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Abstract: The means of assisting visually impaired and blind (VIB) people when travelling usually
relies on other people. Assistive devices have been developed to assist in blind navigation, but
many technologies require users to purchase more devices and they lack flexibility, thus making it
inconvenient for VIB users. In this research, we made use of a mobile phone with a depth camera
function for obstacle avoidance and object recognition. It includes a mobile application that is
controlled using simple voice and gesture controls to assist in navigation. The proposed system
gathers depth values from 23 coordinate points that are analyzed to determine whether an obstacle is
present in the head area, torso area, or ground area, or is a full body obstacle. In order to provide a
reliable warning system, the research detects outdoor objects within a distance of 1.6 m. Subsequently,
the object detection function includes a unique interactable feature that enables interaction with the
user and the device in finding indoor objects by providing an audio and vibration feedback, and
users were able to locate their desired objects more than 80% of the time. In conclusion, a flexible
and portable system was developed using a depth camera-enabled mobile phone for use in obstacle
detection without the need to purchase additional hardware devices.

Keywords: visually impaired and blind (VIB); mobile application; depth imaging analysis; obstacle
detection; object detection

1. Introduction

The number of visually impaired and blind (VIB) people has been increasing at an
alarming rate with the World Health Organization (WHO) highlighting this concern. For
the next three decades it is projected that individuals with moderate to severe visual
impairment will rise to more than 550 million people up from approximately 200 million
individuals in 2020 [1,2]. There are numerous causes for the increase in visual impairment
and blindness, which can be attributed from different sources or instances such as genetics,
accidents, diseases, or the trending aging population from both developing and developed
countries. The level of severity for visual impairment and blindness varies among genders,
and an individual’s and their country’s economic income contributes to how they respond
to such a crisis, whether it be through access to the latest research in vision correction
or medication that could prevent or reduce the worst case scenarios of this disability
beforehand [3,4].

Visually impaired and blind people are met with difficulties in their daily lives as
they lack the ability to perceive visual information. This limits their capability to process
their surroundings and interact with society, hindering their day-to-day activities, which
decreases their quality of life (QoL) [5]; thereby, VIB people are in most need of assistance for
their mobility constraints, which requires the adaptation of assistive devices and accessible
infrastructure [6]. The evolution of assistive technologies for VIB people has gradually
increased over the years, and electronic travel aids for the blind have been developed
by researchers globally in a response to address their complications. However, using the
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current assistive technologies comes with challenges, as the flexibility and the portability
aspect remains as an issue due to hardware and usability limitations [7]. Traditional
assistive devices such as eyeglasses, tactile symbols, magnifiers, walking canes, etc., are
used by the visually impaired and blind as it allows them to get by with basic daily tasks.
However, these devices can be further expanded by exploring and applying smart sensing
technologies [8].

In this paper, the researchers developed an application that caters to both cognitive
and spatial awareness using an embedded 3D depth camera on a smartphone, which
analyses depth images to process and calculate distances for obstacle and object detection.
An inclusive user interface is developed for VIB people to navigate with ease by using both
gesture and a voice command feature.

2. Related Studies

The inconvenience of the current assistive devices for VIB people has always been
a great interest of development for various researchers around the world, but some of
these technologies are not portable, too technical, or impractical to use. Advancements
in technology allows for the improvement of these limitations, and existing studies on
different problem aspects in terms of spatial awareness, cognitive awareness, and inclusive
user interface design are discussed in this section.

2.1. Spatial Awareness

Assistive devices are continuously evolving and expanding with the rapid develop-
ment of technologies and the extensive research to improve the QoL of VIB people. Earlier
researches on assistive technologies focused mainly on mobility and orientation, cognitive
and context awareness, obstacle detection, etc. Navigation is a huge concern for the VIB as
safety concerns arise with the lack of visual information. Obstacles, terrain, and overall
environmental inconsistencies have to be taken into account when travelling from one
destination to another [9]. Sighted people perceive spatial awareness through the means of
direction, acquiring one’s specific location and relative position [10]. However, VIB people
lack the capability to do so, hence, assistive navigating technologies for spatial awareness
have been developed. The following studies were conducted to alleviate these challenges.

