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Abstract: The ever-growing threat of deepfakes and large-scale societal implications has propelled
the development of deepfake forensics to ascertain the trustworthiness of digital media. A common
theme of existing detection methods is using Convolutional Neural Networks (CNNs) as a backbone.
While CNNs have demonstrated decent performance on learning local discriminative information,
they fail to learn relative spatial features and lose important information due to constrained recep-
tive fields. Motivated by the aforementioned challenges, this work presents DFDT, an end-to-end
deepfake detection framework that leverages the unique characteristics of transformer models, for
learning hidden traces of perturbations from both local image features and global relationship of
pixels at different forgery scales. DFDT is specifically designed for deepfake detection tasks con-
sisting of four main components: patch extraction & embedding, multi-stream transformer block,
attention-based patch selection followed by a multi-scale classifier. DFDT’s transformer layer benefits
from a re-attention mechanism instead of a traditional multi-head self-attention layer. To evaluate
the performance of DFDT, a comprehensive set of experiments are conducted on several deepfake
forensics benchmarks. Obtained results demonstrated the surpassing detection rate of DFDT, achiev-
ing 99.41%, 99.31%, and 81.35% on FaceForensics++, Celeb-DF (V2), and WildDeepfake, respectively.
Moreover, DFDT’s excellent cross-dataset & cross-manipulation generalization provides additional
strong evidence on its effectiveness.

Keywords: cybersecurity; deep learning; deepfake detection; vision transformer

1. Introduction

The recent advances in the field of Artificial Intelligence (AI), particularly Generative
Adversarial Networks (GANs) [1,2] and the abundance of training samples, along with
robust computational resources [3], have significantly propelled the field of AI-generated
fake information in all kinds, e.g., deepfakes. Deepfakes are synthesized yet super-realistic
images and videos generated through combining, merging, superimposing, or replacing
the facial area of images/videos leveraging advanced techniques from computer vision and
deep learning domains [4]. Deepfakes are among the most sinister types of misinformation,
posing large-scale and severe security and privacy risks targeting critical governmental
institutions and ordinary people across the world [5,6]. Furthermore, deepfake generation
algorithms are constantly evolving and have become a bullet point for adversarial entities
to perpetuate and disseminate criminal content in various forms, including ransomware,
digital kidnapping, etc. [7].

The ever-growing threat of deepfakes and large-scale societal implications have driven
the development of deepfake forensics to ascertain the trustworthiness and authenticity of
digital media. Different deepfake detection approaches have been proposed to address this
challenge [8,9]. Early deepfake detection algorithms were primarily based on hand-crafted
features, and visible artifacts, such as inconsistency in head poses [10], eye blinking [11]
and face wrapping artifacts [12]. However, as deepfakes become more deceitful and so-
phisticated, deepfake detection algorithms are advancing. The fact that deepfakes are
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GAN-generated digital content and not actual events captured by a camera implies that
they still can be detected using advanced AI models [13]. Furthermore, it has been proven
that deep neural networks tend to achieve better performance than traditional image foren-
sic tools [9]. Typical components of most state-of-the-art deepfake detection approaches are
convolutional neural networks, and facial regions cropped out of an entire image [14–16].
Unique characteristics of the convolutional operator in deep CNNs have enabled them to
demonstrate strong capabilities on capturing minor visual artifacts, yielding decent detec-
tion results [7,17,18]. Although CNNs have proven themselves solid candidates for learning
local information of the image, they still miss capturing pixels’ spatial interdependence
due to constrained receptive fields.

Almost all deepfakes are created by applying alterations to the facial area while
leaving other regions intact. Therefore, in addition to local image features, every pixel’s
global relationship provides essential information regarding the intensity and extension
of manipulations. This information could be augmented to boost the performance of the
deepfake detection algorithm and bring better insight into the location of the forgeries.
At the same time, different deepfake generation techniques target different proportions
and regions of the facial area to be manipulated, ranging from small regions such as color
mismatch in lips to larger areas that extend throughout the image like face boundaries in
face-swapping approaches. Therefore, it is vital to successfully identify forged pixels to
extract better discriminative features in a scalable manner. Motivated by the aforementioned
challenges, a multi-stream deepfake detection framework is presented that incorporates
pixels’ spatial interdependence in a global context with local image features in a scalable
scheme using unique characteristics of transformer models on learning global relationship
of pixels. Transformer models have proven their strong capabilities on learning long-term
dependency on natural language processing tasks [19–21], and more recently on computer
vision tasks [22–24].
Objectives. Although the deepfake detection task has gained massive attention within
the last couple of years, the mainstream detection methods rely on localized features and
CNN-based structures. Surprisingly only a few research works have been conducted on the
intersection of vision transformers and facial forgery detection. The main goal of this study
is to present a digital media authentication system leveraging the unique characteristics of
vision transformers on modeling the global relationship of pixels in different manipulation
scales. While CNNs fail to learn relative spatial information and lose essential data in
pooling layers, vision transformers’ global attention mechanism enables the network to
learn higher-level information much faster, which leads to more promising performances
in less computational time. Furthermore, in digital media forensics, it is of vital importance
not only to detect deepfakes but also it is equally important to recognize specific parts of
the image that has been forged. This goal can be achieved by extracting hidden traces and
intrinsic representations from the image’s manipulated regions.
Contributions. While existing deepfake detection approaches are primarily dependent on
CNN-based structures, this work presents an end-to-end deepfake detection framework
leveraging the unique characteristics of transformer models. DFDT discovers hidden traces
of perturbations from both local image features and global relationship of pixels at different
forgery scales. Unlike previous studies that are limited to either a direct application of vision
transformers or still heavily rely on CNN-based models as backbone [25,26], this work
presents a transformer model that was mainly developed for the deepfake detection task.
A comprehensive set of analyses are conducted to assess the performance of the proposed
method from various perspectives, including intra-dataset performance, cross-dataset &
cross-manipulation generalization, and various ablation studies. The key contributions of
this work are summarized as follows:

