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Abstract: Developing a robust machine-learning algorithm to detect hand motion is one of the
most challenging aspects of prosthetic hands and exoskeleton design. Machine-learning methods
that considered sex differences were used to identify and describe hand movement patterns in
healthy individuals. To this purpose, surface Electromyographic (sEMG) signals have been acquired
from muscles in the forearm and hand. The results of statistical analysis indicated that most of
the same muscle pairs in the right hand (females and males) showed significant differences during
the six hand movements. Time features were used an as input to machine-learning algorithms
for the recognition of six gestures. Specifically, two types of hand-gesture recognition methods
that considered sex differences(differentiating sex datasets and adding a sex label)were proposed
and applied to the k-nearest neighbor (k-NN), support vector machine (SVM) and artificial neural
network (ANN) algorithms for comparison. In addition, a t-test statistical analysis approach and
5-fold cross validation were used as complements to verify whether considering sex differences could
significantly improve classification performance. It was demonstrated that considering sex differences
can significantly improve classification performance. The ANN algorithm with the addition of a sex
label performed best in movement classification (98.4% accuracy). In the future, hand movement
recognition algorithms considering sex differences could be applied to control systems for prosthetic
hands or exoskeletons.

Keywords: hand movements; sex differences; machine learning; artificial neural network; exoskeletons;
surface electromyography (sEMG)

1. Introduction

The human hand is an amazingly precise and agile apparatus, used to perform actions
that range from delicate and intricate to forceful and strenuous [1]. Dysfunction and partial
loss of the hand could deeply impact many activities in daily life. Of the 18,500 upper
limb amputations that occur each year in the USA, 91% develop at the distal wrist [2,3].
Prosthetic devices are one kind of better method that could meet the challenges faced by
these people in their daily life, and very robust and flexible devices have not been made
available to the majority of people. Moreover, most of today’s devices can only perform
a small set of fixed hand-gestures that do not fully imitate the hands of human beings.
Currently, more advanced commercial prosthetic equipment typically performs hand and
grip positioning [4] with independent control of only one finger, such as the i-Limb Ultra
hand of Touch Bionics, the Michelangelo hand of Ottobock and the Bebionic 3 hand of RSL
Steeper. Approximately 100–200 out of 100,000 people worldwide are severely affected
by hand function after a stroke each year [5,6], with close to 80% developing upper limb
impairment [7]. The impairment in performing various tasks may affect the independence
of the patients and lead to long-term disability. Recent advances in rehabilitation of the
hand have shown that robot-assisted therapy can assist in restoring motor function [8–13].
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The exoskeleton device could support fingers and hands and also could provide direct
control of the hand joints. The functions of exoskeletons range from knob movements and
assistance of broad grasp, such as the Haptic-Knob and HWARD devices [14,15], to highly
specialized devices for controlling fingers and hand movements, such as the CyberGrasp,
the Hand-of-Hope [16], the HEXXOR [17], the Soft RoboticGlove [18], the Gloreha [19] and
the ReHand [20]. The control system of the prosthetic hand and exoskeleton can drive the
system response through their own electrical signals [21]. The electroencephalography
(EEG) and electromyography (EMG) signals both can directly reflect the patients’ control
and intention for movement. In particular, surface electromyography (sEMG) is valuable in
the study of prosthetic hands and assisted rehabilitation robots [22,23] due to its advantages
of simple acquisition and processing, wireless sensing, wearable electrodes and the ability
to give information on movement intention 50–100 ms before the actual movement [24].
For instance, the surface electrodes of two muscles on the forearm, the extensor digitorum
communis and the flexor digitorum superficialis, can be used to partly record the flexion
and extension intentions of the fingers [25]. However, in practical applications, sEMG
signals are highly dependent on the instrumentation, methods and procedures used in
the system. At the same time, the signal acquisition process generates different degrees of
artifacts and crosstalk [25].

