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Abstract: This paper investigates the cooperative control problem for a group of autonomous non-
holonomic mobile robots, in which the robots are required to collaboratively enclose and track a
stationary or moving target in a circular formation. In order to solve the challenging problem that
the robots with speed constraints move uniformly to the exact position on the circles centered on
the target while avoiding obstacles encountered, a distributed coupling controller scheme consisting
of target encircling, phase positioning and spacing assignment, and the avoidance of obstacles is
proposed. First, a novel circular motion control law based on the feedback control idea of trajectory
tracking is proposed, which guides all robots move to the target-centered circles and maintains the
expected distances between the robots and the target. Second, a phase positioning and spacing
assignment control law by introducing a nonlinear function is proposed, which can be coupled into
the circular motion controller to implement the robots converge to the specified position on the circles.
Finally, the obstacles avoidance control law based on artificial potential field only with repulsive
force is adopted to ensure each robot effectively avoids obstacles. The rigorous theoretical analysis of
the convergence of the proposed controller is given, and then the simulations and experiments are
provided to validate the effectiveness and applicability of the proposed control scheme.

Keywords: cooperative control; circular formation; phase positioning; spacing assignment; obstacles
avoidance; nonholonomic mobile robots

1. Introduction

In recent years, the cooperative control problems of a multi-robot system have gener-
ated significant research interest owing to their wide practical applications, such as multi-
robot cooperative object transportation [1,2], vehicle or fleet escorting and patrolling [3,4],
space and ground exploration [5,6], autonomous searching and rescuing [7,8], coopera-
tive pursuit and surveillance [9,10], and environmental monitoring and sampling [11,12].
A multi-robot system can deal with tasks that are difficult to accomplish with an individual
robot.

Cooperative target enclosing and tracking control is one of the most actively studied
topics within the coordination control of multi-robot system since with such cooperative
missions the robots can benefit from moving in a desired formation with certain geomet-
ric shapes [13–16]. In such patterns, circular formation has huge merits to successfully
complete the tasks and improve their performance due to its flexible, simple and easily
implement properties. More specifically, in the process of intercepting and tracking the
moving target, the circular formation can not only complete convergence of the target but
also flexibly achieve the target tracking, and the chance of the target being attacked or
escaping is greatly reduced. In the process of environmental monitoring and sampling,
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unmanned aerial vehicle (UAV) swarm systems that form a circular formation can more ef-
ficiently observe the specified target from different angles to ensure the comprehensiveness
and integrity of the sampling process. According to whether a multi-agent system needs
to rotate around the target, we usually divide the circular formation into two categories:
cooperative circumnavigation and cooperative following.

For the former, cooperative circumnavigation is that a group of autonomous robots
circumnavigate the stationary or moving target with prescribed radius, circular velocity,
and inter-robot angular spacing [17]. Currently, many circumnavigation-control strate-
gies have been devoted in the most of literature to a single or a team of agents. In [18],
a nonlinear periodic continuous time control law based on distance measurement was
proposed, which achieved the objective for an agent rotating around a target. In [19], the
same circumnavigation problem has been considered by bearing-only measurements to
address a surveillance problem, in which a nonholonomic robot achieved a circular motion
around a target. However, the forward speed of the agent is required to be a constant,
which is easily limited in the practical application. Likewise, a novel bearing-only measure-
ment control scheme was proposed for a single and a group of autonomous nonholonomic
mobile robots to enclose around a target of interest [20]. Since the preset target is assumed
to be static, this control scheme cannot be applied to the dynamic target situation. To solve
this problem, a cooperative controller in Frenet–Serret coordinate system was developed
for multiple nonholonomic vehicles via local measurements [21]. However, this controller
can only ensure that all robots are evenly distributed on a common circle around a target
with time-varying velocity. In [22], a cooperative circumnavigation control methodology
based on graph theory and backstepping method was proposed to achieve multiple non-
holonomic robots revolving around a moving target. However, the target’s speed was only
considered in the case of constant speed. In [23], a spacing-adjustment-control strategy
was studied, which can make all agents converge to prescribed angular spacing. However,
the limitation of the proposed control strategy is that all agents are constrained to move in
the one-dimensional space of a circle, i.e., it is completely based on the assumption that
the agents are pre-placed on a common circle. Then, the research group proposed a circle
formation control method based on the idea of limit-cycle design acting on the double
integrator dynamic model [24]. The designed controller is much more universal because
all the desired angular spacings between neighboring agents and the desired distances
between each agent and the target are equal nor the requirement. However, only the
problem of collision avoidance between agents was considered, and the fact that there may
be other obstacles in the actual environment was ignored.