• An end-to-end deepfake detection framework, DFDT, is developed leveraging the
unique characteristics of transformer models on learning hidden traces of perturba-
tions from both local image features and global relationship of pixels at different
forgery scales.
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• DFDT is designed explicitly for deepfake detection tasks. DFDT comprises four
main components, including patch extraction & embedding, multi-stream transformer
block, attention-based patch selection followed by a multi-scale classifier. DFDT’s
transformer layer benefits from the re-attention mechanism instead of the traditional
multi-head self-attention layer.

• A comprehensive set of experiments are conducted on seven deepfake forensics bench-
marks to evaluate the performance of the DFDT. Experimental results demonstrated
the surpassing detection rate of the DFDT, achieving 99.41%, 99.31%, and 81.35% on
FaceForensics++, Celeb-DF (V2), and WildDeepfake, respectively. Moreover, DFDT’s
excellent cross-dataset & cross-manipulation generalization provides additional strong
evidence on its effectiveness.

Organization. The rest of the paper is organized as follows. Section 2 provides a brief
discussion on recent significant works on deepfake generation and detection techniques.
The outline of the presented approach, DFDT, along with its main components patch ex-
traction & embedding, multi-stream transformer block, and attention-based patch selection
are presented in Section 3. Overall evaluation settings, including datasets, implementation
specifics, and evaluation metrics are described in Section 4. The obtained experimental
results on DFDT are discussed and compared to its counterparts in Section 5. Finally,
concluding remarks are drawn in Section 6.

2. Related Work

A brief description of recent advancements in deepfake analysis domain is pro-
vided here.
DeepFake Generation. Although early deepfake generation techniques were mostly based
on traditional vision and voice impersonation methods [3,27,28], most recent techniques
benefit from the unique generation capabilities of GANs. For instance, Zhu et al. [29],
and Kim et al. [30] utilized cycle-consistent GANs to generate deepfakes such that it
maintains the facial expressions of the target while swapping the identities of source and
target. Furthermore, Lu et al. [31] presented identity-guided conditional CycleGAN to
convert low-resolution facial images to high-resolution images. Similarly, Kim et al. [32]
introduced a deep video portraits method was introduced to transfer both facial expression
and 3D poses of the source image into the target image. Moreover, Li et al. [33] presented a
high-quality face replacement approach through FaceShifter that exploits a learning method
based on heuristic error acknowledging refinement network. As the main scope of this
study is on deepfake detection techniques, more interested readers are referred to [8,9] for
more detailed information on state-of-the-art deepfake generation techniques.
Deepfake Detection. While the deepfake detection task has been studied from different per-
spectives, this study mainly explores the AI-driven deepfake detection approaches. Given
the importance and huge threat of deepfake technologies, a large body of work is devoted
to devising high-performance and resilient detection technologies. While early-stage detec-
tion techniques mainly focused on handcrafted features, i.e., blinking inconsistencies [12],
biological signals [15], and unrealistic details [34], more recent techniques are developed
using advanced deep learning networks. For example, Afchar et al. [35] introduced MesoNet
as a deepfake detection algorithm that is composed of a shallow convolutional network and
intermediate level of features. A detection approach based on auto-encoder architecture
and transfer learning, forensictransfer, was presented by Cozzolino et al. [36]. Similarly,
Capsule-Forensics architecture was introduced by Nguyen et al. [16] for better detection
of AI-generated images and videos. Furthermore, an ensemble learning approach was
employed to improve deepfake detection composite model by Rana et al. [37]. Additionally,
Kaur et al. [38] proposed a detection approach based on sequential temporal analysis and
convolutional long short-term memory networks. Wang et al. [39] evaluated the cross-
dataset generalization capability of their detection model, which was trained over ProGAN
and tested on other datasets. Mittal et al. [40] proposed a multi-modal approach com-
posed of audio and video modalities to tackle deepfake detection tasks. Furthermore, Jian