Thus, robust and accurate machine learning methods need to be developed for de-
tecting hand movements to control exoskeletons and prosthetic hands in real time. In
previous studies, features or characteristics in the time domain, frequency domain and
time–frequency domain had been used to detect hand motion. However, the time-domain
features were considered to perform better than the frequency domain or time–frequency
domain features [26,27]. In the time domain, the most used features are: Mean Absolute
Value (MAV), Waveform Length (WL), Willison Amplitude (WAMP) and Zero-Crossing
(ZC) [28–30]. Common gestures were classified by Carl et al. [30], using only time-domain
feature values, and the accuracy can be up to 90.57%. Due to the high redundancy of
time-domain features, dimensionality reduction techniques, the principal component anal-
ysis, for example, have been widely applied to improve the results [27]. On the other
hand, multiple gesture pattern recognition algorithms based on surface EMG signals have
been proposed in previous studies. Ali et al. [31] used a 12-channelsEMG signal and
linear discriminant analysis (LDA) to classify 15 different finger movements with 11 time-
domain feature values as inputs for 10 non-amputees and 6 sub-elbow amputees with
an accuracy of more than 90%. Mohammadreza et al. [32] studied the application of the
support vector machine (SVM) algorithm in the classification of myoelectric control systems.
Ganesh et al. [27] used 11-channel EMG signals to classify 11 gestures with the help of
Independent Component Analysis (ICA) and Icasso clustering with 9 time-domain features
values as input with an accuracy of 96.6%. Ariyanto et al. [33] decoded five finger move-
ments of 11 healthy subjects for 16 time-domain feature signals using an artificial neural
network (ANN) with an accuracy of over 96%. In the process of gesture pattern recognition,
more than nine feature values per EMG signal are frequently used as input to the classifier.
The use of more feature values does improve the robustness of the classification, but it
also generates high redundancy and increases the computing time of the control system,
which in turn leads to a delay in the control system. Therefore, it is important to reduce the
number of feature values of the EMG by a dimensionality reduction without reducing the
robustness of the classification system.

In addition, although a variety of machine learning algorithms had been proposed
in previous studies, the three classifiers with the best classification results are k-Nearest
Neighbor (k-NN), Support Vector Machines (SVM) and Artificial Neural Networks (ANN).
Furthermore, although the results for finger movement classification appear promising,
many previous studies had only examined the use of EMG signal feature values as classifi-
cation inputs and had not considered the male and female muscle differences and sEMG
signals on the impact on classification results. Sex-related differences in kinematics [34]
and EMG [35] signals were evident in dynamic manual manipulation tasks of the upper
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limbs. In addition, Hunter et al. [36], comparing the similarity in muscle fatigue levels
between strength-matched adult males and females, found that EMG activity differed
between males and females, with a lower rate of increase in mean-corrected EMG in female
muscles compared to males. Kent-Braun et al. [37], examining age and gender differences in
human skeletal muscle responses during incremental isometric exercise, found that, during
exercise, Intracellular concentrations of Pi and H2PO4 increased more, and pH decreased
more in males compared to females. Manjuanth et al. [38] and Kambayashi et al. [39] also
demonstrated sex differences in muscle EMG and muscle oxygenation levels during upper
limb exercise, respectively. We speculated that taking sex differences into account in the
process of gestural pattern recognition may be a breakthrough in improving the robustness
and accuracy of pattern recognition.

In this study, two methods through machine learning were proposed to identify and
characterize six hand movements in healthy individuals using multichannel sEMG signals,
considering sex differences in muscles. For this purpose, the sEMG signals of subjects were
analyzed for feature extraction and statistical analysis (right hand muscles in males and
females). The k-NN, SVM and ANN classifiers were also applied to compare whether
considering sex differences in muscle significantly affects the classification results or not. It
was hypothesized that machine learning methods that considered sex differences in muscle
would have better classification results and higher average prediction accuracy.

2. Materials and Methods
2.1. Subjects

Twenty healthy right-handed volunteers (10 men, 10 females; age: 24.2 ± 2.8 years
old; BMI: 21.7 ± 2.8) were recruited and agreed to participate in the study; they reported
no visual impairment, neurological disease or upper limb musculoskeletal trauma. All
subjects’ handedness was determined by the Edinburgh Handedness Inventory. All experi-
mental protocols and methods were carried out in accordance with relevant guidelines and
regulations and were approved by the Bio medical Ethics Committee of Taiyuan University
of Technology. Subjects have been fully informed of the purpose and procedure of the
study and have signed a written informed consent form.