A previous study by See et al. developed a personal wearable assistive device with a
modular architecture that was based on a robot operating system that detects and warns
about obstacles using the Intel RealSense camera for outdoor navigating scenarios [11].
A similar study by Fernandes et al. developed a multi-module navigational assistant for
blind people that generates landmarks through the implementation of various points of
interest, which adjusts based on the environment. Orientation and location are provided
to the user by means of audio feedback and vibration actuators, allowing a non-intrusive
and reliable navigation. However, the research is still in progress and actual testing is
yet to be delivered [12]. Another approach utilized an eBox 2300 TM equipped with a
USB camera, ultrasonic sensor, and a headphone for detecting obstacles of up to 300 cm
through the implementation of ultrasound-based distance measurement. It also includes
an additional human presence algorithm that is programmed to detect face, skin, and
cloth within 120 cm [13]. The developed module has proven to have promising result as it
detects obstacles with 95.45% accuracy, but it is mounted on a helmet as a sensor unit while
carrying the eBox 2300 TM weighing at about 500 g, which compromises the portability
and flexibility aspect. Research by Li et al. developed an application called ISANA on the
Google Tango tablet by taking advantage of the embedded RGB-D camera that provides
depth information, enabling navigation and a novel way-point path finding. It also has
a smart cane that handles interaction from the tablet to the user, which outputs vibration
feedback and tactile input whenever an obstacle is detected [14]. The developed application
is a robust system that also implements semantic map construction and a multi-modal user
interface; however, the support for the Google Tango tablet has already shut down back in
2018 because of a newer augmented reality system [15].
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2.2. Cognitive Awareness

Visually impaired and blind people struggle to partake in education due to the lack
of visual information, although specialized educational materials do exist for learning.
Tactile materials such as braille books, audio books, screen readers, refreshable displays,
and many more are used to teach in blind schools [16]. However, perceiving and acquiring
common daily objects on their own is a limitation that makes them dependent on other
people. Independence for the VIB person is a valuable aspect as it reduces social stigma
such as overly helpful individuals and other misconceptions that society assumes [17].
Cognitive awareness allows one to be aware of the surrounding environment and enables
interaction with objects by utilizing different senses and reasoning [18]. This is an asset
that VIB people struggle to achieve on their own; however, with an adaptive assistive
technology that focuses on cognitive solution, independence can be achieved.

Joshi et al. developed an efficient multi-object detection method trained on a deep
learning model with a custom dataset on a YOLO v3 framework installed on a DSP
processor with a camera and distance sensor that captures images from different angles
and lighting conditions and achieves a real-time detection accuracy of 99.69% [19]. The
developed system is a robust assistive detection device that provides broad capability with
its integration of artificial intelligence, although system maintenance seems to be difficult
as each object has to be manually established into the system. Research by Rahman et al.
developed an automated object recognition through internet of things-enabled devices such
as a Pi camera, GPS module, Raspberry Pi, accelerometer, and more. Objects are detected
through the installed laser sensors with a single-shot-detector model, which are defined by
different directions such as front, left, right, and ground [20]. The developed system has an
accuracy of 99.31% in detecting objects and 98.43% in recognizing its type, although it is
currently limited to five types of objects and its size and weight can be further reduced in
future work.

2.3. Inclusive User Interface Design

The demand for the integration of inclusive usability on technologies has escalated
as these gadgets have become a necessary day-to-day means of communications, labor,
and entertainment for society. In addition, according to the WHO, the number of people
with disabilities is expected to increase over the years due in part to an aging population
and increase in chronic health conditions [21]. A means of adaptability can bridge the
complications for disabled people in using existing technology through the use of acces-
sibility features. The accessibility features have been around for a long time and are not
necessarily meant only for disabled people. Accessibility features are a set of options that
can be activated for the reason of convenience, preference, or a means of easier navigation
for those who cannot use the smartphone in their default setup [22]. In an article by Kriti,
she stated that an accessible design is to capitalize on ease of use for all levels of ability
for a specific goal of inclusivity for all kinds of users [23]. Different forms of accessibility
such as touch, visual, hearing, and speaking are available regardless of whether it is for a
permanent, temporary, or situational solution. Examples of accessibility in touch can be
the fingerprint scanner, assistive touch, or even the capability to adjust button sizes. When
it comes to visuals, increasing contrast, reducing motion, adjusting a larger text, using a
magnifier, inverting colors, turning on subtitles and captions are accessible options, and
even a guided access is available for personal use. For hearing and speaking, accessibilities
such as VoiceOver or Text-To-Speech are popular examples [24]. These features are mostly
available for smartphones and other similar devices.