For the latter, cooperative following generally addresses some specific missions that
do not need to rotate around the goal for energy saving or other practical purposes, such as
escorting mission of ships to fleets, and UAVs constantly monitoring specific areas at the
specified locations. Similarly, some control strategies have been proposed for cooperatively
following a target or an area of interest by a group of agents. In [25], a centralized control
algorithm based on the null-space-based behavioral (NSB) control approach has been
proposed to deal with the problem of entrapping and escorting an autonomous target by
a multi-robot system. The proposed solution was structurally robust to the loss of the
vehicles. Similarly, the NSB control method has been defined common tasks in [26], and
the Lyapunov theory was used to analyze their stability. For the escorting mission of Euler–
Lagrange systems, Gao et al. [27] has structured an outer-inner loop control framework, in
which the outer loop considered obstacles, made use of a NSB control architecture and the
inner loop applied the adaptive proportional derivative sliding mode control (APD-SMC)
law to improve convergence speed and robustness. However, the algorithms required
that all robots were evenly distributed on the surface of a sphere or circle and maintained
the same specified distance with respect to the target and thus are not suitable for many
complex environments and tasks.
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However, most aforementioned references assume that the target is in a single state
of motion instead of all possible motion states; the robots are used to achieve a circular
formation on the same circle and evenly distribute on the common circle. In addition,
the obstacles avoidance problem of circular formation added, which includes adjacent
agents and surrounding obstacles, is rarely considered. Knowing how to integrate the
obstacles avoidance algorithm into the circular formation while ensuring the stability of the
formation is also a challenge. In this paper, we study the general following control problem
in which a team of nonholonomic mobile robots with speed constraints can form desired
circular formations with different circle radii and different angle distances to enclose and
track a stationary or moving target. The main contributions of the work can be summed up
in three aspects:

1. A novel circular motion control law based on the idea of circular trajectory tracking
control is proposed in order to guide multiple nonholonomic mobile robots to con-
verge onto the prescribed circles added with the same or different radii around a static
or moving target. On the whole, the designed control law is not only simple and
effective, but also can ensure that multiple robots at any initial locations in a plane
quickly form the desired circular formation.

2. A phase positioning and spacing adjustment control law has been taken into account
by introducing a nonlinear function, maintaining the desired angular spacing from its
front neighbors and fixed-phase of the robots on the circles. Hence, by combining it
with the circular motion controller, the robots can move to the arbitrary position of
the circles given by the user.

3. To solve the obstacles avoidance problem of the multi-robot system in the practical
environment, the most well-known artificial potential field method, only with the
repulsive force, is adopted to ensure quick obstacles avoidance for each single robot.

The remainder of the paper is organized as follows. In Section 2, the problem for-
mulation is formulated and some useful preliminary results are given. In Section 3, we
propose the circular formation controller with obstacles avoidance for multi-robot system
to cooperatively enclose and track a stationary or moving target, and its convergence is also
analyzed in detail. In Section 4, many simulation and experimental results are provided.
Lastly, conclusions are given in Section 5.

Notation: R, Rn, R+ and Rn×m denote the set of real numbers, n-dimensional real
numbers, positive real numbers, and n×m-dimensional real numbers, respectively. N and
Nn denote the set of natural numbers and n-dimensional natural numbers. For a matrix A,
AT and ‖A‖ denote its transpose and Euclidean norm, respectively. 0 denotes a matrix of
zeros.

2. Problem Formulation

Considering a multi-robot system composed of n (n ≥ 2) nonholonomic mobile robots,
the kinematics model of robot i (i = 1, 2, . . . , n) with pure rolling and non-slipping can be
described as follows:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi (1)

where qi = [xi, yi, θi]
T ∈ R3 denotes the pose of robot i in the global frame X-O-Y, and where

pi = [xi, yi]
T ∈ R2 and θi ∈ (−π, π] denote its position and heading angle, respectively.

vi ∈ R and ωi ∈ R are its linear speed and angular speed, respectively. Considering the
real linear and angular speed constraints, the speeds of robot i meet vi ∈ [−vmax, vmax] and
ωi ∈ [−ωmax, ωmax], where vmax ∈ R+ and ωmax ∈ R+ are its maximum speed bounds.