Appl. Sci. 2022, 12, 2953 4 of 17

et al. [14] introduced a hierarchical classification approach that can recognize deepfakes at
three different levels, including manipulated images, retouched from GAN-based images,
and specific GAN architecture. Other researchers have investigated deepfake detection
tasks from a fine-grained visual classification point of view, specifically attention-based
techniques. For instance, Du et al. [13] proposed a deepfake detection method from a
fine-grained visual classification angle that is built using an auto-encoder architecture. Fur-
thermore, Khormali and Yuan [18] have presented an attention-based deepfake detection
approach utilizing two different modules, i.e., Face close-up and Face Shut-off, to force
the model to extract more discriminative information from other parts of the facial region.
Quan et al. [41] presented a progressive transfer learning algorithm to tackle face spoofing
attacks using only a limited number of training samples. The presented face anti-spoofing
method benefits from a temporal consistency constraint to verify the reliability of pseudo
labels of selected data. While a large body of work is focused on CNN-based approaches for
deepfake detection, only minimal effort has been devoted to investigating more advanced
technologies such as vision transformers for deepfake detection.
Vision Transformer. Transformer networks were primarily designed to learn long-range
contextual information to solve natural language processing tasks, e.g., text classification,
machine translation. Transformers are extremely scalable and have demonstrated remark-
able performances on learning dependency among frames of large-scale datasets, e.g.,
BERT [20], BioBERT [21], and GPT-3 [42]. Inspired by the great performance of transform-
ers in NLP tasks, they have been recently extend to computer vision and multi-modal
vision-language tasks, such as image classification [24,43], object detection [23,44], and im-
age segmentation [45]. On the other hand, minimal effort is devoted to exploring vision
transformers for deepfake detection. Existing methods still highly depend on CNNs for
feature extraction. The community lacks an end-to-end vision-transformer framework
designed explicitly for deepfake detection tasks. For example, Khan and Dai [46] presented
a video transformer with an incremental learning approach for deepfake detection. Their
design benefits from XceptionNet [47] as a backbone for image feature extraction and
12 transformer blocks for feature learning. Similarly, Wodajo and Atnafu [26] presented a
convolutional vision transformer that uses CNNs as a feature extractor and a transformer
block as a classifier. Furthermore, Heo et al. [25] proposed an scheme based on vision
transformer and distillation that is build based on EfficientNet [48] features. Therefore,
to fill this research gap in the domain, an end-to-end transformer-based framework is
developed explicitly and developed for the deepfake detection problem in this study.

3. Methodology

A detailed description of the building blocks of the proposed multi-stream transformer-
based deepfake detection framework, DFDT, is presented in this section. DFDT consists
of four main components, including patch & embeddings extraction (Section 3.1), a multi-
stream transformer block (Section 3.3), attention-based patch selection (Section 3.3), fol-
lowed by a multi-scale classifier. The overall framework of the DFDT is depicted in Figure 1.
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Figure 1. An overview of the proposed end-to-end transformer-based deepfake detection framework.
DFDT is developed leveraging the unique characteristics of transformer models on learning hidden
traces of perturbations from local image features and the global relationship of pixels at different
forgery scales. Patch extraction & embedding, a multi-stream transformer block, attention-based
patch selection, followed by a multi-scale classifier are the main components of the DFDT.

3.1. Patch Extraction & Embedding

All mandatory preprocessing steps, including face localization, patch extraction,
and patch/positional embeddings, are described in this section.
Preprocessing & Face Localization. In general image manipulation tasks, the forgeries
might be scattered across regions of the image, however, in deepfake generation techniques
manipulations are mainly limited to facial areas and the background area is left intact.
Therefore, having trained a model based on only face area would not only reduce compu-
tational complexity but also would improve the model performance due to background
noise reduction [49]. Therefore, first, 20% of frames are extracted for each input video in
consecutive order, and then facial landmarks are extracted leveraging the RetinaFace [50],
a state-of-the-art face detection method. Finally, the facial area on each frame is cropped,
resized, and aligned using the calculated landmarks [51].
Patch & Embedding Extraction. Before analyzing images using transformer models, they
need to be converted into a D-dimensional sequence of smaller patch embeddings. While
non-overlapping patch extraction methods harm the neighboring local structures, the over-
lapping image splitting approach, where two adjacent patches share an area, helps preserve
and learn the neighboring information of the local area much better. In other words, in the
overlapping patch extraction approach, every given image with a resolution of (H, W) and
C channels, I ∈ RH×W×C, is dissected into N smaller image patches with a resolution of
(P, P) and C channels, Ip ∈ RP×P×C, using a sliding window of stride S. Each adjacent
patch shares an area of size P× (P− S).

