suited to the modelling
of interconnections even for non-linear relationships of the system between parameters and
feedback loops. DST are even more efficient when coupling with a spatial component. For
example, the CAPRI model, using an SD approach (Table 1), was specifically developed
for the European agricultural system to evaluate the impacts of the Common Agricultural
Policy and trade on production, income, markets, trade, and the environment from global
to regional scales [41]. The model architecture is organised around a supply model of
280 European regions embedded in a global market model, and uses specific spatial and
non-spatial databases. The indicators defined in the model are relevant to addressing
agricultural/environmental issues related to Nitrogen and Phosphate balances, GHG
emissions, animal stock density, irrigation and water consumption, and the value of nature.
In addition, the spatial component from national to regional scales is ideally suited for its
intended application. The model allows spatial and temporal analysis of trends and the
impacts of new policies. It also takes into account the international market supply and
demand chain. One negative point of the CAPRI model is its inability to transpose and
calibrate the model to any other country outside the EU without restructuring the model.
In comparison, the American Trade-Off Analysis-Multidimensional (TOA-MD, Table 1)
impact assessment model is a smart-model easily re-usable, using an SD approach, taking
into account economy, technology, policy, crop, livestock, and aquaculture subsystems
to simulate adoption, outcome distributions, and impact indicators of new policy [38].
This model, which includes a spatial component, can also be used for analysing ecosystem
services, the impacts of climate change, and other environmental changes. The SD approach
used for DST in policy development is the most suitable approach to model complex and
dynamic systems and allows coupling with other model approaches.

One complementary approach to SD is the spatial Multicriteria Analysis (MCA).
Spatial MCA is based on a deterministic or probabilistic modelling approach and is used
within a geographic information systems (GIS) spatial platform. Spatial MCA is of added-
value for land-use planning optimisation because it allows mapping of model outputs or
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stakeholder choices. Widely used for quantifying multifunctionality of agriculture [137,138]
or ecosystem services trade-off and bundles [139,140], MCA are quantitative and goal-
oriented models. An example of this complementary approach is the Australian Multi-
Criteria Analysis Shell for Spatial Decision Support (MCAS-S, Table 1), which is designed
for decision-makers to combine and meet planning objectives [115]. This model helps with
stakeholder engagement by showing the effects of decisions using spatial information. Only
basic GIS skills are needed to apply this model because of the user-friendly interface and
inbuilt GIS database. On the contrary, the Agricultural Conservation Planning Framework
(ACPF, Table 1) is a GIS toolset developed for MCA and requires a high level of GIS skills.
This model, however, allows engagement with stakeholders to build conservation solutions
in an agricultural context [116–118].

Whatever the skills needed and methodological choices, the spatial MCA allows for
the SD model to provide a spatial representation of scenarios. MCA can thus help to
provide optimal allocation propositions and scenario assessments for any systems models.

6.2. Limits, Margin of Progress, and Recommendations for Future New Zealand Development

With more than six decades of multidisciplinary contribution to concepts and tools
for agricultural systems modelling, the scientific community considers models critical to
make informed agricultural decisions [39]. However, despite all data and models available,
models often fail to inform policy. For example, the European Commission defined a strat-
egy to halt biodiversity loss affected by the agricultural sector by 2020. Those efforts were
supported by the Common Agricultural Policy (CAP) subsidies (40% of the EU budget,
EUR 362.8 billion) for the 2014–2020 period. However, the agricultural reforms failed on
biodiversity, mainly due to underestimation of intensive farming, increasing of chemicals,
and machinery use (according to European Court of Auditors). In addition to limited
modelling, other reasons for failure include the dilution of ambitions, targeting large farms
only, multiple possible exemptions, and abandonment of previous working measures (e.g.,
reduction of permanent grassland) [27,141]. A large number of other models have been
developed since 2014 to understand the failed processes [142,143] and define recommen-
dations for the 2030 strategy. They highlighted the need for more flexibility to regional
adaptations and a focus on land-use processes rather than quantity (e.g., connectivity of
landscape element to support overall diversity) [141,142]. In the context of a future devel-
opment of the NZ agricultural system model, the example of the European model limits are
to be considered. The chosen or developed model must take into account the complexity of
the whole system, but it must also maintain an expert analysis phase downstream from the
modelling outputs.