Here, we assume the dynamics of a target as a single-integral model

ṗ0 = v0 (2)
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where p0 = [x0, y0]
T ∈ R2 and v0 = [vx

i , vy
i ]

T ∈ R2 denote the position and speed of the
target in the global frame, and vx

i and vy
i are the speeds of the target in the x and y

directions, respectively.
Inspired by the related work [28], in this paper, we choose a bias point pi

′ = [xi
′, yi
′]T

from the center point pi of two wheels axis along the robot’s orientation axis to distance
d (d 6= 0), as shown in Figure 1. For this reason, we assume that the bias point can be
placed in some distance or angle measurement sensors, such as Lidar, camera, and others,
so that the measured date can be used directly without further conversion. In that case, the
controller based on distance or angle information can be simply designed.
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Figure 1. Illustration of the cooperative target enclosing.

Therefore, we consider to move the bias point pi
′ into a circular formation instead of

moving point pi, which has been studied in [29–32], and the bias point is defined as[
xi
′

yi
′

]
=

[
xi
yi

]
+ d
[

cos θi
sin θi

]
(3)

The robot i is also described as a single-integral dynamics model

ṗ′i = ui (4)

where ui = [ux
i , uy

i ]
T ∈ R2 denotes the control input of robot i, and ux

i and uy
i are its control

inputs in the x and y directions of the global frame, respectively.
Since the robots’ motion is controlled directly by linear speed and angular speed or

speeds of two driving wheels, it is necessary to transform the control input into the linear
and angular speeds [20], which is given by[

vi
ωi

]
=

[
cos θi sin θi
− 1

d sin θi
1
d cos θi

][
ux

i
uy

i

]
(5)

In order to easily establish the mathematical model of the controller, we introduce
the following variables. Let p̄i as the relative position between robot i and the target; it is
expressed as follows

p̄i = pi
′ − p0 (6)

The relative velocity v̄i between robot i and the target can be described as follows:

v̄i = vi
′ − v0 (7)
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where vi = [vx
i , vy

i ]
T ∈ R2 denotes the velocity of robot i in the global frame and vx

i and vy
i

are its speeds in the x and y directions, respectively.
Moreover, let ρi = ‖p̄i‖ > 0, ρ = [ρ1, ρ2, ..., ρn]T ∈ Rn. The phase angle of robot i with

respect to the target is ϕi ∈ (0, 2π], where it is also expressed as the orientation of the vector
p̄i. Then, denote ∆ϕi ∈ (0, 2π] as the relative angular spacing from robot i to robot i + 1,
and let ∆ϕ = [∆ϕ1, ∆ϕ2, . . . , ∆ϕn]T ∈ Rn, complying with the following rules:

∆ϕi =

{
ϕi+1 − ϕi, i = 1, ..., n− 1
ϕ1 − ϕn + 2π, i = n

}
(8)

Let ∆ϕd = [∆ϕd
1, ∆ϕd

2, ..., ∆ϕd
n]

T ∈ Rn, where ∆ϕd
i is the desired relative angular spac-

ing from robot i to robot i+1; ρd = [ρd
1, ρd

2, ..., ρd
n]

T ∈ Rn, where ρd
i is the desired relative

distance between robot i and the target or the desired circle radius of robot i around the
target. In addition, we usually denote ϕd

1 as the desired initial phase of robot 1 on its circle.
In that case, the circular formation can be described as (ρd, ∆ϕd, ϕd

1) if ρd
i > 0, ∆ϕd

i ∈ (0, 2π],
ϕd

1 ∈ (0, 2π].
With the above preparation, we formulate the formation problems of interest as follows:

Question 1 (circular convergence). For a team of nonholonomic mobile robots with dy-
namics model (4) and a static or moving target with dynamics model (2), a circular motion
control law is designed to make all robots converge to the desired relative distance ρd with
the target, that is, lim

t→∞
ρ(t) = ρd.

Question 2 (phase positioning and spacing assignment). Under the condition that the
target is encircled by a group of robots, a control law with custom angular spacing dis-
tribution between two adjacent robots and phase positioning is designed, so that the
initial phase of each robot on its circle can be determined according to the prescribed
relative angular spacing and the first robot’s desired initial phase on its circle, that is,
lim
t→∞

∆ϕ(t) = ∆ϕd, lim
t→∞

ϕ1(t) = ϕd
1.

