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Abstract: Electrochemical machining (ECM) is a preferred advanced machining process for machining
Monel 400 alloys. During the machining, the toxic nickel hydroxides in the sludge are formed.
Therefore, it becomes necessary to determine the optimum ECM process parameters that minimize
the nickel presence (NP) emission in the sludge while maximizing the material removal rate (MRR).
In this investigation, the predominant ECM process parameters, such as the applied voltage, flow
rate, and electrolyte concentration, were controlled to study their effect on the performance measures
(i.e., MRR and NP). A meta-heuristic algorithm, the grey wolf optimizer (GWO), was used for the
multi-objective optimization of the process parameters for ECM, and its results were compared
with the moth-flame optimization (MFO) and particle swarm optimization (PSO) algorithms. It was
observed from the surface, main, and interaction plots of this experimentation that all the process
variables influenced the objectives significantly. The TOPSIS algorithm was employed to convert
multiple objectives into a single objective used in meta-heuristic algorithms. In the convergence plot
for the MRR model, the PSO algorithm converged very quickly in 10 iterations, while GWO and MFO
took 14 and 64 iterations, respectively. In the case of the NP model, the PSO tool took only 6 iterations
to converge, whereas MFO and GWO took 48 and 88 iterations, respectively. However, both MFO
and GWO obtained the same solutions of EC = 132.014 g/L, V = 2406 V, and FR = 2.8455 L/min
with the best conflicting performances (i.e., MRR = 0.242 g/min and NP = 57.7202 PPM). Hence, it
is confirmed that these metaheuristic algorithms of MFO and GWO are more suitable for finding
the optimum process parameters for machining Monel 400 alloys with ECM. This work explores a
greater scope for the ECM process with better machining performance.

Keywords: electrochemical machining (ECM); material removal rate (MRR); nickel presence (NP);
grey wolf optimizer (GWO); moth-flame optimization algorithm (MFO); Monel 400 alloys

1. Introduction

For the last few decades, electrochemical machining (ECM) has been used for machin-
ing the macro- and micro-components of tool steel, carbides, superalloys, and titanium
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alloys. These materials are heavily used in the automotive and aerospace industries, as well
as electronics, optics, medical devices, and communications. ECM is used as a high-priority
machining tool because of its specific advantages, such as minor tool wear, mechanical
forceless machining, no heat-affected zones, high surface quality, low roughness, and stress-
free surface products. ECM is the reverse process of electroplating and can machine any
hard materials or complicated shapes [1]. In ECM, the workpiece and tool are connected
with the anodic pole and the cathodic pole of the electrochemical circuit, respectively, and
the electrolyte is pumped through the inter-electrode gap (IEG) between the tool and the
workpiece. A high-current DC power supply is allowed to pass through this electrochemi-
cal circuit to dissolve the metal from the workpiece in the form of metal hydroxides (i.e.,
sludge). ECM is an efficient and low-cost machining method for Ni-based alloys [2]. Several
works were carried out to study the machinability of Ni alloys by ECM [3–5]. Ni alloys are
primarily used in aircrafts, power generation turbines, rocket engines, chemical processing
plants, and nuclear power plants. Poor surface traits, a short insert life, high manufacturing
costs, and low productivity are associated with the machining of nickel alloys.

Monel 400 alloy is one of Ni alloys that exhibits excellent characteristics of corro-
sive resistance, strength, and toughness in challenging conditions [6]. When machining
Ni-based alloys, ECM generates a large quantity of toxic sludge in the form of Ni and
chromium hydroxides aside from gaseous byproducts, acids, sulphates, nitrates, oils, and
metal ions. Environmentally sustainable machining of Ni-based alloys in ECM is needed
while maintaining productivity and quality [7]. However, the discharge of nickel ions
into the electrolyte slurry is significant. Therefore, it is necessary to use ECM with proper
cutting conditions so that it produces sludge with fewer toxic byproducts. This hazardous
emission may be retained in the electrolyte by repeated use of the electrolyte. However,
such a process might decrease the machining performance. Thus, it is proposed to have
optimized ECM process parameters to produce a better MRR and fewer hazardous mate-
rial emissions. To the best of the authors’ knowledge, investigating the amount of nickel
present in the sludge during electrochemical machining of Monel 400 alloys has not been
attempted before. Optimizing the process parameters is an essential task in the ECM
process, as the optimum process parameters improve the performance and economics of
machining. The selection of ECM process parameters is carried out based on the experience
and expertise of the machinist or machining handbooks. The process parameters selected
based on the operator’s experience rarely assure high efficiency and quality machining. The
machining handbooks can be a handy choice for a few applications only. In most cases, the
selected optimum process parameters are far from the best, and this hampers the best uti-
lization of ECM. Selecting the optimum values for the process parameters without proper
optimization requires elaborate, costly, time-consuming, and tedious experimentation.
Therefore, researchers have used different soft computing techniques to optimize the ECM
process parameters in various operations [8]. Mukherjee and Chakraborty implemented
a biogeography-based optimization (BBO) algorithm in ECM to determine the optimum
machining conditions [9]. The BBO algorithm was inspired by the migration behavior of
species among the habitats in nature. A genetic algorithm (GA) was integrated with a
desirability function (DF) for simultaneous optimization of multiple objectives of the ECM
process [10]. The particle swarm optimization (PSO) algorithm was adopted as an optimiza-
tion strategy for determining the optimum parameters [11]. The PSO algorithm mimics
the concept of the social interaction of birds in a flock. To perform the multi-objective opti-
mization, the cuckoo optimization algorithm (COA) was used with the objective function,
which was derived from the adaptive neuro-fuzzy inference system (ANFIS) model [12].
The COA was developed based on the obligate brood parasitism of some cuckoo species. A
multi-objective Jaya (MO-Jaya) algorithm was implemented in the ECM process to obtain
multiple optimal solutions [13]. The differential evolution (DE) algorithm has been used
for both the single- and multi-objective optimization of process parameters [14]. Singh and
Shukla (2017) considered the ECM process to evaluate the performance of the black hole
algorithm (BHA). The performance measures of the MRR and overcut (OC) were taken
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to obtain the optimum machining parameters using the BHA [15]. The harmony search
(HS) algorithm was combined with the DF so that an HS-DF optimizer was proposed to
optimize the ECM process parameters [16]. Diyaley and Chakraborty conducted a compar-
ative analysis with meta-heuristics such as the firefly algorithm (FA), DE algorithm, ant
colony optimization (ACO) algorithm, and teaching-learning-based optimization (TLBO)
algorithm for the optimization of various control parameters of an ECM process [17]. Apart
from these meta-heuristics, artificial neural networks (ANNs) and fuzzy logic (FL) were
also employed to model the ECM experiments and subsequent optimization process [18,19].
Several optimization algorithms have been reported in the literature, and their efficiency
was tested with many benchmark functions and real-time applications. The grey wolf
optimizer (GWO), a recently developed meta-heuristic, was proposed by Mirjalili et.al [20].
The GWO is inspired by the hunting behavior of the grey wolves in nature, and it ensures a
better trade-off between the exploration and exploitation abilities of the algorithm. It was
applied in many engineering applications, emphasizing its efficiency [21]. The significant
characteristic of this algorithm is that it does not converge toward some local optima and
helps store the best possible solutions obtained so far by its social hierarchy nature [22].
Kharwar and Verma implemented GWO to minimize milling performances (i.e., MRR, cut-
ting force, and surface roughness) and proved the application potential in a manufacturing
environment [23]. Omkar and Shalaka optimized the wire electrical discharge machining
(WEDM) parameters with the GWO algorithm [24]. Shankar and Ankan experimented
with the efficiency of the GWO algorithm for parametric optimization of the abrasive water
jet machining (AWJM) process and found it to be successful [25].