2.2. sEMG Signal Acquisition and Preprocessing

Figure 1 details the experimental protocol for acquiring sEMG signals in six different
hand gestures. On the basis of previous studies [21,40], 6 surface electrodes (Ag/AgCl)
were applied to 6 muscles of forearm and hand: abductor pollicis brevis (APB), flexor
digitorum superficials (FDS), brachioradialis (BRA), flexor carpi ulnaris (FCU), extensor
carpiradialis(EC) and extensor digitorum communis (EDC).The sEMG signals from six
muscles were simultaneously acquired and recorded by a Noraxon Ultium wireless EMG
system with a sampling frequency of 2000 Hz. During the experiment, the subjects were
asked to perform 20 repetitions for each of the 6 gestures, resting for 2–3 s between repeti-
tions and 5 min between gestures.
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Figure 1. Experimental procedure for the acquisition of sEMG signals. (a) Acquisition settings: each
person independently performs 6 hand-gestures(RM, TB, TI, FF, HC and FK). The 6 hand-gestures
represent the daily hand functions of using mouse: pressing the thumb button, pinching objects with
the thumb and index finger, closing five fingers and grasping cylindrical or spherical objects. (b) Raw
EMG signal of RM hand-gesture. (c) Time diagram of the experimental scheme.

For the acquisition and digitization of the signals, the commercial Noraxon Ultium
EMG Sensor and MyoResearch software were used. A previous characterization of the
sensor was required since the data-sheet did not provide detailed information of the
sensor specifications. The sEMG sensor had a 16-bit gain-adjustable analog output, 300 ms
fixed analog output delay, 1000 MΩ minimum input impedance and a maximum CMRR
of 100 dB. EMG signal was digitized by 2 kHz sampling frequency and 24-bit ADC. A
20~500 Hz (FIR) band-pass filter, a 50 ms RMS smoothing filter and rectifier were used
in the digital signal processing. The time domain feature values were calculated over an
analysis window of the muscle activation state. The analysis window was 250 ms (contains
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the entire cycle of muscle activation). For each analysis window, a feature set was computed,
and these features were provided to a pattern classifier. Once the EMG signal was filtered,
we computed four features in time domains: Integral Electromyographic(iEMG), Mean
Absolute Value(MAV), Input Contribution Rate(ICRi) and Variance(VAR), as detailed in
Table 1.

Table 1. Time features extracted from the EMG signal.

Domain Feature Formulation

Time Integral Electromyographic (iEMG)
∫ t+T

t |EMG(t)|∗dt

Time Mean Absolute Value (MAV) 1
N

N
∑

i=1
|xi|

Time Input Contribution Rate (ICRi)
∫ t+T

t |EMG(t)i|∗dt

∑N
i=1

∫ t+T
t |EMG(t)i|∗dt

Time Variance (VAR) 1
N−1

N
∑

i=1
x2

i

The feature set for the right hand side was considered to contain 24 (6× 4) features. For
this huge feature set, two methods were used to reduce the number of features: dimension-
ality reduction and feature selection. Firstly, the ICRi value is the percentage of the iEMG
value of each muscle in the sum of the iEMG values of the six muscles when the subject
was asked to perform a certain movement. The ICRi value can be calculated from the iEMG
therefore they can be excluded. Secondly, statistical analysis was performed using SPSS 23
(SPSS Inc., Chicago, IL, USA) to analyze the average correlation between the hand gestures
and the time features. Of the three remaining time-feature values, only a strong correlation
exists between iEMG and gestural patterns (APB: 0.622 **, FDS: 0.573 **, BRA: 0.488 **, FCU:
0.411 **, EC: 0.525 **, EDC: 0.475 **, ** represents p-value less than 0.01). Finally, it was
decided to select 6-channel iEMG as the input signal of hand-gestures recognition.

2.3. Statistical Analysis

The statistical analysis was performed using SPSS 23 (SPSS Inc., Chicago, IL, USA). A
one-way ANOVA was performed on iEMG values for the same movements and muscles
to detect statistically significant differences between females and males. Meanwhile, the
statistical significance of the three factors of sex, motion and muscle was determined by
a three-way ANOVA followed by a Tukey test. Variables with statistically significant
differences are denoted by * in this paper. The alpha level was set at 0.05.

2.4. Machine Learning for Gesture Discrimination

Machine learning method was used to recognize the sEMG signals of 6 different
gestures. When a subject repeats a gesture, the signal obtained is called an event. Each
subject had at least 20 events for each gesture, with an interval of 2–3 s. Overall, we had at
least 2400 events in the whole experiment and at least 400 events per gesture (20 subjects ×
At least 20 repetition).