N = NH ∗ NW =
⌊

H − P + S
S

⌋
∗
⌊

W − P + S
S

⌋
(1)

The resulting patches are then flattened and projected into a latent D-dimensional
embedding space E ∈ RN×D. Furthermore, to maintain positional information of each
patch, patch embeddings are integrated with position embeddings Epos ∈ R(N+1)×D. The
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resulting sequence of embedded patches, z, serves as an effective input sequence for the
transformer blocks [24].

z = [Icls ; E] + Epos, E ∈ RN×D , Epos ∈ R(N+1)×D (2)

3.2. Attention-Based Patch Selection

Other researchers have demonstrated that transformer models cannot accurately repre-
sent the importance level of input tokens, especially in higher layers, due to a lack of token
identifiability of the embeddings [52]. One solution to improve the transformer model’s
capability in capturing sensitive information is to pay more attention to discriminative
patches within the training and inference phases, as depicted in Figure 2. In addition,
attention-based mechanisms have demonstrated their strong capability in improving the
performance of traditional CNN-based deepfake detection models [18]. Therefore, inspired
by [53], a patch selection mechanism based on attention weights is l in this study. Generally,
for a transformer model with K attention heads and L layers, the input feature to the last
layer and attention weights of lth layer can be represented as (3) and (4), respectively.

ZL−1 =
[

Z0
L−1; Z1

L−1, Z2
L−1, . . . , ZN

L−1

]
(3)

al =
[
a0

l , a1
l , a2

l , · · · , aK
l
]

l ∈ 1, 2, · · · , L− 1
ai

l =
[

ai0
l ; ai1

l , ai2
l , · · · , aiN

l

]
i ∈ 0, 1, · · · , K

(4)

Input Image Attention Weights Attention-based Patch Selection

Figure 2. The attention-based patch selection module forces the transformer model to put more
weight on key patches, while dismissing less informative regions.

It is critically important to learn how information propagates through different layers
and ensure the correspondence of attention weights with input tokens. Therefore, the raw
attention weights are fused throughout the transformer model using matrix multiplication
as shown in (5). Note that afinal provides better discriminative information on selection of
top patches compared to single-layer raw attention weights, i.e., al as in (4) [53]. Therefore,
positional index of maximum attention weights corresponding to K attention heads in
afinal are calculated, i.e., A1, A2, · · · , AK and utilized to extract corresponding key tokens in
zL−1. Ultimately, the original input sequence in (3) is substituted with an updated sequence
consisting of the concatenation of key tokens corresponding to more informative regions
along with the classification token as (6). The new input sequence maintains the global
information of the input image. This process makes sure that the model pays specific
attention to the subtle traces of deepfakes while dismissing less discriminative regions like
the background area.

afinal =
L−1

∏
l=0

Softmax (al) (5)

ZL-1 =
[

Z0
L−1; ZA1

L−1, ZA2
L−1, · · · , ZAK

L−1

]
(6)
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3.3. Multi-Stream Transformer Block

As different deepfake generation techniques target different proportions and regions
of the facial area to be manipulated, ranging from small regions such as color mismatch in
lips to larger areas that extend throughout the image like face boundaries in face-swapping
approaches, it is critically important to identify those regions and extract discriminative
features in a scalable manner. Therefore, the capability to have a flexible field of view would
provide better information compared to a fixed field of view. While the majority of existing
literature focuses on only on a fixed field of view, i.e., patch size, this study proposes a multi-
level patch extraction and fusion mechanism that can leverage deepfake traces ranging from
more significant facial markers, e.g., eyes, nose, and lips, to more subtle details such as the
eye’s Iris. As depicted in Figure 1, the proposed multiscale deepfake detection framework
consists of two branches, including a low-level patch branch and a high-level patch branch,
each composed of three main components: patch/positional embedding, a transformer
block, and an attention-based patch selection module followed by a multiscale deepfake
classifier. The key difference between low-level branch and high-level branch is the size of
image patches and how the sequence patch embeddings are constructed from those patch
embeddings and positional embeddings. While the low-level transformer block learns from
larger numbers of extracted patches in smaller sizes, the high-level transformer block learns
more global features from larger image patches. These characteristics of low-level and
high-level transformer blocks enable them to efficiently extract local and global features,
respectively. For a given image, each branch’s extracted patch/positional embeddings
will be fed into the corresponding transformer block, i.e., the low-patch transformer block
or the high-patch transformer block. As can be seen in Figure 3, each transformer block
comprises three residual transformer blocks with three consecutive vision transformer
encoders. The intuition behind using the residual connection between adjacent transformer
blocks is to extract additional texture features.