A performance comparison of the response surface methodology (RSM), genetic algo-
rithm (GA), and GWO algorithm was conducted for prediction of the surface roughness in
ball-end milling of hardened steel, and GWO was found to be superior [26]. The grey rela-
tional analysis (GRA)-based GWO was implemented for milling experiments to determine
the machining conditions of the spindle speed, feed rate, and depth of cut for the optimum
surface roughness, cutting force, and MRR [27]. Mirjalili proposed another meta-heuristic,
the moth-flame optimization (MFO) algorithm, which was inspired by the navigation
method of moths in nature [28]. It gained attention for solving engineering optimization
problems immediately. The improved MFO algorithm was proposed by Li et al. to maintain
a balance between global and local searching [29]. A milling optimization problem was
solved to emphasize its effectiveness in solving manufacturing problems [30]. The MFO
algorithm was implemented to identify the optimal set of turning parameters to minimize
the machinability indices. Its effectiveness was compared against the genetic algorithm
(GA), grasshopper algorithm, GWO, and PSO algorithms and to be found superior to the
other algorithms [31]. The optimization of the surface roughness in deep hole drilling was
performed with the MFO algorithm [32]. The MFO algorithm was employed to optimize
the process parameters of plasma arc cutting (PAC) of Inconel 718 superalloy [33]. Based on
the literature on GWO, this algorithm is not utilized much in manufacturing optimization
problems. These reviews conclude that the recently developed intelligent techniques are
more advanced, and their scope of implementation in broader manufacturing applications
can be explored. It is also noted that the efficiency of these new evolutionary algorithms
(i.e., GWO and MFO algorithms) were not explored in the ECM process. The famous PSO
algorithm is still being used to optimize machining parameters [34,35]. Hence, PSO is
considered a benchmark algorithm to compare GWO and MFO algorithms in terms of
convergence, computational time, and the actual Pareto optimal front.

2. Objectives

To determine the optimum ECM parameters for machining Monel 400 alloys for the
maximum MRR and minimum nickel toxic emission in the electrolyte, meta-heuristics such
as GWO, MFO, and PSO algorithms were employed.
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3. Materials and Experimentation

The commercially available nickel-based alloy Monel 400 was used as a test specimen
in this investigation. The chemical composition of the Monel 400 alloys is shown in
Table 1 [36]. The machinability of Monel 400 alloy is very difficult, as it work hardens
during machining. Therefore, it is a tough task to machine these alloys using conventional
machining techniques.

Table 1. Chemical composition of Monel 400 alloys.

Monel 400 Alloys

Composition and weight (%)

C Si Mn P S Cr Mo Fe V

0.047 0.172 1.03 0.012 0.01 0.1 0.1 1.66 0.029
W Cu Al Co Nb Ti Mg Ni
0.1 29.24 0.01 0.103 0.1 0.047 0.031 67.4

The experiments were carried out on the eco-friendly electrochemical machining
(EECM) tool. The schematic diagram of the EECM tool is shown in Figure 1. EECM
comprises a power supply system, electrolyte supply system, filtering system, tool feed
mechanism, work holding and position system, control panel, frame, and housing. The
electrolyte (e.g., NaCl aqueous solution) is allowed to flow at the rate between 1 L/min
and 10 L/min through the inter-electrode gap (IEG) of 0.1–0.6 mm. The direct current
(DC) potential (11–15 V) with a current density of 20–110 A/cm2 is applied across IEG
between a cathodic copper tool and an anodic workpiece. At low current densities, the
MRR is low [37]. The higher current density of 110 A/cm2 was used to attain high current
efficiency. According to Faraday’s laws of electrolysis, the anodic dissolution rate of
workpiece depends on the electrochemical properties of the workpiece metal, the electrolyte
properties, and the power supply conditions. The tool is fed against the anodic workpiece,
which is firmly fixed on the vice. The machining conditions of IEG, voltage (V), and current
(C) are set in the control panel. The filtration system consists of layers of bio-absorbents
compartments and membrane filter. A photograph of the indigenously developed EECM
is shown in Figure 2. The tool’s diameter and electrolyte exit hole were 8 mm and 2 mm,
respectively. The operating conditions of EECM are summarized in Table 2.
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Table 2. Factors and conditions of ECM experiments.