From the feature space, three types of classification algorithms were trained for the
6 hand gestures of interest: k-NN, SVM and ANN. In these supervised algorithms (kNN,
SVM and ANN), 80% of the dataset was used as the training set of the algorithm for param-
eter tuning and model fitting; 20% of the dataset was used as the test set of the algorithm to
perform the evaluation of the prediction performance of the algorithm. In addition, 10-fold
cross validation and grid search methods were used to determine the optimal number of the
nearest neighbors for the k-NN classifier and the optimal combination of kernel functions
and penalty coefficients for the SVM classifier to achieve the optimal prediction of the
classifier. On the other hand, for the ANN classifier, we use different training algorithms
and activation functions varying between 2 and 3 hidden layers to achieve the optimal
prediction of the classifier.
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In particular, two types of machine learning algorithms that considered sex differences
in muscles were proposed. One approach is the distinction of sex datasets. The iEMG
values of surface EMG signals from 10 males and 10 females were divided into two different
datasets for model training and prediction. At the same time, the iEMG values of a total
of 10 subjects (5 males and 5 females) were randomly selected as the control dataset for
model training and prediction. Another approach was to add a sex label to the total
dataset. The sex label was added to the dataset and used as an additional feature value
for classification prediction. The iEMG values of surface EMG signals from 10 males and
10 females were used as an overall dataset, with the dataset in which the sex label was
added as the experimental group and the dataset in which the sex label was not added as
the control group. The dataset names and dataset descriptions can be found specifically in
Table 2. The optimal configurations of k-NN, SVM and ANN classifiers applied to different
datasets identified by the training set are shown in Tables 3 and 4.

Table 2. The dataset descriptions.

Method Dataset Name Dataset Description

Differentiating-the-sex dataset
Female iEMG values for 10 females
Male iEMG values for 10 males

Half_F&M iEMG values for 5 males and 5 females

Adding a sex labeling Sum iEMG values for 10 males and 10 females without sex label
Sum_Label iEMG values for 10 males and 10 females with sex label

Table 3. The optimal configurations of k-NN, SVM and ANN classifiers for differentiating sex datasets
obtained from the training set.

Classifier Dataset Neighbors Kernel Coefficient Neurons
Layer 1

Neurons
Layer 2

Neurons
Layer 3

Activation
Function

Learning
Rate (α)

KNN Female 2 - - - - - - -
KNN Male 4 - - - - - - -
KNN Half_F&M 3 - - - - - - -
SVM Female - Gaussian 9520 - - - - -
SVM Male - Gaussian 600 - - - - -
SVM Half_F&M - Gaussian 9520 - - - - -
ANN Female - - - 128 32 - Relu 10−4

ANN Male - - - 128 64 32 Relu 10−4

ANN Half_F&M - - - 128 64 32 Relu 10−4

Table 4. The optimal configurations of k-NN, SVM and ANN classifiers for adding a sex labeling
obtained from the training set.

Classifier Dataset Neighbors Kernel Coefficient Neurons
Layer 1

Neurons
Layer 2

Neurons
Layer 3

Activation
Function

Learning
Rate(α)

KNN Sum 4 - - - - - - -
KNN Sum_Label 3 - - - - - - -
SVM Sum - Gaussian 17,000 - - - - -
SVM Sum_Label - Gaussian 3000 - - - - -
ANN Sum - - - 128 64 32 Relu 10−4

ANN Sum_Label - - - 128 64 32 Relu 10−4

In addition, the method of cross validation (CV) was used to ensure the validity of the
results. CV is a method of dividing a dataset into two sets, a ‘training’ and a ‘sample’ set,
for supervised learning. k-fold CV starts by obtaining k subsets with the same number of
members from the dataset, with the members of each subset being shared randomly. In a
classification process, each subset is used as the training set and all other subsets are used as
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the sample set. Therefore, the resulting prediction accuracy is calculated by averaging the k
prediction accuracy rates. In this study, 30% of the dataset was used as the validation set
for the algorithm for parameter tuning, and 70% of the dataset was used as the test set for
the algorithm for 5-fold CV to assess prediction performance. The optimal configurations
of k-NN, SVM and ANN classifiers applied to the different datasets determined by the
validation set are shown in Tables 5 and 6. Meanwhile, the statistical analysis of t-test
was used to determine whether considering sex differences for different classifiers could
significantly improve the prediction accuracy.

Table 5. The optimal configurations of k-NN, SVM and ANN classifiers for differentiating sex datasets
obtained from the validation set.