Question 3 (obstacles avoidance). For a multi-robot system, there is a basic requirement
to be able to effectively avoid obstacles. An obstacles avoidance control law needs to be de-
signed for complicated environment changes, while ensuring the stability of the formation.

3. Controller Design

In this section, we propose a circular formation controller with obstacles avoidance
composed of three coupled portions to solve above problems and provide rigorous theoret-
ical proof. The structure of the designed controller scheme is shown in Figure 2, which will
be described in more details below.

3.1. Circular Motion Control

We first propose a circular motion control law that guides each robot to converge to its
own desired circle without considering phase angle and angular spacing on the circle. The
design idea of this control scheme is that by rotating a fixed reference vector around the
target point conterclockwise p0, a rotation change circular trajectory can be obtained. Then,
the circular trajectory can be used as a reference value, and the robot tracks the reference
value for circular motion. The control objective can be described as follows :

p̄i(t)→ R(φi(t))~pi(t0)ρ
d
i , t→ ∞ (9)

where R(φi(t)) ∈ R2×2 is a rotation matrix of steering angle φi(t) ∈ (0, 2π] and ~pi(t0) is
the unit direction vector of p̄i(t0) at the initial time t0, which are defined as

φi(t) = ϕi(t)− ϕi(t0), t ≥ t0 (10)
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~pi(t0) =
p̄i(t0)

‖p̄i(t0)‖
=

p̄i(t0)

ρi(t0)
(11)

R(φi(t)) =
[

cos φi(t) − sin φi(t)
sin φi(t) cos φi(t)

]
(12)

target

robot i
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Figure 2. The structure of the designed controller scheme.

The circular motion control law is designed as follows:

ui(t) = v0(t)− kp

[
p̄i(t)− R(φi(t))~pi(t0)ρ

d
i

]
+ Ṙ(φi(t))~pi(t0)ρ

d
i (13)

where kp is a position constant, which is used to adjust the convergence speed of circular
trajectory tracking for all robots.

Theorem 1. Assuming φi(t) is a first-order continuous derivative function. Under the control
law (13), robot i can converge to a circle with radius ρd

i centered on a static or moving target and
maintain the set distance with the target, namely ρi(t)→ ρd

i as t→ ∞.

Proof . Denote the position error as

ep,i(t) = p̄i(t)− R(φi(t))~pi(t0)ρ
d
i (14)

If (14) converges to zero, the error differential equation can be written as

ėp,i(t) = −kpep,i(t) (15)

Substituting (6), (7) and (14) into (15) gives

ṗ′i(t) = v0(t)− kp

[
p̄i(t)− R(φi(t))~pi(t0)ρ

d
i

]
+ Ṙ(φi(t))~pi(t0)ρ

d
i (16)

where

Ṙ(φi(t)) = φ̇i(t)
[
− sin φi(t) − cos φi(t)
cos φi(t) − sin φi(t)

]
(17)
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According to the robot dynamics model (4), the controller (13) is obtained by (16).
In addition, (15) can be solved as ep,i(t) = exp(−kpt)ep,i(t0). The position error ep,i(t)
could converge to 0 as t→ ∞ because of kp as a positive constant and ep,i(t0) as a positive
constant vector. So, the control objective (9) has been proved. Especially, when φ̇i(t) 6= 0,
all robots can rotate around the target uniformly.

3.2. Custom Phasing and Spacing Control

Next, in order to ensure that the relative angular spacing between inter-robots is
maintained within the desired values, the angular spacing of the desired formation can be
carried out by changing the steering angles. According to (10), we can obtain φ̇i(t) = ϕ̇i(t).
The control law (13) can be rewritten as

ui(t) = v0(t)− kp

[
p̄i(t)− R(φi(t))~pi(t0)ρ

d
i

]
+ ϕ̇i(t)R∗(φi(t))~pi(t0)ρ

d
i (18)

where,

R∗(φi(t)) =
[
− sin φi(t) − cos φi(t)
cos φi(t) − sin φi(t)

]
(19)

Considering the practical applications, it is sometimes necessary to determine the
position of the robots on their own circles. For example, when a multi-robot system
monitors an area of interest, the accurate position of each robot needs to be pre-planned
to monitor a specific region. Therefore, it is necessary to design a phase positioning and
spacing assignment control law, so that the robots can reach the specified position on
their circles. We introduce a nonlinear function into the controller (18), which is described
as follows:

ϕ̇i(t) = kϕ sin

[(
ϕd

1 +
i−1

∑
j=1

∆ϕd
j

)
−
(

ϕ1(t) +
i−1

∑
j=1

∆ϕj(t)

)]
(20)

where kϕ is a position constant, which is used to adjust the convergence speed of phase
angle and angular spacing of the robots.