Factors Type Condition/size

Work piece Monel 400 alloys Hardened material
Electrolyte NaCl 130–190 g/L
Tool Copper C101
Voltage DC 11, 13, 15 V
Tool feed rate Horizontal feed 0.1 mm/min
IEG 0.1 mm
Current DC 50 A
Flow rate 1–3 L/min
Machining time 5 min

Experimental Design and Measurements

The MRR is directly proportionate to the feed rate of the tool [36]. A high feed rate
leads to electrolyte boiling or choking in the tool and workpiece gap [37]. Therefore, the
tool feed rate was set to the possible minimum of 0.1 mm/min to have stable movement of
the tool through the workpiece. When the applied voltage is high, the current machining
increases to a high MRR. A low voltage results in poor machining performance [10,11].
The voltage range of 11–16 V was considered in many such investigations in ECM to
have better performance in terms of the MRR and surface finish [38,39]. Therefore, the
voltage range (10–15 V) available in the set-up was used for this investigation. When the
voltage is raised above a particular level, it increases the hydrogen gas bubble generation
at the tool electrode, resulting in high resistivity of the electrolyte and a decrease in the
current density at the workpiece [40–43]. A high concentration decreases the mobility
of ions, which results in poor anodic dissolution. The concentration levels in the range
of around 100–200 g/L influence the MRR significantly [10]. According to the literature,
the main process parameters governing the ECM are the voltage (V), flow rate, and EC.
Therefore, these parameters were considered in this investigation, and their levels are
shown in Table 3.
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Table 3. Process parameters and levels.

S.No. Process Parameters
Levels
−2 −1 0 1 2

1 Voltage (V) 11 12 13 14 15

2 Electrolyte
concentration (g/L) 130 145 160 175 190

3 Flow rate (L/min) 1.0 1.5 2.0 2.5 3.0

The IEG was set to 0.1 mm, and a current of 50 A was set in the DC rectifier. The
machining was performed for 5 min. The central composite design (CCD) of the response
surface methodology (RSM) was adopted with the help of Minitab-17 software for the
process parameters, and its levels are shown in Table 3. In this work, 20 experimental tests
were carried out with different parameter combinations as shown in Figure 3. According
to the concept of CCD, the center point combination was repeated 5 more times during
experimentation to reduce the pure error.
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Figure 3. Central composite design for the experimentation.

A HCl concentration of 1% was added to the NaCl electrolyte to minimize the sludge
formation in the IEG. The electrolyte was pneumatically pumped from a stainless steel
reservoir. A 191E water analysis kit (Environmental & Scientific Instruments Co, Haryana,
India.) was used to observe the electrolyte’s pH, conductance, and temperature.

The sludge discharged from ECM was tested with atomic absorption spectroscopy
(Agilent Technologies, Bangalore, India), which is shown in Figure 4. The results show
the nickel content of 250 mg/L in the sludge. The precipitate of the electrolyte was tested
via energy dispersive X-ray spectroscopy (EDAX, JEOL-JSM-6390, Chennai, India) and
confirmed the presence of nickel. Figure 5 represents the EDAX results of the electrolyte
sludge. The peaks in the figure confirm the presence of more nickel, chloride, and sodium
particles. Therefore, in this invetigation, the experimental results for MRR and Nickel
Presence (NP) were observed and tabulated in Table 4.
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1 190 13 2.0 0.225 65.08 0.20327 64.44446
2 160 13 2.0 0.219 57.26 0.20438 56.57423
3 145 12 2.5 0.204 58.06 0.19676 56.35493
4 175 14 2.5 0.215 67.45 0.22844 68.97187
5 160 13 2.0 0.208 55.05 0.20438 56.57423
6 130 13 2.0 0.129 50.65 0.15130 51.46866
7 160 13 1.0 0.062 55.48 0.07344 55.19648
8 160 13 2.0 0.216 56.45 0.20438 56.57423
9 175 12 1.5 0.157 58.63 0.16119 58.03033

10 160 11 2.0 0.142 57.29 0.14094 59.88398
11 160 13 2.0 0.171 56.45 0.20438 56.57423
12 160 13 3.0 0.216 66.75 0.20555 67.22471
13 145 12 1.5 0.114 55.24 0.09985 53.53437
14 145 14 2.5 0.243 60.08 0.23782 60.49203
15 160 13 2.0 0.209 55.40 0.20438 56.57423
16 175 14 1.5 0.187 58.24 0.19324 59.76420
17 160 15 2.0 0.212 68.16 0.21405 65.75495
18 145 14 1.5 0.132 54.03 0.11226 55.20372
19 160 13 2.0 0.203 58.65 0.20438 56.57423
20 175 12 2.5 0.149 66.13 0.16774 64.77025

4. Optimization Techniques and Procedures

The following details describe the development of mathematical models representing
EECM characteristics for the MRR and the amount of nickel present, as well as the GWO
and MFO techniques for optimizing the process parameters.

4.1. Mathematical Modeling of Experimentation

To study the effect of the EECM process parameters on the MRR and the discharge
of nickel elements into the electrolyte, a regression model was developed to calculate the
response value (as the output) in terms of different parameters (as the input). In this work,
the quadratic form of the regression equation, shown in Equation (1), was established using
the experimental data. The regression coefficients obtained for both the MRR and NP are
shown in Table 5:

CVij = aj + bj ∗ X1i + cj ∗ X2i + dj ∗ X3i + ej ∗ X1i ∗ X2i + f j ∗ X1i ∗ X3i + gj
∗X1i ∗ X3i + hj ∗ X1i

2 + ij ∗ X2i
2 + jj ∗ X3i

2 (1)



Appl. Sci. 2022, 12, 2793 8 of 23

where CVij is the predicted value of the ith trial for the jth response, a, b, . . . , j are the
coefficients of the variables, and X1, X2, and X3 are independent variables.