An inclusive user interface can be constructed through designing a unified interface
that accommodates the VIB person’s special needs, requiring extensive research, especially
on the design of the user experience, to provide the best user experience and usability.
Existing assistive mobile applications for the VIB include a study by Nayak et al. that
provides a solution for difficulty in appointing schedules, writing emails, and SMS reading
on a smartphone completely based on voice commands [25]. However, the usability of the
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application is limited with it being only a full voice command-based navigation, creating
a possibility for complications with pronunciation and audibility of the said commands.
Hence, the system development needs rigorous planning that aligns the user’s needs and
the technology [26].

3. Materials and Methods

The objective of this research is to develop a portable and flexible navigational solution
that caters to both cognitive and spatial awareness of VIB people, thus, a smartphone with
a depth camera is used. The smartphone chosen for the research is the Samsung Galaxy
A80 (Samsung Corporation in Seoul, South Korea) running on Android v11 Operating
System with a Qualcomm Snapdragon 730 G processor, 8 GB RAM, 6.7” infinity display,
48 MP + 8 MP rotating rear camera that supports 3D depth estimation with an embedded
Time-of-Flight (ToF) sensor. The 3D depth camera has a pixel size of 10 µm with a field of
view at 72◦ capable of calculating distances of up to 10 m away with a constant accuracy of
<1%. The developed user interface for the mobile application is a combination of different
accessibility features of a smartphone that helps users with vision impairment through
the use of different gestures and voice commands. The main workflow of the system is
shown in Figure 1 where the process starts off with specific voice commands to open the
features. The grey area shows the 2 main components, which are the object detection and
the obstacle detection features with an output of vibration and audio feedback.
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Figure 1. The proposed system workflow mobile application using voice command (left), mobile
application interface and features (middle), and feedback to users (right).

The object detection feature utilizes TensorFlow Lite framework with a custom trained
COCO SSD MobileNet v2 model and an additional unique interactable feature for VIB
people to use. The obstacle detection takes advantage of the generated depth map on
ARCore by Google that is overlaid with different coordinates on multiple directions to
locate nearby obstacles. The output for both features will be a vibration and audio feedback.
The application requires Android version 7 as the minimum SDK version. Figure 2 shows
the proposed wearable system. The smartphone is inserted on a portable, foldable fabric
sling pouch that is hung around the neck of the user.
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3.1. Obstacle Detection Integration

The obstacle detection module is achieved by 3D depth map generation of the ARCore
Depth Lab API by Google, which is a software library that includes various depth-based
UI/UX paradigms. It includes rendering of occlusion, shadows, collisions, physics, an-
chors, and other necessary augmented reality assets, which allow 3D objects to interact
dynamically on real-life environment. Depth Lab consists of 39 geometry-aware AR fea-
tures that range from entertainment purposes to educational purposes. We utilized its
tracking functions and the generated depth information for analysis. Depth map generation
only requires an RGB camera that is able to calculate distance of each pixel on the screen;
however, ToF sensor can improve the performance. It starts by acquiring the raw depth
map of the original image. The raw depth map is an unprocessed depth rendering that
focuses on the accurate estimate of most pixels rather than processing speed, which results
in aliased edges and obvious black spots. To prevent the black spots, a full depth map is
generated, which understates some accuracy and calculates the depth estimation per pixel
in order to accelerate the processing speed that covers the whole image. Bilinear filter is
applied to smooth out the edges, but aliased parts are still visible. Hence, a depth-guided
fast approximate anti-aliasing is proposed by the researchers to further clean up the aliased
edges [27]. The depth map generation is visualized in Figure 3.
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To extract distance from a depth image, a function by the ARCore is utilized which is
the getMillimetersDepth function. Variables are required such as the initiated depth image
and the desired x and y coordinates. Its concept states that each pixel contains distance
value in millimeters parallel to the camera plane to which the aspect ratio of the depth
image depends on the device [28]. In the case of the phone model used, an estimate of
260 × 120 resolution was used. Once distances are acquired, interconnected coordinates
are overlaid on different locations as shown on the right picture in Figure 4 to cover most
of the desired areas. A threshold of 1.6 m is set for the distance to reduce false detections
and provide the optimal range for the users.
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The point coordinates work together in detecting an obstacle’s distance. The number of
point coordinates for each direction are listed in Table 1 and a single point in any direction is
required to activate the warning. Furthermore, a combination of point coordinates activates
warnings for full right, full left, full ground, and full body obstructions. The output for
detecting obstacles is audio feedback that is based on the direction of the obstacle.