Trans. Layer

Trans. Layer

Trans. Layer

RC

Trans. Layer

Trans. Layer

Trans. Layer

RC

APS APS

Trans. LayerTrans. Layer

MLP MLP

Figure 3. Each transformer block comprises several residual transformer blocks with three consecutive
re-attention transformer encoders. Top key patches are selected using APS before being fed into the
multi-scale deepfake detector (RC: Residual connection, and APS: Attention-based patch selection).

It has been shown that the feature maps tend to be identical in the top layers of deep
vision transformer models. This means that the self-attention mechanism fails to learn
effective concepts for representation learning. In other words, traditional multi-head
self-attention layers suffer from an attention collapse problem, which prevents the vision
transformer model from scaling up and hurts the model performance [54]. Unlike other vi-
sion transformer frameworks where each transformer encoder is composed of a multi-head
self-attention layer and feed-forward multilayer perceptron, the presented transformer
encoder in this study is composed of a re-attention mechanism along with a feed-forward
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multilayer perceptron. The re-attention mechanism re-generates the attention maps through
establishing cross-head communications in an attempt to increase the diversity of attention
maps at different layers. The intuition behind the re-attention mechanism is that, while sim-
ilarity between attention maps across different transformer blocks is high, their similarity
from different heads of the same transformer block is small. The general architecture of the
traditional transformer layer with the self-attention mechanism and the transformer layer
with the re-attention mechanism are demonstrated in Figure 4. Mathematical representation
of the traditional multi-head self attention layer and re-attention mechanism can be written
as (7) and (8), respectively [54]. Both methods generate a trainable associate memory with a
query Q and a pair of key K-value V pairs to an output via linearly transforming the input.

Attention (Q, K, V) = Softmax

(
QK>√

d

)
V (7)

Re−Attention(Q, K, V) = Norm

(
θ>
(

Softmax

(
QK>√

d

)))
V, (8)

here,
√

d and θ are a scaling factor based on the depth of the network and a learnable
transformation matrix, respectively, whereas Norm is a normalization function.

Feed Forward

Norm

Re-Attention

Norm

Patch Embedding

Linear + Loss

Pos. Embedding

Add

Add
Feed Forward

Norm

Self-Attention

Norm

Patch Embedding

Linear + Loss

Pos. Embedding

Add

Add

(a) (b)

Figure 4. Transformer layer with re-attention mechanism vs. self-attention approach [54]. While
traditional transformer layers with self-attention mechanisms suffer from the attention collapse
problem, the transformer layer with the re-attention mechanism has better scalability. (a) Transformer
layer with re-attention mechanism; (b) Transformer layer with self-attention mechanism.

3.4. Multi-Scale Deepfake Detector

Different deepfake generation techniques target different proportions and regions of
the facial area in the forgery process, ranging from small regions such as color mismatch
in lips to larger areas that extend throughout the image, like face boundaries in face-
swapping approaches. Therefore, key patches at different scales may contain plethora of
discriminative information that needs to be participated in the decision making process.
To do so, the multi-scale deepfake detector takes the following steps, as depicted in Figure 3:
(1) making initial prediction based on sequence output of each residual transformer blocks
at low/high-level transformer block, and (2) averaging over all prediction from different
scales to achieve final decision.
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4. Evaluation Settings

A detailed description of general evaluation settings, e.g., deepfake datasets, prepro-
cessing steps, implementation specifics, and evaluation metrics, are provided in this section.

4.1. Datasets

Early deepfake forensics benchmarks have significantly enhanced the community’s
awareness of deepfake threats and encouraged the development of different detection
tools. Nonetheless, they suffer from the following drawbacks (1) limited scenes in original
videos, (2) low-quality synthesized faces, (3) visible splicing boundaries, (4) color mismatch,
(5) visible parts of the original face, and (6) inconsistent synthesized face orientations [55,56].
On the other hand, as adversarial entities are constantly devising new techniques to
create more decisive deepfakes, forensics tools must be comprehensive and applicable
to challenging real-world applications. Therefore, every dataset selected for evaluation
should hold specific characteristics, including diversified real-world scenes, minimal visual
artifacts, super-realism and stealth, and covering a wide range of manipulation techniques.

To satisfy this requirement, DFDT’s performance is empirically examined against a
wide range of high-quality yet challenging benchmarks, including FaceForensics++ [49],
Celeb-DF (V2) [55] and WildDeepfake [56]. While FaceForensics++ consists in four different
types of facial forgery types, Celeb-DF (V2) and WildDeepfake are the most challenging
deepfake datasets in real-world scenarios. For each dataset, 80% of the video samples
are held out for training purposes, whereas the the rest are equally divided into test and
validation sets. Furthermore, the official test set of four other well-known benchmarks,
i.e., DeeperForensics [57], Facebook’s DeepFake Detection Challenge (DFDC) dataset [58],
and FaceShifter [33] are utilized to evaluate the cross-dataset generalization capability
of the DFDT. The purpose of this measurement is to demonstrate how well the model
would perform on unseen deepfake samples. A brief description of the utilized datasets
are presented as follows and associated statistical specifics are listed in Table 1.