Theorem 2. Under the circular motion control law (18), the phase positioning and spacing-
assignment control law of all robots are satisfied (20). The phase angles of all robots on the circles can
converge to the desired values calculated by desired initial phase ϕd

1 of robot 1 and the desired relative

angular spacing ϕd, that is, lim
t→∞

ϕi(t) = ϕd
1 +

i−1
∑

j=1
∆ϕd

j for i = 1, 2, · · · , n , which contains two

parts: the phase positioning convergence of the robot 1 , that is, lim
t→∞

ϕ1(t) = ϕd
1, and the relative

angular spacing convergence of all robots , that is, lim
t→∞

∆ϕ(t) = ∆ϕd.

Proof . Let ϕi(t) = ϕ1(t) +
i−1
∑

j=1
∆ϕj(t). We choose a positive definite Lyapunov function

candidate

V = kϕ

[
1− cos

(
ϕd

1 +
i−1

∑
j=1

∆ϕd
j − ϕi(t)

)]
(21)

Differentiating Equation (20) with respect to time as

V̇ = −kϕ sin

(
ϕd

1 +
i−1

∑
j=1

∆ϕd
j − ϕi(t)

)
ϕ̇i(t) = −kϕ

2sin2

(
ϕd

1 +
i−1

∑
j=1

∆ϕd
j − ϕi(t)

)
≤ 0 (22)
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With (22), V̇ ≤ 0 is guaranteed to be negative definite. Let V̇ = 0; there are the

relative equilibrium points ϕi(t) = ϕd
1 +

i−1
∑

j=1
∆ϕd

j for i = 1, 2, ..., n. This shows that the

phase convergence of each robot is guaranteed by control laws (20).
To sum up, it is shown that the circular formation controller is demonstrated as stable

by the control law (18) and (20).

3.3. Obstacles Avoidance Control

Considering that the formation member will inevitably collide with obstacles in the
environment and other members in the motion process, it is necessary to design an effective
obstacle-avoidance control law that not only enables the robots to complete the barrier-void
task but also ensures the stability of the formation. As a classical obstacle-avoidance control
method, the artificial potential field method is widely used in robot’s motion control. In the
case discussed in this paper, it is not necessary to set up an additional attractive potential
field function to generate attractive force because each robot has its own trajectory to track
but only to set repulsive potential field to generate repulsive force for obstacles avoidance
operation. The classical repulsive field function is defined as

U i,rep(t) =


1
2 krep

m
∑

k=1

(
1

ρi,obs(t)
− 1

ρ0

)2
, if ρi,obs(t) ≤ ρ0

0, if ρi,obs(t) > ρ0

(23)

where krep is a position constant, which is repulsion gain coefficient. ρ0 > 0 is obstacle-
avoidance response distance. m ∈ N is the number of obstacles in domain ρ0. Denote
ρi,obs(t) = pi

′(t)− pk,obs(t), ρi,obs(t) =
∥∥∥ρi,obs(t)

∥∥∥, where pk,obs(t) is the position of obsta-
cle k in the global frame.

Then, since repulsion force received by the robot is along the negative gradient of the
repulsive field function, the obstacle-avoidance control law is expressed as follows:

ui,rep(t) = −∇U i,rep(t) =


krep

m
∑

k=1

(
1

ρi,obs(t)
− 1

ρ0

)
ρi,obs(t)

ρi,obs(t)
2 , if ρi,obs(t) ≤ ρ0

0, if ρi,obs(t) > ρ0

(24)

Finally, we combine (18), (20), and (24) to achieve circular formation control with
obstacles avoidance, which can obtain the final control input of robot i as

ui, f inal(t) = ui(t) + ui,rep(t), i = 1, 2, ...., n (25)

By substituting (25) into (5), the linear and angular speeds of all robots in the circular
formation can be obtained.