Table 1. List of regions where obstacles are detected, the number of point coordinates per direction
and audio warning feedbacks.

Region Where Obstacles Are
Detected No. of Point Coordinates Audio Warning Feedback

Head level 3 “Head Level”
Left torso 8 “Left Torso”

Right torso 8 “Right Torso”
Left ground 2 “Left Ground”

Right ground 2 “Right Ground”
Full right obstruction (Right Torso + Right Ground) 10 “Full Right”
Full left obstruction (Left Torso + Left Ground) 10 “Full Left”

Full ground obstruction (Right Ground + Left Ground) 4 “Full Ground”
Full body obstruction (All Directions) 23 “Full Body”

As previously stated, generating the depth map only requires a single moving RGB
camera, although performance improvement can be achieved by initializing a dedicated
depth sensing technology such as ToF sensor, which instantly provides depth map without
calibrating the camera motion. ToF works by calculating the distance travel time of the
light source emitted onto a certain object then bounces back to the camera as shown in
Figure 5, formulating a mathematical equation as distance = Speed of Light × Time

2 [29].
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3.2. Object Detection Integration

The object detection module utilizes the TensorFlow Lite framework, which is an
on-device inference for different kinds of machine learning models typically applied on
IoT devices. For the proposed system, a custom COCO SSD MobileNet v2 model is
trained specifically to provide relevance for a VIB person’s daily struggle of finding their
desired objects, enabling over 90 different classes of objects such as walking cane, handbag,
umbrella, tie, eyeglasses, hat, etc. It also includes street assets such as signage, traffic lights,
bench, pedestrian lane, and many more for future outdoor usage implementation. Figure 6
shows the user interface for the voice command on the left image and the object detection
result with confidence values on the right image.
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Figure 6. Object detection module with the voice command interface (left) and sample object
detection result (right).

A unique interactable feature is developed onto the object detection module. Once
activated, it launches the camera, a text-to-speech prompt, and a tactile vibration function
whenever the user’s gesture is within the boundaries of the detected object. This feature
will give VIB people the ability to select their desired objects and know its location that
provides tactile feedback. Figure 7 shows the concept of the interactable feature where
the edge of the bounding box is compared with x-axis and y-axis coordinates when a
gesture is detected. In Table 2, a complete list of voice commands and touch gestures with
corresponding functions and feedbacks are shown.
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Table 2. List of different touch gestures and voice commands with its function and feedback.

Touch Gestures/Voice Commands Function Audio Warning Feedback

Single tap on main UI Activate voice commands
• Beep sound effect after tapping
• If command is wrong: speaks out “cannot

recognize voice input. Please try again”

Voice command “open camera” Opens the Camera Speaks out “Opening Camera” then changes
the Surface View of the screen to Camera1.

Voice command “object detection”

• Activates the object detection node
on the view

• Deactivates the obstacle
detection node

Speaks out “activating object detection”

Voice command
“obstacle detection”

• Activates the obstacle detection
node on the view

• Deactivates the object
detection node

Speaks out “Activating Obstacle Detection”

Voice command “close camera” Stops any camera activity
• Speaks out “closing camera”
• Returns to the main UI

4. Results and Discussions

The concept of the study revolves around the integration of the obstacle and object
detection in one application to provide a portable and flexible mobility assistive solution for
VIB people in the future. In order to test the system functions, we tested the modules with
different settings. A total of five blindfolded individuals aged 21 to 26 years old participated
in the experiments. Due to the limitations during the pandemic, only limited participants
were able to perform the experiments. In the future, further tests can be implemented.