Table 1. Statistical specifics of the three benchmarks utilized in this study. Holding diversified
real-world scenes, minimal visual artifacts, super-realistic & stealthy [55,56], and covering a wide
range of manipulation techniques [49] are key characteristics of the selected benchmarks.

Dataset
Statistics

Source
Videos Frames Train Test Val.

FaceForensics++ [49] Real 1000 509.9 K 800 100 100 YouTube
Deepfake 4000 1830.1 K 3200 400 400 DF

Celeb-DF (V2) [55] Real 590 (+300) 1 225.4 K 632 62 196 YouTube
Deepfake 5639 2116.8 K 4736 536 340 DF

WildDeepfake [56] Real 3805 680 K 3044 380 381 Internet
Deepfake 3509 500 K 2807 350 351 Internet

1 Celeb-real plus 300 additional videos downloaded from YouTube [55].

FaceForensics++. FaceForensics++ is one of the well-known deepfake detection datasets
consisting of four different types of manipulation techniques, including Deepfakes [27],
FaceSwap [59], Face2Face [3], and NeuralTextures [60]. It has 1000 real videos from YouTube
and corresponding deepfake videos generated using the aforementioned techniques.
Celeb-DF (V2). The Celeb-DF (V2) is composed of large-scale deepfake videos generated
using an improved synthesis process that swaps faces of individuals in target and source
videos. The Celeb-DF (V2) offers high visual quality scores and consists of 5639 deepfakes
corresponding to over 2 million frames.
WildDeepfake. Unlike FaceForensics++ and Celeb-DF (V2), the WildDeepfake dataset
comprises real-world videos for both original and fake videos gathered from the Internet.
They are not generated using AI-enabled methods, making them more challenging and
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closer to real-world scenarios. Furthermore, more diversified scenes, more individuals in
each scene, and several facial expressions are among other characteristics of this benchmark.

4.2. Implementation Specifics

A detailed description of the characteristics and technical specifics on the implementa-
tion of the proposed method is provided below.
Implementation. All models are implemented using the PyTorch machine learning library
and trained using Adam optimizer with a learning rate of 10−4 with ten times decay every
40 steps. The whole network is trained for 100 epochs.
Experimental Setup. Two Lambda Quad deep learning workstation machines were used
to conduct all experiments. Each of these machines is installed with Ubuntu 18.04 OS, along
with Intel Xeon E5-1650 v4 CPUs, 64 GB DDR4 RAM, 2TB SSD, 4TB HDD, and 4 NVIDIA
Titan-V GPUs.

4.3. Evaluation Metrics

The performance of the proposed deepfake detection method is evaluated on both
frame-level and video-level analysis. The results are reported using accuracy score (ACC)
and/or area under the receiver operating characteristic curve (AUC). These two evaluation
metrics commonly have been used in existing deepfake detection tasks [17,61,62]. Therefore,
to provide a better understanding and insight into the performance of the presented model,
the same metrics are employed in this study.

5. Results & Discussion

A comprehensive set of experiments is conducted to evaluate the proposed transformer-
based deepfake detection method’s performance from various perspectives. The aforemen-
tioned evaluation metrics, i.e., detection accuracy, AUC, and recall scores, are employed to
measure the performance of the DFDT. Most of the existing deepfake detection methods
conduct only frame-level analysis. However, it is critically important to conduct a video-
level examination since most deepfake data dissemination on the digital media are forged
videos. Therefore, all experiments in this study are performed on two levels, covering both
frame-level and video-level. A comprehensive set of experiments are designed to examine
the performance of the proposed approach from several aspects. First, the intra-dataset
performance of the DFDT is evaluated against three well-known benchmark datasets,
including Celeb-DF (V2), WildDeepfake, and FaceForensics++ [49,55,56].

Considering the critical role of the generalization property in deepfake detection
task, another set of experiments are designed to examine the cross-dataset generalization
capability of the DFDT. Third, the model’s performance is compared with that of existing
state-of-the-art deepfake detection methods. Finally, the impact of the different components
of the DFDT on its function is investigated through various ablation studies. Each of these
experiments is discussed in more detail in the following.