Classifier Dataset Neighbors Kernel Coefficient Neurons
Layer 1

Neurons
Layer 2

Neurons
Layer 3

Activation
Function

Learning
Rate (α)

KNN Female 2 - - - - - - -
KNN Male 2 - - - - - - -
KNN Half_F&M 5 - - - - - - -
SVM Female - Gaussian 610 - - - - -
SVM Male - Gaussian 3850 - - - - -
SVM Half_F&M - Gaussian 17,000 - - - - -
ANN Female - - - 128 64 32 Relu 10−4

ANN Male - - - 128 64 32 Relu 10−4

ANN Half_F&M - - - 128 64 32 Relu 10−4

Table 6. The optimal configurations of k-NN, SVM and ANN classifiers for adding a sex labeling
obtained from the validation set.

Classifier Dataset Neighbors Kernel Coefficient Neurons
Layer 1

Neurons
Layer 2

Neurons
Layer 3

Activation
Function

Learning
Rate (α)

KNN Sum 6 - - - - - - -
KNN Sum_Label 4 - - - - - - -
SVM Sum - Gaussian 1000 - - - - -
SVM Sum_Label - Gaussian 590 - - - - -
ANN Sum - - - 128 64 32 Relu 10−4

ANN Sum_Label - - - 128 64 32 Relu 10−4

3. Results
3.1. Statistical Analysis of iEMG

Figure 2 shows the results of the statistical analysis of the iEMG values for six hand
gestures for the same muscle pair in the right hand of the female and male. The results of the
statistical analysis indicated that most of the same muscle pairs in the right hand (females
and males) showed significant differences when performing the six hand movements.

In the three hand movements RM, FF and FK, iEMG values for all six muscles were
significantly different between females and males. In the remaining three hand movements,
TB, TI and HC, iEMG values for more than four muscles were significantly different
between females and males. Furthermore, in all six hand movements, iEMG values were
lower in female muscles than in males (p < 0.05), except for APB in TB and FK. This result
proved that there is a significant difference in the right hand upper limb muscles between
males and females in performing the six gestures.
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Figure 2. The statistical analysis results of iEMG values for six hand movements of the same muscle
pair in the right hand of female and male. (A) RM; (B) TB; (C) TI; (D) FF; (E) HC; (F) FK. (*) represents
p < 0.05 between the right hand of the female and male. Error bars represent standard error.

Table 7 shows the statistical results from the three-way ANOVA for iEMG values
of sex, motion and muscle factors. The sex factor, motion factor and muscle factor are
named SEX, MT and MUSCLE respectively, in Table 5. The three-way ANOVA was run
on a sample of iEMG values to examine the effect of sex, motion and muscle. There was a
statistically significant three-way interaction between SEX, MT and MUSCLE (F = 15.504,
p = 0.000). When calculating the two-way ANOVA, the MT by SEX (F = 13.192, p = 0.000),
MT by MUSCLE (F = 594.537, p = 0.000) and SEX by MUSCLE (F = 50.537, p =0.000) are
statistically significant. Meanwhile, MT (F = 1710.542, p = 0.000), SEX (F = 412.699, p = 0.000)
and MUSCLE (F = 3374.416, p = 0.000) were all statistically significant at the time of the
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one-way ANOVA.The results of the Tukey’s HSD multiple comparison test are shown in
Appendix A (Tables A1 and A2). The application of Tukey’s HSD multiple comparison test
showed statistically significant differences between all groups, except between MT-5 and
MT-6. (A mean difference of “*” indicates a significant difference between groups).

Table 7. Tests of between-subject effects (dependent variable: iEMG value).

Source Type III Sum of
Squares df Mean Square F Sig.

Corrected Model a35,886,260,844.381 71 505,440,293.583 589.041 0.000
Intercept 28,887,146,915.346 1 28,887,146,915.346 33,665.138 0.000

MT 7,338,848,044.619 5 1,467,769,608.924 1710.542 0.000
SEX 354,125,990.425 1 354,125,990.425 412.699 0.000

MUSCLE 14,477,477,144.689 5 2,895,495,428.938 3374.416 0.000
MT ∗ SEX 56,599,280.705 5 11,319,856.141 13.192 0.000

MT ∗MUSCLE 12,753,904,623.649 25 510,156,184.946 594.537 0.000
SEX ∗MUSCLE 216,823,324.470 5 43,364,664.894 50.537 0.000

MT ∗ SEX ∗MUSCLE 332,584,288.419 25 13,303,371.537 15.504 0.000
Error 14,595,822,050.544 17,010 858,073.019

aR Squared = 0.711 (Adjusted R Squared = 0.710).