Table 5. Regression coefficients for MRR and NP models.

Response a b c d e f g h i j

MRR −2.381 0.0123 0.112 0.621 0.0003 −0.003 0.0143 0.00003 −0.007 −0.065
NP 389 −0.551 −41.8 −49.5 0.0011 0.131 1.23 0.00154 1.561 4.64

The regression models for the given objectives can be formulated as in Equations (2) and (3):

MRR = −2.381 +0.0123 ∗ EC + 0.112 ∗V + 0.621 ∗ FR + 0.0003 ∗ EC ∗V
−0.003 ∗ EC ∗ FR + 0.0143 ∗V ∗ FR− 0.00003 ∗ EC2

−0.007 ∗V2 − 0.065 ∗ FR2
(2)

NP = 389− 0.551 ∗ EC− 41.8 ∗V − 49.5 ∗ FR + 0.0011 ∗ EC ∗V + 0.131
∗EC ∗ FR + 1.23 ∗V ∗ FR + 0.00154 ∗ EC2 + 1.561 ∗V2

+4.64 ∗ FR2
(3)

4.2. TOPSIS Method for Multi-Objective Optimization

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a
method used for converting multiple objectives into a single objective, which is conse-
quently applied in optimization techniques for decision making [44,45]. TOPSIS is based
on choosing the alternative with the shortest geometric distance from the positive ideal
solution and the longest geometric distance from the negative ideal solution. By imple-
menting the TOPSIS method, multiple objectives are converted into a single objective value.
Algorithm 1 shows the the pseudo-code for TOPSIS method.

Algorithm 1 Pseudo-code for TOPSIS.

1: Read alternate and objectives matrix—Oij with weights (Wj) and types of objectives (otj)
2: For each alternative (i = 1, 2, 3, . . . , m) and objective (j = 1, 2, 3, . . . , n)
3: Compute Normalized value of Oij using Nij =

Oij√
∑m

i=1 O2
ij

4: Calculate Performance matrix (Aij) using Aij = Nij ∗Wj
5: End
6: For each objective (j = 1, 2, 3, . . . , n)
7: Determine positive ideal (Pj) and negative ideal solution (Mj)

8: For minimization objective—Pj = min
1<i<m

(
Aij

)
and Mj = max

1<i<m

(
Aij

)
9: For maximization objective—Pj = max

1<i<m

(
Aij

)
and Mj = min

1<i<m

(
Aij

)
10: End
11: For each alternative (i = 1, 2, 3, . . . , m)
12: Calculated Ideal (SPi) and negative ideal separation (SMi)

SPi =

√
∑n

j=1

(
Aij − Pj

)2
SMi =

√
∑n

j=1

(
Aij −Mj

)2

13: Determine relative closeness (Ri )
14: End
15: Rank alternatives w.r.t. Ri in descending order

4.3. Grey Wolf Optimizer

The grey wolf optimizer (GWO) was inspired by the hunting behavior of grey wolves
in nature. Grey wolves usually live in a pack of 5–12 members with their dominant social
hierarchy [20]. The alpha (α) wolf, the pack leader, makes decisions about hunting. The beta
(β) wolf helps the alpha wolf in making decisions. The omega (ω) wolves, the lowest in
ranking, are responsible for submitting information to all the wolves. Others, called delta (δ)
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wolves, should respect alpha and beta wolves and dominate the omega wolves. The three
steps in the hunting process of grey wolves are (1) tracking the prey, (2) encircling the prey,
and (3) attacking the prey. GWO is simulated with the mathematical representation of the
hunting process of the grey wolves to solve complex engineering problems. The optimal
solution to the problem is considered the prey. To mathematically model the hunting
process of these grey wolves when designing GWO, the alpha (α) wolf is considered the
fittest solution. Consequently, the second- and third-best solutions are represented by beta
(β) and delta (δ) wolves, respectively. The remaining candidate solutions are considered to
be omega (ω) wolves.

The first step in the hunting process is encircling the prey. The mathematical for-
mulation to mimic the encircling process for the prey and wolf are represented in the
Equations (4) and (5):

→
D =

∣∣∣∣→C ∗ →Xp (t)−
→
X (t)

∣∣∣∣ (4)

→
X (t + 1) =

→
Xp (t)−

→
A ∗

→
D (5)

where
→
D is a distance vector between the position of the prey and grey wolf.

→
C and

→
A are

coefficient vectors, t is the current iteration, and
→
Xp and

→
X are the positions of prey and

a randomly chosen grey wolf, respectively [20]. The coefficients
→
C and

→
A are determined

using the following formulas:
→
A = 2

→
a ∗→r1 −

→
a (6)

→
C = 2 ∗→r2 (7)

where
→
a is a decrease from 2 to 0 linearly over the course of iterations and

→
r1 and

→
r2 are

random vectors (0, 1).