5.1. Intra-Dataset Evaluation

The main goal of this section is to investigate the learning capability of the model and
see how well it performs against datasets with different visual qualities and challenging
real-world deepfake datasets. Therefore, the model is trained and tested on a range of
deepfake detection datasets, spanning different levels of visual quality scores, namely
Celeb-DF (V2), WildDeepfake, and FaceForensics++ [49,55,56]. The findings of this
experiment demonstrated that DFDT performs significantly well on every challenging
dataset on all measured scores. Quantitative frame-level detection results are summarized
in Table 2. Particularly, in the frame-level setting the DFDT model has achieved 99.41%,
99.31%, and 81.35% on an accuracy score corresponding to FaceForensics++ (raw) [49],
Celeb-DF (V2) [55], and WildDeepfake [56], respectively. A similar trend is apparent
in video-level analysis, providing additional strong evidence regarding the outstanding
performance of the proposed transformer-based deepfake detection approach in intra-
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dataset settings. Furthermore, a quantitative comparison of the existing deepfake detection
methods with DFDT on every dataset is presented in Table 3. Note that the same evaluation
metrics as the literature are utilized for each dataset. It can be observed from Figure 5 that
the presented deepfake detection approach in this work outperforms existing methods
on all three benchmarks. This figure also reveals another critical point: although most
deepfake detection approaches perform well on relatively more straightforward datasets,
i.e., FaceForensics++, their performance is still far from perfect on more challenging and
real-world datasets, i.e., WildDeepfake.

Table 2. Quantitative detection results on different deepfake forensics benchmarks.

Dataset ↓ Metrics−→ ACC (%) AUC (%)

FaceForensics++
(LQ) 93.67 94.48
(HQ) 98.18 99.26
(Raw) 99.41 99.94

Celeb-DF (V2) 99.31 99.26

WildDeepfake 81.35 80.74

Table 3. A quantitative comparison of DFDT’s performance on every dataset with existing deepfake
detection approaches in frame-level analysis. Reported results are obtained from associated articles.
The same evaluation metric as the literature is used for each dataset to provide a fair comparison and
better insight into the model’s performance.

Methods ↓ FaceForensics++ Methods ↓ Celeb-DF (V2) Methods ↓ WideDeepfake
AUC (%) AUC (%) (AR %)

Two-stream [63] 70.1 Two-stream [63] 53.8 AlexNet [64] 60.37
Meso4 [35] 84.7 Meso4 [35] 54.8 VGG16 [65] 60.92
HeadPose [10] 47.3 HeadPose [10] 54.6 ResNetV2-50 [66] 63.99
FWA [12] 80.1 FWA [12] 56.9 ResNetV2-101 [66] 58.73
VA-MLP [34] 66.4 VA-MLP [34] 55.0 ResNetV2-152 [66] 59.33
Xception-raw [49] 99.7 Xception-c40 [49] 65.5 Inception-v2 [67] 62.12
Multi-task [68] 76.3 Multi-task [68] 54.3 MesoNet-1 [35] 60.51
Capsule [69] 96.6 Capsule [69] 57.5 MesoNet-4 [35] 64.47
DSP-FWA [12] 93 DSP-FWA [12] 64.6 MesoNet-inception [35] 66.03
TBRN [70] 93.2 TBRN [70] 73.4 XceptionNet [47] 69.25
SPSL [71] 96.94 Face X-ray [72] 80.5 ADDNet-2D [56] 76.25
F3-Net [73] 97.97 SPSL [71] 76.8 ADDNet-3D [56] 65.5
Video SE [46] 99.64 F3-Net [73] 65.1 ADD-Xception [18] 79.23
RNN [74] 83.10 PPA [75] 83.1

DefakeHop [6] 90.5
FakeCatcher [15] 91.5
ATS-DE [7] 97.8
ADD-ResNet [18] 98.3

DFDT (Ours) 99.7 DFDT (Ours) 99.2 DFDT (Ours) 81.3
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Figure 5. A quantitative compression of the DFDT approach with existing deepfake detection
methods on frame-level analysis. In line with the literature, AUC (%) is used to compare different
approaches on FaceForensics++ and Celeb-DF (V2) in (a,b), respectively, whereas ACC(%) is utilized
on WildDeepfake in (c). FaceForensics++ is a relatively easier benchmark than Celeb-DF (V2) and
WildDeepfake, which have high visual quality scores and are closer to challenging real-world scenes.

5.2. Cross-Dataset Generalization

While deepfake generation methods are constantly evolving and span across classical
and AI-driven approaches, it is critically important for any deepfake detection method to
have a high generalization capability to recognize unseen samples effectively. To measure
this property, in line with existing literature, the DFDT model is trained on FaceForen-
sics++ and then examined on other datasets, including Celeb-DF (V2), DeepFake Detection
Challenge, Faceshifter, and DeeperForensics. Table 4 presents the attained AUC scores for
video-level analysis. Comparison of the obtained results from this study and the existing
state-of-the-art methods demonstrates the excellent cross-dataset generalization capability
of the DFDT method. It can be observed from Figure 6 that the DFDT approach achieves
remarkable cross-data generalization. It surpasses other systems on Celeb-DF, Faceshifter,
and DFDC datasets with relatively large margins and achieves competitive scores on
DeeperForensics with the state-of-the-art method, i.e., LipForensics [17].