4. Simulation and Experimental Results

In this section, we verify the feasibility and effectiveness of the designed circular
formation controller with obstacles avoidance through simulations and experiments. We
first use MATLAB R2018b platform to carry out numerical simulations. Then, we utilize
three nonholonomic mobile robots based on Ubuntu 18.04 with ROS (Robot Operating
System) to further verify the performance of the proposed controller.

4.1. Simulations

In the numerical simulations, a multi-robot system consisting of five nonholonomic
mobile robots represented by kinematic points with direction is considered, and their initial
poses are generated randomly in a plane. A target remains stationary or in motion state, and
its initial position is the point (1.5, −1.5) in the global frame. Meanwhile, some obstacles
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are randomly placed in the plane. In this part, we will consider three cases: a target in static
state for case 1, a moving target with constant speed for case 2, and a moving target with
time-varying speed for case 3. The three typical motion state of the target are simulated
and tested, which are shown in Figures 3–5. In addition, parameters of three groups of
simulations are shown in Table 1.

Table 1. The parameters of three groups of simulations.

Parameter Case 1 Case 2 Case 3 Unit

ρd [0.9, 0.6, 0.9, 1.2, 0.9]T [1, 1, 1, 1, 1]T [1.5, 1, 1.5, 1.5, 1]T m
∆ϕd [−π/2, π, π/3, π/3, 5π/6]T [2π/5, 2π/5, 2π/5, 2π/5, 2π/5]T [π/2, π/3, π/3, π/3, π/2]T rad
ϕd

1 π/2 0 π/3 rad
d 0.1 0.1 0.1 m
ρ0 0.5 0.5 0.5 m
kp 0.3 0.5 0.5 —
kϕ 0.3 0.5 0.5 —
krep 0.2 0.3 0.3 —

Figure 3. Simulation results of case 1. (a) Trajectories of five robots and a static target in a plane.
(b) Error between current phase and the desired phase of robot 1. (c) Distance errors between five
robots and their desired circles centered on the target. (d) Errors between current angular spacing and
the desired angular spacing of all adjacent inter-robots. (e) The linear speeds of five robots. (f) The
angular speeds of five robots.
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Figure 4. Simulation results of case 2. (a) Trajectories of five robots and a moving target with
a constant speed in a plane. (b) Error between current phase and the desired phase of robot 1.
(c) Distance errors between five robots and their desired circles centered on the target. (d) Errors
between current angular spacing and the desired angular spacing of all adjacent inter-robots. (e) The
linear speeds of five robots. (f) The angular speeds of five robots.

Figure 5. Simulation results of case 3. (a) Trajectories of five robots and a moving target with
time-varying speed in a plane. (b) Error between current phase and the desired phase of robot 1.
(c) Distance errors between five robots and their desired circles centered on the target. (d) Errors
between current angular spacing and the desired angular spacing of all adjacent inter-robots. (e) The
linear speeds of five robots. (f) The angular speeds of five robots.

4.1.1. Case 1 (A Static Target)

In case 1, the initial poses of five robots and the speed of the target are, respec-
tively, q1(0) = [3.5,−3, π/2]T , q2(0) = [4,−2, π]T , q3(0) = [3.5, 1,−π/2]T , q4(0) =
[−0.5, 0.5, 0]T , q5(0) = [0,−3.5, 0]T , v0(t) = [0, 0]T .
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The motion trajectories from Figure 3a show that the robots can form desired circular
formation with three different circles radii and four different angular spacings, and avoid
obstacles effectively. Moreover, it can be seen from Figure 3b–d that the initial phase of
robot 1 on its circle, the relative distance between the robots and the target, and the angular
spacing between the adjacent robots can converge to the desired values. In addition, the
output linear and angular speeds of the designed controller from Figure 3e,f can meet the
actual speed requirements of the robots, and the maximum linear and angular speeds of
the robots are set to vmax = 1.5 m/s and ωmax = 1.5 rad/s in order to prevent excessive
input speeds.