A grey wolf is in the position of
→
X, updating its position

→
X (t + 1) according to the

position of the prey
→
Xp. The position can be updated with respect to the current position

by adjusting the values of the
→
A and

→
C vectors. This process enables the GWO to search

the n-dimensional solution space of the given problem efficiently. The alpha (α), beta
(β), and delta (δ) wolves guide the hunting process, and their positions are represented
mathematically as in Equations (8)–(14), while the other wolves (ω) update their positions
randomly:

→
Dα =

∣∣∣∣→C1 ∗
→

Xα −
→
X
∣∣∣∣ (8)

→
Dβ =

∣∣∣∣→C1 ∗
→

Xβ −
→
X
∣∣∣∣ (9)

→
Dδ =

∣∣∣∣→C1 ∗
→
Xδ −

→
X
∣∣∣∣ (10)

→
X1 =

→
Xα −

→
A1 ∗

→
Dα (11)

→
X2 =

→
Xβ −

→
A2 ∗

→
Dβ (12)

→
X3 =

→
Xδ −

→
A3 ∗

→
Dδ (13)

→
X (t + 1) =

→
X1 +

→
X2 +

→
X3

3
(14)

As the value of � decreases, the search radius of the grey wolves reduces, and they get
closer to the prey and attack over the last iterations of the GWO. This ensures the proper
trade-off between exploration and exploitation by focusing on exploration initially and
exploitation in the last iterations.
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4.4. Moth-Flame Optimization Algorithm (MFO)

The moth-flame optimization (MFO) algorithm takes inspiration from the navigational
mechanism (i.e., transverse orientation) of moths during night flights. The moth flies by
maintaining a fixed angle relative to the moon. Since the moon is so far away from the
moth, this mechanism assures the linear flight of moths. Although a lateral orientation is
practical, moths are often trapped to repeatedly circle many close artificial or natural point
light sources until they are exhausted. This behavior of moths is shown in Figure 6.
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Mathematical Formulation of the MFO Algorithm

According to the MFO algorithm, the moth is considered the candidate solution to the
problem. The variables are represented by the positions of the moths in the solution space.
Moths can fly in the solution space by changing the position vectors. Since this algorithm
is a swarm-based intelligence optimization algorithm, the position vectors of the moth
population can be represented in the following matrix (Equation (15)):

M =

 m1,1 · · · m1,d
...

. . .
...

mn,1 · · · mn,d

 (15)

where n is the number of moths and d represents the number of dimension variables to be
solved. The following array represents the list of fitness value vectors corresponding to
all moths:

OM =

∣∣∣∣∣∣∣
OM1

...
OMn

∣∣∣∣∣∣∣ (16)

Each moth updates its position with the corresponding unique flame to avoid the algo-
rithm being trapped in the optimal local value, which significantly supports the algorithm’s
exploration ability. Hence, the flame positions in the solution space corresponding to its
moths are represented in the following array (Equation (6)):

F =

 f1,1 · · · f1,d
...

. . .
...

fn,1 · · · fn,d

 (17)
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For these flames, the corresponding column of the fitness value vectors is represented
as follows:

OF =

∣∣∣∣∣∣∣
OF1

...
OFn

∣∣∣∣∣∣∣ (18)

The position update strategies for both the moth and flame matrices are different
during the iteration process. The moths are the solution points that move within the
solution space, and the flames are the best solution points obtained by moths iteratively so
far. The best solutions of the moths are updated to the positions of the flames in the next
iteration. With this approach, the MFO algorithm can find the optimal global solution. The
position update behavior of each moth relative to a flame is expressed mathematically by
the following equation:

Mi = S
(

Mi, Fj
)

(19)

where Mi is the ith moth, Fj is the jth flame, and S is the spiral function.
The spiral function’s initial point should start from the position of the moth, and the

endpoint should be at the position of the flame. The range fluctuation of the spiral function
should not exceed the boundaries of the search space. According to the above conditions,
the logarithmic spiral function of the moth’s flight path is defined as in Equation (20):

S
(

Mi, Fj
)
= Di ∗ ebt ∗ cos(2πt) + Fj (20)

where Di is the linear distance of the ith moth for the jth flame and b is an index of the
shape of the logarithmic spiral. The magnitude of t is represented by Equation (21), where
a is represented by Equation (22):

t = (a− 1) ∗ rand + 1 (21)

The path coefficient t ∈ [r, 1] represents the distance between the moth and the flame’s
position in the next optimization iteration. The variable r decreases linearly from −1 to
−2 as the number of iterations in the optimization iteration increases. The coefficient from
t = −1 to −2 represents that the moths’ position is close to the flame, and t = 1 shows that
the moths are farther from the flame:

a = −1 + Iteration ∗
(
− 1

Tmax

)
(22)

Di is expressed as follows:
Di =

∣∣Fj −Mi
∣∣ (23)

The above equations ensure the algorithm’s balanced global and local search capabili-
ties. When the value of t is smaller, the moth converges to the flame. As the moth gets closer
to the flame, its position around the flame is updated more quickly. After each iteration,
the flames are updated based on fitness values. In the next iteration, the moth updates its
position according to the updated sequence of the flame. The first moth updates its position
with the flame’s best fitness value, and the last moth updates its position with the worst
fitness value in the list. Hence, the flame position matrix F contains the optimal solutions
of the current iteration. The number of flames can be reduced adaptively in the iterative
process to balance the algorithm’s global search and local search capability in the solution
space as follows:

f lameno = round
(

N − l ∗ N − 1
T

)
(24)

where l is the current iteration number, N is the initial maximum number of flames, and T
represents the maximum number of iterations.
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5. ANOVA and Parametric Influence on Performances

Analysis of variance (ANOVA) on the process parameters and the effects of the main
process parameters on the performance measures was performed. This and Fisher’s test
(F-ratio) were performed to justify the adequacy of the developed regression models as in
Equations (2) and (3). Values of “Prob > F” less than 0.05 indicate the model’s significance
and terms. Values greater than 0.1 indicate that the model terms are insignificant.

The model F-values in Table 6 indicate that the developed models were very significant.
The two-way interaction terms such as EC*V, EC*EC, and V*FR for the MRR and NP models
were insignificant when the values of “Prob > F” were greater than 0.05. The terms V*V and
EC*FR for the MRR and NP models, respectively, were not significant, but the coefficient
of determination values for both models were good, as shown in Table 7. The normal
probability curves in Figure 7 confirm the adequacy of the model equations. The high
coefficient of determination values (R2 = 90.34% for the MRR and R2 = 92.29% for the NP)
for both responses confirm its adequacy for optimization study.

Table 6. Analysis of variance for quadratic models of MRR and NP.