4.1. Evaluation of the Hardware Device

The Samsung Galaxy A80 is rated as a mid-end device that carries a 3700 mAh battery
capacity, lasting for long hours when running the application, although depending on the
activated connections the battery life duration might be reduced as seen in Table 3. The
smartphone is equipped with a supercharging 25 W charger and cable that is convenient to
use as it only takes few hours to fully charge the phone. Most of these connections such
as Bluetooth, internet, and location services are only optional if other features within the
phone are not used. The only requirement to run the application is permission to open
the camera.
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Table 3. Battery life duration evaluation based on activated functions while running the
mobile application.

Activated Functions Battery Life Duration
Camera Only 8 h 43 min

Camera + Bluetooth 7 h 17 min
Camera + Bluetooth + Internet 4 h 11 min

Camera + Bluetooth + Internet + Location Services 3 h 26 min

4.2. Evaluation of Obstacle Detection Module

The obstacle detection module calculates distances per pixel from 0 m to 8 m away
via depth estimation and are represented in different colors as shown in Figure 8. Red and
orange areas mean closer to the camera with a range of less than 1.7 m, yellow and green
areas are greater than 1.7 m, and, lastly, blue areas are greater or equal to 2 m.
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While the application is capable of detecting distances up to 8 m, a distance of less
than 2 m is considered and tested as it has been observed that a distance of greater than
2 m is not practical for detection and evasion for VIB people and creates complications in
navigating. In Figure 9, depth image distances of <1.7 m, >1.7 m, and ≥2 m are displayed
and evaluated. It has been observed that at a distance of 1.6 m, the detection capability
is strong and was confirmed as an optimal range for the VIB to detect the obstacle as the
walking cane was just centimeters away from the object, allowing confirmation of the
detected obstacle at a safe range.
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Figure 9. Depth map comparison of fan obstacle at different distances.

The smartphone is placed with the backside facing outside and placed vertically inside
a sling pouch. During the testing, the participants were blindfolded and given a walking
cane as it is recommended to use this together with the application to determine their
direction and the terrain of the environment safely as seen in Figure 10. The obstacle course
had some natural obstacles such as light posts, elevated areas, trees, and others. We also
included randomly placed obstacles along the way to further test the system.
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Figure 10. Blindfolded participant (left) with walking cane walking through the obstacle course
(right) with randomly placed obstacles along the way.

The obstacle detection test results are listed in Table 4. This includes the finish time,
the number of obstacles successfully detected and evaded, and the number of obstacles
that were not detected by the application. The five participants were asked to navigate at
their own pace. It was observed that when the person was walking too fast, the process
time of the application could not keep up with the user’s quick movement as some parts of
the area take time to focus and update the distance calculation.



Appl. Sci. 2022, 12, 2802 11 of 14

Table 4. Obstacle detection evaluation with finish score, successfully detected and evaded, and
detection fails of the application.

Obstacle Detection Test Results Finish Time No. of Obstacles Successfully
Detected and Evaded

No. of Obstacles the APP
Failed to Detect

Participant 1 4:57 min 8 2
Participant 2 6:53 min 7 4
Participant 3 4:08 min 3 6
Participant 4 5:58 min 6 3
Participant 5 5:15 min 7 3

4.3. Evaluation of Object Detection Module

The object detection experiment took place indoors where selected common objects
were placed randomly on the table for the blindfolded participants to find by using the
unique interactable feature. Different angles, lighting, shapes, and other variables of an
object were observed during the testing, which affected the detection capability, as seen
in Table 5 where the average confidence score and the successful grab counts for each
object are listed. The confidence score and the grab count for the bottle and cup scored the
highest as its position and its overall visibility was consistent throughout the testing. It
was followed by the mouse and AC remote, which scored lower as it is quite a flat object,
resulting in a misinterpreted object. The scissors were observed to score the lowest with an
average confidence score of 65.23%, and it was observed that aside from being flat on the
table the metal part also reflected light resulting in a complication during detection. This
limitation can be fixed by training a more robust object detection model that can consider
the different variables of an image such as angle and lighting.

Table 5. Object detection evaluation with average confidence score and successful grab counts for
each object.