5.3. Cross-Manipulation Generalization

Another set of experiments is designed to understand the generalization capability of
the DFDT method to other fake videos created with different manipulation techniques on
the same source video while maintaining the pose and illumination variables intact. To do
so, DFDT is separately trained on three out of four deepfake generation methods on Face-
Forensics++ and tested on the remaining one. With the same rationale as in [17,68,70,76],
the experiments are performed using the high-quality subset of the FaceForensics++ dataset.
It is more likely to be closer to real-world deepfake videos, i.e., where videos are processed
with nearly lossless compression. The obtained results from this experiment, as shown in
Table 5, show that DFDT’s generalization property is well-extended to previously unseen
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forgery types. Specifically, it achieves higher or competitive cross-manipulation generaliza-
tion ability compared to existing approaches. As it can be observed in Figure 6, on average,
DFDT provides better or competitive scalability to unseen forgery types compared to
existing deepfake detection methods.

Table 4. Quantitative video-level cross-dataset generalization results (AUC (%)) on Celeb-DF
(V2), DeepFake Detection Challenge (DFDC), FaceShifter, and DeeperForensics when trained on
FaceForensics++. Reported results in rows 1–9 are from [17].

Methods ↓ Celeb-DF DFDC FaceShifter DeeperForensics Avg

Xception [49] 73.7 70.9 72 84.5 75.3
CNN-aug [39] 75.6 72.1 65.7 74.4 72
Patch-based [76] 69.6 65.6 57.8 81.8 68.7
Face X-Ray [72] 79.5 65.5 92.8 86.8 81.2
CNN-GRU [77] 69.8 68.9 80.8 74.1 73.4
Multi-task [68] 75.7 68.1 66 77.7 71.9
DSP-FWA [12] 69.5 67.3 65.5 50.2 63.1
Two-branch [70] 76.7 - - - -
LipForensics [17] 82.4 73.5 97.1 97.6 87.8

DFDT (Ours) 88.3 76.1 97.8 96.9 89.7

Table 5. Video-level cross-manipulation generalization results (AUC (%)) on each subset of Face-
Forensics++ dataset, including Deepfakes, FaceSwap, Face2Face, and NeuralTextures.

Methods ↓
Train DFDT on Other Three Subsets

Avg.
Deepfakes FaceSwap Face2Face NeuralTextures

Xception [49] 93.9 51.2 86.8 79.7 77.9
CNN-aug [39] 87.5 56.3 80.1 67.8 72.9
Patch-based [76] 94 60.5 87.3 84.8 81.7
Face X-ray [72] 99.5 93.2 94.5 92.5 94.9
CNN-GRU [77] 97.6 47.6 85.8 86.6 79.4
LipForensics [17] 99.7 90.1 99.7 99.1 97.1

DFDT (Ours) 99.8 93.1 99.6 99.2 97.9
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Figure 6. Examining the generalization capability of the presented end-to-end transformer-based
deepfake detection method. (a) shows the cross-dataset generalization capability of the DFDT,
whereas, the cross-manipulation generalization property on video-level is demonstrated in (b).
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5.4. Ablation Study

The main goal of this experiment is to examine the impact of different attention mech-
anisms on the performance of the proposed deepfake detection framework. Two different
attention mechanisms, i.e., self-attention and re-attention mechanisms are investigated in
this study. The re-attention mechanism re-generates the attention maps through establish-
ing cross-head communications in an attempt to increase the diversity of attention maps at
different layers.

Different experiments are conducted with and without such a mechanism to explore
the re-attention transformer layer’s impact on DFDT’s performance. The comparison
results on the AUC score are demonstrated in Figure 7. It can be observed from this figure
that without the re-attention mechanism the performance of the DFDT decreases by 1.7%
and 0.9% and 1.4% in FaceForensics++, Celeb-DF (V2), and WildDeepfake, respectively.

 75

 80

 85

 90

 95

 100

FaceForensics++ Celeb-DF (V2) WildDeepfake

A
U

C
 (

%
)

Dataset

Self-attention
Re-attention

Figure 7. Investigating the impact of transformer layer’s attention mechanism on the overall per-
formance of the DFDT. The re-attention mechanism has improved the performance of the deepfake
detection model compared to self-attention mechanism in transformer layer.

6. Conclusions

This work introduces DFDT, an end-to-end deepfake detection framework using vision
transformers. Unlike mainstream deepfake detection methods, which exploit CNNs as
their backbone, DFDT leverages the unique characteristics of vision transformer networks
to model local image features and global relationships of pixels simultaneously. DFDT’s
multi-stream design enables it to capture different scales of alterations effectively. Obtained
experimental results on several benchmarks demonstrate that DFDT achieves state-of-the-
art performances, achieving 99.41%, 99.31%, and 81.35% on FaceForensics++, Celeb-DF
(V2), and WildDeepfake, respectively. Furthermore, DFDT’s excellent cross-dataset &
cross-manipulation generalization provides additional strong evidence of its effectiveness.
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