Source
DF Adj SS Adj MS F-Value p-Value

MRR NP MRR NP MRR NP MRR NP MRR NP

Model 9 9 0.037278 437.944 0.004142 48.660 10.39 13.29 0.001 0.000
Linear 3 3 0.025497 347.518 0.008499 115.839 21.32 31.64 0.000 0.000
EC 1 1 0.002700 168.372 0.002700 168.372 6.77 45.99 0.026 0.000
V 1 1 0.005345 34.468 0.005345 34.468 13.41 9.42 0.004 0.012
FR 1 1 0.017452 144.678 0.017452 144.678 43.78 39.52 0.000 0.000
Square 3 3 0.007095 79.698 0.002365 26.566 5.93 7.26 0.014 0.007
EC*EC 1 1 0.001154 3.003 0.001154 3.003 2.89 0.82 0.120 0.386
V*V 1 1 0.001136 61.290 0.001136 61.290 2.85 16.74 0.122 0.002
FR*FR 1 1 0.006615 33.779 0.006615 33.779 16.59 9.23 0.002 0.013
2-Way Interaction 3 3 0.004685 10.728 0.001562 3.576 3.92 0.98 0.044 0.442
EC*V 1 1 0.000193 0.002 0.000193 0.002 0.48 0.00 0.502 0.981
EC*FR 1 1 0.004082 7.681 0.004082 7.681 10.24 2.10 0.009 0.178
V*FR 1 1 0.000410 3.045 0.000410 3.045 1.03 0.83 0.334 0.383
Error 10 10 0.003987 36.607 0.000399 3.661
Lack of Fit 5 5 0.002498 28.127 0.000500 5.625 1.68 3.32 0.292 0.107
Pure Error 5 5 0.001489 8.480 0.000298 1.696
Total 19 19 0.041264 474.551
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Table 7. Model summary.

Model S R-sq R-sq (adj) R-sq (pred)

MRR 0.01997 90.34% 81.64% 44.22%

NP 1.91331 92.29% 85.34% 47.85%

Parametric Influence on the Performance Measures

Figure 8 depicts the surface plots of the MRR and NP responses for electrochemical
machining of Monel 400 alloys. In each surface plot, one parameter was kept constant,
and other parameters were varied with defined levels. The surface plots show that the
machining parameters V, FR, and EC influenced the material removal and the discharge of
nickel elements in the sludge significantly. It can be observed that the change in electrolyte
concentration from 150 g/L to 190 g/L gradually increased the sludge removal. A higher
concentration helped increase the speed of the electrochemical reactions and resulted in
more removal (Zhang, 2010; Ayyappan and Sivakumar, 2015). A lower concentration led
to a lower ion content, which reduced the rate of the electrochemical reaction (Trimmer,
Hudson, Kock, and Schuster, 2003). A flow rate above 1.5 L/min removed the sludge from
the gap between the tool and the workpiece better and exposed the specimen’s new surface
for different electrochemical reactions (Ayyappan and Sivakumar, 2014). High flow rates
increased the nickel ions in the electrolyte discharge and the MRR (Bhattacharyya and
Sorkhel, 1999).

Figure 9 represents the main effect plots of the MRR and NP responses using MiniTab17
software. It was noticed that the electrolyte flow rate and electrolyte concentration were
the influencing factors for the MRR and NP, respectively. Variations in the voltage also
produced significant results in the responses.

Figure 10 shows the interaction plots of the ECM parameters for different process
attributes. As shown, the interaction terms such as EC*V and V*FR had a lean influence on
the responses. The MRR and NP models were insignificant when the “Prob > F” values
were more significant than 0.05. The term EC*FR influenced the NP at a high flow rate
of 3 L/min.
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6. Multi-Objective Optimization of ECM Process Parameters
6.1. RSM Optimization Tool

Since the RSM as a DOE strategy was employed in this work, the optimum process
parameters were obtained with its built-in optimization tool. The RSM optimization tool
used the steepest ascent (SA) method combined with the desirability function (DF) for
finding the optimum parameters. The variables and response constraints were set as shown
in Table 8.

Table 8. Limits of process and performance parameters.

Response Goal Lower Target Upper Weight Importance

NP Minimum 50.6452 68.1613 1 1
MRR Maximum 0.062 0.2429 1 1

The optimization results are shown in Table 9, and the optimization plot is shown
in Figure 11.

Table 9. Multiple response prediction results using RSM.

Solution EC V FR NP Fit MRR Fit Composite Desirability

1 130 12.8586 2.57576 53.9394 0.217350 0.835117

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 25 
 

Table 9. Multiple response prediction results using RSM. 

Solution EC V FR 
NP  
Fit 

MRR  
Fit 

Composite 
Desirability 

1 130 12.8586 2.57576 53.9394 0.217350 0.835117 

 
Figure 11. Response optimization plot. 

6.2. Applications of Meta-Heuristics for Optimization of the Process Parameters 
To apply the various meta-heuristic algorithms such as MFO, GWO, and PSO in this 

work, the TOPSIS method was adopted to convert the multiple objectives into a single 
objective. A performance comparison of these algorithms was carried out. The Algorithms 
2–4 show the pseudo-codes of the MFO, GWO, and PSO respectively.  

Algorithm 2 Grey Wolf Optimization Algorithm 
1: Initialize no. of grey wolf (Xij—i =1,2,..nw and j = 1,2,..nd)  
2: While (it < nitr) 
3: Determine the fitness function Fik  
4: Calculate Pareto optimal distance fi 

5: Sort fi in descending order and set as sfi  
6: Store the first wolf’s data as Xit. and Fit. 
7: Using the sorted data, assign Xa. = X1, Xb. = X2. and Xd. = X3.  
9: Compute a = 2-it*(2/nitr)  
10: For each wolf, Update the position using A1 = 2*a*rand()-a  
11: C1 = 2*rand()  
12: Da. = abs(C1*Xa.-X i.)  
13: X1. = Xa.-A1*Da. 
14: A2 = 2*a*rand()-a  
15: C2 = 2*rand() 
16: Db. = abs(C1*Xb.-Xi.)  
17: X2. = Xb.-A2*Db. 
18: A3 = 2*a*rand()-a  
19: C3 = 2*rand()  
20: Dd. = abs(C1*Xd.-X i.)  
21: X3. = Xd.-A3*Dd.  
22: X i. = (X1. + X2. + X3.)/3 

Figure 11. Response optimization plot.