4.1.2. Case 2 (A Moving Target with a Constant Speed)

In case 2, the initial poses of five robots are, respectively, q1(0) = [3,−4, π/2]T , q2(0)
= [3, 1,−π/2]T , q3(0) = [0.5, 1, 0]T , q4(0) = [−1,−2, 0]T , q5(0) = [1,−4, π/2]T , and the
speeds of the target are set to vx

0(t) = 0.2, vy
0(t) = 0 for t ≤ 10 s; vx

0(t) = 0.2 cos(0.2(t− 10)),
vy

0(t) = 0.2 sin(0.2(t− 10)) for 10 s < t ≤ (10 + 2.5π) s; vx
0(t) = 0, vy

0(t) = 0.2
for (10 + 2.5π) s < t ≤ (20 + 2.5π) s; vx

0(t) = 0.2 sin(0.2(t− 20− 2.5π)), vy
0(t) =

0.2 cos(0.2(t− 20− 2.5π)) for (20 + 2.5π) s < t ≤ (20 + 5π) s; vx
0(t) = 0.2, vy

0(t) = 0
for (20 + 5π) s < t ≤ 50 s. The linear speed of the moving target is a constant value,
i.e., ‖v0(t)‖ = 0.2 m/s. It can be seen from Figure 4a–d that the five robots can track the
moving target with a constant speed and evenly form a desired circular formation with
expected ρd, ∆ϕd and ϕd

1, and can avoid obstacles in real time. Figure 4e also shows that
the linear speeds of the robots converge to the linear speed of the target.

4.1.3. Case 3 (A Moving Target with Time-Varying Speed)

In case 3, the initial poses of five robots and the speed of the target are respectively
q1(0) = [3,−4.5, π/2]T , q2(0) = [3, 2,−π/2]T , q3(0) = [1, 2, 0]T , q4(0) = [−1,−2, 0]T ,
q5(0) = [0.5,−4.5, π/2]T , v0(t) = [0.2, 0.2 cos(0.2t)]T .

The linear speed of the moving target is time-varying value, which presents sine curve
variation. It can be seen from Figure 5a that the five robots can form the desired circular
formation with two different circle radii as well as two different angular spacings and
implement obstacles avoidance effectively in the moving conditions. Figure 5b–d illustrate
that the tracking errors of the forming circular formation converge to zero, which has good
performance. In addition, Figure 5e,f also illustrate that the linear and angular speeds of
the robots under speed constraints converge to the speeds of the target.

To sum up, the above three groups of simulation results show that the multi-robot
system can achieve desired control objectives. The position errors between the robots and
the target, as well as the angular spacing errors between inter-robots, fluctuate when the
robots detect the obstacles, and the errors converge to zero after leaving the obstacles. In
addition, the output speeds of the controller is within a reasonable range.

4.2. Experiments
4.2.1. Experiments Platform

In the experiments, three nonholonomic mobile robots are taken as the research
objectives, and the experimental platform of the multi-robot system is shown in Figure 6.
The three robots and a computer are in the same WLAN (Wireless Local Area Network),
which can realize the communication between inter-robots and computer. The odometry
data of the robots is obtained by the AB phase photoelectric encoder of the DC (Direct-
Current) motor with a high-resolution of 500 lines/laps, and then real-time poses of the
robots are obtained by EKF (Extended Kalman Filter) fusion algorithm with the IMU
(Inertial Measurement Unit) data. The Lidar that is placed at the bias point obtains the
distance information between the robot and obstacles. We take the poses information as
well as the distance information as the inputs of our proposed controller, calculate the linear
and angular speeds of the robots in real time, and finally convert them into the speeds of
the DC motor of the left and right driving wheels to realize the movement of the robots.
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Figure 6. Multiple nonholonomic mobile robots experiment platform.

4.2.2. Multi-Mobile Robot Experiments

Just like the simulations, we also carried out our approach in three cases. Referring
to the simulations for the initial position and speed of the target, other parameters of
three groups of experiments are shown in Table 2. The experimental results are shown in
Figures 7–9. The motion trajectories in Figures 7a,b–9a,b indicate that the three nonholo-
nomic mobile robots can track a stationary or moving target, form a uniformly distributed
circular formation with the same or different radii around the target, and effectively avoid
the obstacles encountered. Figures 7c–e and 8c–e indicate that the errors of the control
objectives fluctuate around zero, but Figure 9c,e show that the phase error of robot 1 and
the angular spacing error between the each pair of two adjacent robots fluctuate greatly
because of the angular speed of the target is always fluctuating. It takes a certain time to
adjust the robots’ orientation to achieve the desired values, as can be seen from the output
angular speed of the controller in Figure 9g. However, it can be seen from Figure 9f that all
robots can track the linear speed of the target.