3.2. sEMG Signal-Based Movement Classification

Based on surface EMG signal events, iEMG eigenvalues were calculated for six chan-
nels in this paper. The 80% of the dataset events were used to train the classifiers (kNN,
SVM and ANN) so as to find the optimal parameters that minimize the error function
between the estimation and the real label of each event, as shown in Tables 3 and 4. The
20% of the dataset events were used to test the classifiers and evaluate its performance. In
turn, it was verified whether two machine learning algorithms that consider sex muscle
differences can improve prediction accuracy.

In this paper, the test set prediction confusion matrix (7 × 7) for different classifiers
was built separately for the method of differentiating datasets and the method of adding
sex labels, as shown in Figures 3 and 4. The confusion matrices contain the percentage of all
events correctly and incorrectly classified per hand-gesture, prediction accuracy, prediction
coverage of per hand-gesture and the total prediction accuracy of the classifier. As shown in
Figure 3, among the three classifiers (kNN, SVM and ANN), the sex-differentiated dataset
(Female, Male) was significantly better than the non-sex-differentiated dataset (Half_F&M)
in terms of prediction results. The ANN classifier had the best prediction results, with 98.3%
for Female, 97.0% for Male and 96.5% for Half_F&M in the different datasets. As illustrated
in Figure 4, in all three classifiers (kNN, SVM and ANN), the prediction results with the
addition of the sex label (Sum_Label) were significantly better than those without the
addition of the sex label (Sum). The best predictions were obtained for the ANN classifier,
with predictions of 98.4% for Sum_Label and 97.9% for Sum. Figure 4 shows the overall
prediction accuracy by aggregating the confusion matrices of the test sets in Figures 3 and 4.
For the kNN and SVM classifiers, the prediction accuracy of the differentiated dataset was
higher than that of adding a sex label, as shown in Figure 5. For the ANN classifier, the
prediction accuracy of adding a sex label was higher than that of differentiating-the-sex
dataset. Overall, machine learning algorithms that consider sex muscle differences can
improve the prediction accuracy of hand gesture recognition, with the ANN classifier
adding a sex label having the highest prediction accuracy of 98.4%.



Appl. Sci. 2022, 12, 2962 10 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 
Figure 3. Three classifiers (kNN, SVM and ANN) were applied to the confusion matrix (7 × 7) gen-
erated by differentiating-the-sex dataset method for test-set hand gesture recognition. Precision rep-
resents the prediction accuracy of each gesture, and Recall represents the predicted coverage of each 
gesture. Precision = ୘୔୘୔ା୊୔ × 100% Recall = ୘୔୘୔ା୊୒ × 100%where TP = true positive; FP = false posi-
tive; and FN = false negative. 

 
Figure 4. Three classifiers (kNN, SVM and ANN) were applied to the confusion matrix (7 × 7) gen-
erated by adding a sex labeling method for test-set hand gesture recognition. Precision represents 
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Figure 5. Total prediction accuracy statistics of three classifiers (kNN, SVM and ANN) applied to a
test set for hand gesture recognition for two methods considering sex differences: (A) differentiating-
the-sex dataset and (B) adding a sex labeling.

In addition, as indicated in Figure 5, by plotting the resultant histograms of prediction
accuracy for two types of machine learning algorithms, the prediction accuracy of the
classifier is significantly higher after differentiating between the sexes. For the kNN
classifier, the differentiating-the-sex dataset method had a higher prediction accuracy of
95.5% for females and 95.6% for males, while the adding a sex labeling method had a
prediction accuracy of 94%. For the SVM classifier, the prediction accuracy was similar
for both methods, with the differentiating-the-sex dataset method having a slightly higher
prediction accuracy of 96.3% for females and 93.9% for males, and the adding a sex labeling
method having a prediction accuracy of 94.2%. For the ANN classifier, the adding a sex
labeling method had a higher prediction accuracy of 98.4%, while the differentiating-the-sex
dataset method had a prediction accuracy of 95.5% for females and 95.6% for males.