Appl. Sci. 2022, 12, 2793 16 of 23

6.2. Applications of Meta-Heuristics for Optimization of the Process Parameters

To apply the various meta-heuristic algorithms such as MFO, GWO, and PSO in this
work, the TOPSIS method was adopted to convert the multiple objectives into a single
objective. A performance comparison of these algorithms was carried out. The Algorithms
2–4 show the pseudo-codes of the MFO, GWO, and PSO respectively.

Algorithm 2 Grey Wolf Optimization Algorithm

1: Initialize no. of grey wolf (Xij—i =1,2,..nw and j = 1,2,..nd)
2: While (it < nitr)
3: Determine the fitness function Fik
4: Calculate Pareto optimal distance fi
5: Sort fi in descending order and set as sfi
6: Store the first wolf’s data as Xit. and Fit.
7: Using the sorted data, assign Xa. = X1, Xb. = X2. and Xd. = X3.
8: Compute a = 2-it*(2/nitr)
9: For each wolf, Update the position using A1 = 2*a*rand()-a
10: C1 = 2*rand()
11: Da. = abs(C1*Xa.-X i.)
12: X1. = Xa.-A1*Da.
13: A2 = 2*a*rand()-a
14: C2 = 2*rand()
15: Db. = abs(C1*Xb.-Xi.)
16: X2. = Xb.-A2*Db.
17: A3 = 2*a*rand()-a
18: C3 = 2*rand()
19: Dd. = abs(C1*Xd.-X i.)
20: X3. = Xd.-A3*Dd.
21: X i. = (X1. + X2. + X3.)/3
22: Check Xi. within bounds
23: End
24: End
25: Using TOPSIS method convert Fit. into fi
27: Sort fi in descending order and display the first wolf’s data (optimum data)
28: Print the best solution

Algorithm 3 Moth-Flame Optimization Algorithm

1: Initialize the parameters for Moth-flame
2: Initialize Moth position Mi randomly
3: For each i = 1:n Calculate the fitness valute fi
4: End
5: While (i ≤ imax)
6: Update the position of Mi
7: Calculate the no. of flames
8: Compute the fitness value fi
9: If (i = 1) then F = sort (M) OF = sort (OM)
10: Else F = sort (Mt-1, Mt) OF = sort (Mt-1, Mt)
11: End
12: For each i = 1:n
13: For each j = 1:d Update the values of r and t
14: Calculate the value of D w.r.t. corresponding Moth
15: Update M(i,j) w.r.t. corresponding Moth
16: End
17: End
18: End
19: Print the best solution
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Algorithm 4 Particle Swarm Optimization Algorithm

1: Initialize Particle Position P
2: For i = 1 to itrmax
3: For each particle p in P
4: Evaluate fp = f(p)
5: If fp is better than f(pB); pB= p;
6: End
7: End
8: gB= best p in P
9: For each particle p in P
10: Compute v = v + c1*rand()*(pB– p) + c2 *rand()*(gB-p)
11: Update p = p + v
12: End
13: End
14: Print the best solution

The terms in GWO and their equivalent meanings in the optimization problem are
listed in Table 10.

Table 10. Terms in GWO and optimization problems.

Optimization Problem Grey Wolf Optimization (GWO) Algorithm

Number of solutions Number of grey wolves (i = 1, 2, . . . nw)
Combination of parameters within
their bounds Position of grey wolf (Xij)

Number of parameters, factors, and
independent variables

Number of dimensions involved in defining
the position of a wolf (j = 1, 2, . . . nd)

Value of best parameters Position of prey (Xbest)
Response value, output, and
dependant variable Fitness of grey wolf (Fik)

First best three solution’s parameters Position of alpha, beta, and delta grey wolves
(Xa., Xb., and Xd.)

First best three solution’s fitness values Fitness of alpha, beta, and delta grey wolves
(Fa., Fb., and Fd.)

Except for best first three solutions Omega grey wolf

Similarly, the equivalent terms for the MFO and PSO algorithms for an optimization
problem are shown in Table 11. The algorithm parameters are shown in Table 12.

Table 11. Terms in MFO and PSO optimization problems.

Optimization Problem Moth Flame Optimization
(MFO) Algorithm

Particle Swarm Optimization
(GWO) Algorithm

Number of solutions Number of moths (i = 1, 2, . . . nm) Number of particles (i = 1, 2, . . . np)
Combination of parameters within
their bounds Position of moth (Mij) Position of particle (Pij)

Number of parameters, factors,
andindependent variables

Number of dimensions involved in
defining the position of moth
(j = 1, 2, . . . nd)

Number of dimensions involved in
defining the position of particle
(j = 1, 2, . . . nd)

Number of better solutions Number of flames (i1 = 1, 2, . . . nf ) Fitness of particle (fi)
Combination of parameters within
their bounds Position of flames (Fi1j)

Response value, output, and
dependant variable Fitness of moth (fi) Global best (gB)
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Table 12. Algorithm parameters for GWO, MFO, and PSO algorithms.