The above three groups of experiments can obtain similar results to the simulations,
which shows that the designed controller can work effectively and perform well.

Table 2. The parameters of three groups of experiments.

Parameter Case 1 Case 2 Case 3 Unit

ρd [0.8, 0.8, 1.2]T [0.5, 0.5, 0.5]T [0.5, 0.5, 0.5]T m
∆ϕd [2π/3, 2π/3, 2π/3]T [2π/3, 2π/3, 2π/3]T [2π/3, 2π/3, 2π/3]T rad
ϕd

1 π/2 0 0 rad
d 0.1 0.1 0.1 m
ρ0 0.65 0.65 0.65 m
kp 0.2 0.2 0.2 —
kϕ 0.3 0.3 0.3 —
krep 0.3 0.3 0.3 —
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(1) t = 0s (2) t = 10s (3) t = 20s

(4) t = 30s (5) t = 40s (6) t = 50s

obstacletarget

circles

robot 1

robot 2

robot 3

(a) 

Figure 7. Experimental results of case 1. (a) The motion views of three nonholonomic mobile robots
forming a evenly distributed circular formation with two different circular radii to enclose a static
target. (b) Trajectories of the three robots and the target in the plane. (c) Error between current phase
and the desired phase of robot 1. (d) Distance errors between the three robots and their desired circles
centered on the target. (e) Errors between current angular spacing and the desired angular spacing
of all adjacent inter-robots. (f) The linear speeds of the three robots. (g) The angular speeds of the
three robots.
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(1) t = 0s (2) t = 5s (3) t = 10s

(4) t = 20s (5) t = 30s (6) t =40s

(a)

robot 1

robot 2 robot 3

circles

target
obstacle

Figure 8. Experimental results of case 2. (a) The motion views of three nonholonomic mobile robots
forming a evenly distributed circular formation with same circular radius to enclose and track a
moving target with a constant speed. (b) Trajectories of the three robots and the target in the plane.
(c) Error between current phase and the desired phase of robot 1. (d) Distance errors between the
three robots and their desired circles centered on the target. (e) Errors between current angular
spacing and the desired angular spacing of all adjacent inter-robots. (f) The linear speeds of the three
robots. (g) The angular speeds of the three robots.
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(1) t = 0s (2) t = 5s (3) t = 10s

(4) t = 15s (5) t = 20s (6) t = 25s

(a) 

robot 1
robot 2

robot 3

circles

target
obstacle

Figure 9. Experimental results of case 3. (a) The motion views of three nonholonomic mobile robots
forming a evenly distributed circular formation with same circular radius to enclose and track a
moving target with time-varying speed. (b) Trajectories of the three robots and the target in the
plane. (c) Error between current phase and the desired phase of robot 1. (d) Distance errors between
the three robots and their desired circles centered on the target. (e) Errors between current angular
spacing and the desired angular spacing of all adjacent inter-robots. (f) The linear speeds of the three
robots. (g) The angular speeds of the three robots.

5. Conclusions

In this paper, we have proposed a circular formation controller with obstacles avoid-
ance for a group of multiple nonholonomic mobile robots to collaboratively encircle and
track a static or moving target in an environment with obstacles. The controller includes
three sub-parts, where the first is circular motion control law by using the idea of circular
trajectory tracking control that each robot moves to the desired circular around a target,
maintaining a preset distance between the robots and the target; the second is phase posi-
tioning and spacing assignment control law by introducing a nonlinear function, for which
each robot can determine the initial phase on the circle itself and maintain the desired
relative angular spacing from its neighbors; and the third is obstacle-avoidance control
law, which only considers the repulsive potential field, for which each robot is able to
effectively avoid obstacles in the complicated environment while maintaining the stability
of the formation. Then, theoretical analysis has been provided to show the convergence of
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the system under the proposed controller. Finally, the simulation and experimental results
demonstrate good control performance of the proposed control scheme. The controller
can realize multiple nonholonomic mobile robots with speed constrains fencing around
and tracking a static or moving target in an environment with obstacles, which has great
practical value for engineering applications.

In future work, our proposed control scheme should be implemented in a local frame
that is more in line with practical engineering so that only local information is utilized
without knowing global information. In addition, the position and velocity of the target
are difficult to obtain directly in practice, especially in the global frame. It is necessary
to design an estimation law so that each robot can estimate the position and velocity of
the target.
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