Furthermore, the results of the 5-fold CV and t-test were shown in Figure 6. For
the method of sex dataset differentiation, the prediction accuracy for the Female dataset
was significantly higher than that for the Half_F&M dataset for all of the kNN, SVM and
ANN classifiers; the prediction accuracy for the Male dataset was significantly higher than
that for the Half_F&M dataset for both the SVM and ANN classifiers. For the method
of adding the sex label, the prediction accuracy of the kNN, SVM and ANN classifiers
with the addition of the sex label was significantly higher than that of the non-addition.
The prediction accuracy of the kNN classifier was significantly higher for the Female
dataset than for the Half_F&M dataset in the sex differentiation dataset, while the mean
prediction accuracy of the Male dataset was slightly higher than that of the Half_F&M
dataset. Thus, the statistical results show that for the kNN classifier the sex differentiation
dataset can significantly improve the prediction accuracy for females, while the prediction
accuracy improvement for males is smaller. Further, it can be concluded that the method
of sex differentiation dataset can improve the prediction accuracy on kNN classification.
Overall, machine learning algorithms that considered sex muscle differences were able to
significantly improve the prediction accuracy of gesture recognition, with ANN classifiers
having a higher prediction accuracy than kNN and SVM classifiers.
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Figure 6. Results of statistical analysis of the total prediction accuracy of three classifiers (kNN,
SVM and ANN) with 5-fold cross validation, applied to a hand gesture recognition test set of two
methods considering sex differences. (A) Differentiation of sex datasets. (B) Addition of a sex label.
(*) represents p < 0.05 between the total prediction accuracy of the two datasets. Error bars represent
standard errors.

4. Discussion

The hand gesture recognition algorithm is a promising pattern recognition algorithm,
based on the sEMG signal-considered sex differences. In this study, it was shown that
hand gesture recognition algorithms that consider sex differences have better classification
predictions than traditional hand gesture recognition algorithms based on sEMG signals.
These results have important implications for the development of robust machine learning
algorithms for hand gesture recognition and thus for clinical applications in prosthetic
hands and exoskeletons.

4.1. Pattern Recognition and Sex Differences

In this study, accuracy and classification timelines for assessing the performance of a
myoelectric pattern recognition control system were focused on. In total, four time-domain
features from the EMG signal of six muscles for 2400 events were extracted, which have
been widely used in the literature for motion classification. Considering the transmission
delay and hysteresis prevalent in myoelectric control systems, the four time-domain feature
values were filtered by dimensionality reduction based on correlation analysis. We selected
only the iEMG values for pattern classification to reduce the computation time of the
feature extraction phase and the complexity of the classification model. Previous studies
have reported hand movements recognition using a combination of multiple time-domain
feature values [30] and multiple time–frequency domains [41], special values with a high
number of channels and data redundancy of EMG signals. The average prediction accuracy
they obtained was only 90.3% and 97.23%. Furthermore, previous studies have presented
and demonstrated sex-related differences in kinematics [34] and EMG in dynamic [35]
manual manipulation tasks of the upper extremity. However, few studies have applied sex
factors to gesture pattern recognition based on EMG signals.

In this paper, considering sex differences in sEMG signals, the right upper limb
muscles of the male and female were shown to be significantly different when performing
the six gestures by statistical analysis (One-way ANOVA). Therefore, two types of machine
learning algorithms that considered muscle sex differences have been proposed in the
presented paper, the differentiation of sex datasets and the addition of a sex label. In
particular, only the iEMG feature values of six channels per event were extracted for hand
gesture recognition considering muscle sex differences. An average overall prediction
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accuracy of 98.4% was obtained for the ANN classifier with the addition of a sex label.
High prediction accuracy was obtained with fewer channels, fewer feature values and
consideration of muscle sex differences. In future studies, it may be interesting to consider
the EMG sex difference factor for the EMG control system design to achieve categorical
control of prosthetic and robotic hands.

4.2. Comparison of Classifiers

Although previous studies have proposed various classifiers that can be applied to
hand pose pattern recognition (the LDA classifier [42], the k-NN classifier [27], the SVM
classifier [32] and the ANN classifier [33]), few comparative studies have been conducted
on them. In this study, three classification algorithms (k-NN, SVM and ANN) were applied
separately for hand movement recognition. As shown in Figure 5B, for the overall dataset
with or without sex labeling, the classification effectiveness of the classifier is ANN, SVM
and kNN in descending order. However, for half of the overall dataset, as shown in
Figure 5A, the overall classification effectiveness of the classifier is ANN, kNN and SVM
in descending order. This also illustrates the claim that there is no optimal classifier but
only the most suitable one. Taken together, ANN classifiers have the best classification
prediction accuracy when comparing kNN and SVM classifiers. Deep learning (ANN)
outperforms the classification results of machine learning (kNN and SVM).