GWO Algorithm MFO Algorithm PSO Algorithm

Parameter Value Parameter Value Parameter Value

Maximum number of
grey wolves 100 Maximum number of

moths 100 Maximum number of
particles 100

Constant a 2 to 0 Position of moth close
to the flame (t) From −1 to −2 Learning factors (C1

and C2) 2 and 2

Coefficient vectors A −2a to 2a Update mechanism Logarithmic spiral Inertia weight (ω) From 0.4 to 0.9

Coefficient vectors C 2*rand(0,1) Adaptive number
of flames

round((mf-(itr*(mf-
1)/max_itr))) Number of particles 30

No. of iterations (nitr) 100 No. of iterations (nitr) 100 No. of iterations (nitr) 100

The steps in implementing the GWO algorithm in this experimentation are shown
in Figure 12. The flowchart for implementing the MFO algorithm in the present work is
shown in Figure 13.
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The PSO implementation is shown in Figure 14. The efficiency of these algorithms
is compared in the convergence plot of Figure 15. In maximization of the MRR, the MFO
convergence plot was attained after the 60th iteration, while GWO and PSO performed
better. In minimization of the NP, PSO converged well before MFO and GWO.

The optimum process parameters obtained by different meta-heuristics and the RSM
are tabulated in Table 13. The convergence plot of the Pareto optimal solutions is shown
in Figure 16, and the Pareto optimal set of process parameters out of 12 runs is presented
in Table 14.

Table 13. Optimum process parameters and the response values.

Algorithms EC V FR MRR NP

RSM 130.000 12.8586 2.5758 0.217 53.9400
PSO 130.401 12.7735 2.0378 0.156 51.3507
GWO 132.014 13.2406 2.8455 0.242 57.7202
MFO 132.014 13.2406 2.8455 0.242 57.7202
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Table 14. The Pareto optimal solutions and their responses for various algorithms.

R.No.
GWO MFO PSO

EC V FR MRR NP EC V FR MRR NP EC V FR MRR NP

1 134.440 13.850 2.835 0.251 60.739 134.440 13.850 2.835 0.251 60.739 131.070 12.188 1.946 0.135 51.413
2 135.769 13.942 2.815 0.251 61.324 135.769 13.942 2.815 0.251 61.324 130.401 12.774 2.038 0.156 51.351
3 130.034 12.754 2.265 0.185 52.015 130.034 12.754 2.265 0.185 52.015 130.033 12.709 1.794 0.114 51.026
4 130.444 12.755 2.043 0.156 51.355 130.444 12.755 2.043 0.156 51.355 130.717 12.427 1.931 0.136 51.168
5 132.014 13.241 2.846 0.242 57.720 132.014 13.241 2.846 0.242 57.720 130.047 12.363 1.904 0.129 51.110
6 131.611 13.909 2.947 0.256 61.669 131.611 13.909 2.947 0.256 61.669 130.310 12.588 1.867 0.126 51.046
7 135.416 13.038 2.469 0.217 54.597 135.416 13.038 2.469 0.217 54.597 130.630 12.623 1.891 0.132 51.097
8 131.808 13.122 2.628 0.227 55.281 131.808 13.122 2.628 0.227 55.281 130.508 12.809 1.880 0.132 51.150
9 133.968 13.719 2.996 0.255 61.918 133.968 13.719 2.996 0.255 61.918 130.923 12.609 1.829 0.122 51.101
10 132.374 12.824 2.548 0.217 54.160 132.374 12.824 2.548 0.217 54.160 130.167 12.553 1.630 0.082 51.215
11 130.319 13.339 2.460 0.214 54.328 130.319 13.339 2.460 0.214 54.328 130.598 12.673 1.892 0.132 51.104
12 132.275 12.697 2.634 0.220 54.608 132.275 12.697 2.634 0.220 54.608 130.580 12.182 1.883 0.124 51.339

Both the MFO and GWO algorithms produced the better trade-off performances
with the same solutions of EC = 132.014 g/L, V = 13. 2406 V, and FR = 2.8455 L/min for
MRR = 0.242 g/min and NP = 57.7202 PPM.

7. Conclusions

In the present study, ECM operations were carried out on Monel 400 alloys by vary-
ing the applied voltage (11–15 V), flow rate (1–3 L/min), and electrolyte concentration
(130–190 g/L). The meta-heuristic algorithms (i.e., moth-flame optimization (MFO) algo-
rithm, grey wolf optimizer (GWO), and particle swarm optimization (PSO)) were imple-
mented to find out the optimum process parameters for producing the best performance
measures for the material removal rate (MRR) and nickel presence (NP) in the sludge.
The regression model equations were developed to determine the optimum parametric
combination. The high coefficient of determination values (R2 = 90.34% for MRR and
R2 = 92.29% for NP) for both responses confirmed their adequacy. The algorithms were
tuned to obtain the best possible feasible solution. This study proved that the MFO and
GWO algorithms could be successfully utilized to find the best process parameter setting
for the ECM process for Monel 400 alloys. The TOPSIS algorithm was implemented to
convert multiple objectives into a single objective used in meta-heuristic algorithms. It was
observed from the surface, main, and interaction plots of this ECM experimentation that all
the process variables significantly affected the performances. The PSO algorithm converged
very quickly in 10 iterations, while GWO and MFO took 14 and 64 iterations, respectively,
for convergence of the MRR. In the case of the NP model, the PSO tool took only six itera-
tions to converge, whereas MFO and GWO took 48 and 88 iterations, respectively. However,
both MFO and GWO obtained the better trade-off performances with the same solutions
of EC = 132.014 g/L, V = 13. 2406 V, and FR = 2.8455 L/min for MRR = 0.242 g/min and
NP = 57.7202 PPM. The Pareto optimal set of solutions provided by the GWO, MFO, and
PSO algorithms for the ECM process was beneficial to the industries, as it contained a
wide range of optimal values. A particular solution from the Pareto optimal set can be
chosen according to the specific needs of the objectives. Hence, it was confirmed that the
metaheuristic algorithms of MFO and GWO were suitable for finding the optimum process
parameters for machining Monel 400 alloys with ECM. Future studies may be explored by
combining the artificial neural network (ANN) and fuzzy logic (FL) concepts with MFO
and GWO to determine the optimum ECM process parameters.
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