The next generation of models should be led by the use of AI, and should include
advances in technology, such as precision agriculture, biotech, and others. During the
analysis process, we did not find any national or regional agricultural systems of DST model
based on AI, as proper training of AI systems requires large volumes of data, and in a sense,
AI is still in its infancy in environmental applications. However, as agricultural systems
modelling has always capitalised from technology advances, operating with big data and
generalising cloud computing is a major avenue of future development. The current state
of agricultural system models’ complexity is sufficient for powerful applications [83].

To select the ideal model or combination of models for future agricultural system
modelling initiatives in NZ, modellers and users should consider the following:

1. Clearly identify the question(s) to be answered or the objectives of the modelling initiative.
2. Assess the data available for modelling (qualitative, quantitative, statistical databases,

field observations, GIS maps, etc.). The data available will help refine the modelling
approach to use and model thematic application, and if needed, help identify what
additional data needs to be collected.

3. Evaluate existing models and their adaptation potential to address the modelling
requirements. Consideration for the type of approach needed, model thematic ap-
plication, and model availability will depend on items 1 and 2 above. Furthermore,
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consideration should be given to a combination of modelling approaches to address
all requirements, if necessary.

7. Conclusions

There is currently an urgent need for a national scale agricultural systems modelling
in NZ to address key questions of the sector, due to critical global environmental, socio-
economic, and technological disruptions. Although there are a number of models available
for agricultural systems modelling, none are intended to be used for modelling major
national or regional disruptions to agriculture, or their usability outside inbuilt geographic
boundaries is low. Furthermore, most models are only intended for targeted applications
for understanding the effects of land-use change, climate, or other specific changes. The
FAO suite of models are freely globally accessible, provide generalised country-specific
input data, and are quickly reusable for specific regional to national modelling initiatives;
however, the weakness of these models is in their singular modelling approach, which
limits their applicability to address a range of complex disruptions at once.

Six broad modelling approaches were identified, and each of these approaches pro-
vides for specific strengths, weaknesses, and application complexities. The participatory
approach allows a great stakeholder engagement; deterministic approaches allow for
a direct link with field knowledge and physical processes; probabilistic approaches pro-
vide statistical modelling to explain uncertainties; system dynamics approaches allow for
modelling complex systems and include feedback loops and delay response; agent-based
approaches permit behaviour reproduction and testing, and artificial intelligence allows for
deep learning of any source of data to provide understanding of previous changes, which
can be used as a predictive tool.

To better understand the current complex disruptions affecting the NZ agricultural
sector and assess relevant policies to address future disruptions, a suite of physical crop–
water–climate models (i.e., FAO models) should be linked to economic, trade, and pro-
duction models (i.e., CAPRI model), ecosystem health models (i.e., InVest), and target
socio-environmental global objectives (i.e., ISDG indices). An SD approach would be
an ideal framework to allow for an integration of these models for both temporal and
spatial analysis. Furthermore, ABM could be used to understand and test behaviour
of stakeholders under various scenarios of disruptions. Free national datasets (i.e., NZ
Stats, sectoral statistics Dairy NZ, Beef&Lamb, Irrigation NZ), international datasets (i.e.,
FAOSTAT) and maps (i.e., Global Land Cover, OurEnvironment NZ), together with data
analysis of national or global datasets through Artificial Intelligence could provide for the
necessary inputs to drive such models and also be used to calibrate and validate results
through comparison to examples of historical disruptions to agriculture.

The complexity of the NZ agricultural system and its economic, social, and environ-
mental implications, requires integrative approaches, particularly at the national scale
for policy and decision-making. A single modelling approach has limited usefulness for
modelling of complex agricultural disruptions and thus future investment is needed by the
NZ government and industry in integrative modelling development. Finally, this analysis
suggests the use of a spatial DST, based on an SD approach, as the most suitable modelling
system at a regional to national scale for modelling the NZ agricultural system to support
policy development and anticipate main impacts and future disruptions.
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