Objects Average Confidence Scores Successful Grab Counts for
Each Participant (Max of 5)

AC Remote 72.31% 4
Bottle 96.59% 5
Cup 92.01% 5

Scissors 65.23% 2
Mouse 86.72% 4

4.4. Usability Experience of the Mobile Application

After the experiment, the participants were asked to evaluate the experience in using
the assistive application, and the survey results can be seen in Table 6. Feedback for the
obstacle detection experiment include that the device was very lightweight and comfortable
to use. The audio warning was helpful but some users found the looping audio warning
annoying to listen to at times. The overall assistive capability of the obstacle detection was
relatively safe, but caution and using the walking cane is always recommended as blind
spots still exist with its detection range limitation. Feedback on the object detection states
that it is a reliable feature, but it takes a few practices and learning to use effectively.
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Table 6. Overall usability experience of the mobile application.

Survey Questions Average Rating

Obstacle Detection
1. I found the system comfortable to carry 4.8
2. I found the audio legible enough in a crowded place 4.2
3. I found the audio warnings helpful 4.8
4. I thought the loop for audio warnings were annoying 3
5. I thought the overall application is safe enough for blind navigation 4
Object Detection
1. It was easy to navigate the app 4.2
2. I thought the voice command was useful 5
3. I found the gestures were responsive 4.4
4. I thought looking for objects with this app was easy 3
5. I found the overall application needs a high learning curve to use 3.6

Note: Each item is rated as 1 = Strongly Disagree, 5 = Strongly agree.

During the development of the system, a spectrum of vision loss was extensively
researched where it was found out that there is a difference in perceiving and adapting
information depending on the severity of blindness [30]. For example, individuals who
are born blind have no perception of colors and basic concept of shapes at first. Thus,
they need more supervision as compared to those whose vision was gradually lost or
worsened over time as they already have the basic concepts in mind. Numerous researches
have explored different approaches of technologies and methods to achieve an inclusive
navigational aid, such as the previously mentioned related works. Most of the mentioned
studies require all sorts of sensors, wiring, or external mechanisms in order to function well
to its purpose. While it does not mean a drawback on the system, it is just inconvenient to
setup at times as it requires expertise or comprehension of the developed system, whereas
utilizing a depth sensing application with an inclusive user interface on a smartphone
only is a more accessible option. Smartphone-based navigational aids have already existed
for a long time, with examples such as an obstacle detection and classification system
using points of interest [31], obstacle collision detection using emitted acoustic signal
beep from a microphone on a smartphone [32], obstacle avoidance using smartphone
camera and emitted laser light triangulation [33], and many more. These studies provide
promising results as a navigational aid to VIB people; however, these implementations
have inconsistencies due to hardware and software limitations. The current improvement
means that using a mobile phone with a 3D depth camera provides portability and does
not require additional costs to purchase expensive hardware and burden the user with
extra devices.

5. Limitations

The current navigational capability of the mobile application is limited to locating
and calculating any upcoming solid material as a general obstacle only, it is currently
incapable of identifying the name and the type of the upcoming object. Thus, a synchronous
implementation of both object detection and obstacle detection can be integrated for future
works. The object detection is currently limited to the number of trained objects and a more
robust deep learning model can be trained to include necessary objects that VIB people
should recognize. The application is developed as an open system that can integrate new
features quite easily as the developer wishes, this allows for easier access for future fixes
and improvements.

6. Conclusions

A mobile application for mobility assistance was successfully developed that provides
users with a portable and flexible navigational assistive device featuring obstacle detection
and object detection in a single application. It can be controlled via gestures and a voice
command-enabled user interface. The obstacle detection uses depth value from multiple
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coordinates to generate an obstruction map and warns users of imminent danger. It was
also found that the detection distance chosen was sufficient to warn the users and the object
detection is capable of detecting relevant objects to assist VIB people in their daily lives.
Furthermore, expansion of the platform is possible because of the versatile implementation
of the Android system, especially within the software and hardware components. As
smartphones continue to evolve overtime, the platform’s ability to assist people with
disabilities will be improved further, even possibly leading to a new generation of assistive
devices. The platform can also be further improved with the use of different technologies
such as stereo imaging [34], radar [35], and LiDAR [36], but some of these are expensive or
will lead to a more complicated implementation.
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