4.3. Algorithm Improvements

In this study, the method of differentiating the dataset according to sex, considering
the sex differences in muscle, made the sample size 1/2 of the overall sample. The greatly
reduced sample size was detrimental to the training prediction of SVM and ANN algo-
rithms, as indicated in Figure 5. A possible solution would be to select a further 20 subjects
(10 female, 10 male) for an identical set of experiments, expanding the original database.

Another method of hand movement recognition that considered muscle sex differences
was to add a sex label to the overall sample. Compared to the overall dataset without a sex
label (Sum), the prediction accuracy of the overall dataset with a sex label (Sum_Label) was
significantly improved. Specifically, the weighting of the sex label also has some effect on
the prediction results. Therefore, it may be interesting to adjust the weight of sex label and
expand the database in subsequent work.

In summary, the method of adding a sex label preserves all the sample data without
loss of data volume compared to the method of the differentiating-the-sex dataset. More-
over, the optimal overall prediction result for the method with the addition of a sex label
was 98.4% for the ANN classifier, while the optimal prediction result for the method with
a sex-specific dataset was for the ANN classifier, with female: 98.3% and male: 97%. The
ANN classifier hand movement recognition algorithm with the addition of a sex label was
found to be optimal, considering the utilisation of the sample size and the overall accuracy
of the prediction.

4.4. Cross Validation

In addition, the 5-fold cross validation in this study was used as a complementary way
to verify whether considering sex differences could improve the prediction performance;
see Figure 6. For the results of k-fold cross validation, both the average prediction accuracy
and the standard deviation of the prediction accuracy are evaluation indicators. Moreover,
this paper used statistical analysis with t-tests to further demonstrate that considering sex
differences can significantly improve the prediction accuracy of hand gesture recognition.

4.5. Limitations and Future Work

Although very good outcomes were obtained in this paper, there are a number of
limitations that should be addressed in future work. First, only time feature values were
considered for movement pattern recognition. Specifically, the frequency domain feature
values [41] can also be used for the pattern recognition of hand movements. However,



Appl. Sci. 2022, 12, 2962 14 of 17

in this paper, only time-domain feature values have been extracted for downscaling and
filtering. It may be interesting to see whether the addition of frequency domain feature
values for pattern recognition can improve the accuracy of predictions or not in future
studies. Another limitation is that this paper has only built offline learning algorithms.
In future work, real-time predictive learning [43,44] may be more relevant as applied to
prosthetic hand and exoskeleton control.

Overall, the main work of this study is that considering sex differences in muscles
would enhance the performance of hand movement pattern recognition systems compared
to current movement recognition systems that use sEMG signals as input to have a real
clinical and commercial impact.

5. Conclusions

In this study, machine learning algorithms were used for hand movement pattern
recognition and considered the effect of adding the sex factor on pattern recognition
performance. This research is important because it can be applied to the field of robot-
assisted rehabilitation and dexterous prosthetic hand control systems in order to drive hand
exoskeletons and prosthetic hands with sEMG signals. To begin with, this paper investigates
the statistical analysis of iEMG values calculated from sEMG signals recorded from six
muscles of 20 healthy subjects. The results of the statistical analysis indicate differences
between right-hand sEMG signals recorded from females and males. In addition, two
types of machine learning algorithms for hand gesture recognition that considered sex
differences (differentiating sex datasets and adding a sex label) were proposed based on
sex differences in sEMG signals of upper limb muscles. These two methods were applied
to kNN, SVM and ANN classifiers, demonstrating that taking sex differences into account
can improve the accuracy of hand movement recognition predictions. Compared to the
above classification algorithms, the ANN classification algorithm with the addition of a
sex label has the best classification performance, averaging a prediction accuracy of 98.4%.
However, while our data sample size was sufficient to demonstrate the performance of
the method, a larger database is necessary for application to clinical studies. In the future,
database expansion is a must to ensure robustness and stability of the system. Additionally,
our myoelectric control system will be applied to areas such as robotic exoskeletons and
human prostheses to achieve better rehabilitation medical results.
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Appendix A

Table A1. iEMG value and Tukey HSD for MT.

(I) MT (J) MT Mean Difference (I–J) Std. Error Sig.

MT-1

MT-2 −345.451 * 25.0213 0.000
MT-3 −836.644 * 24.4142 0.000
MT-4 −739.289 * 23.8941 0.000
MT-5 −1758.426 * 23.8241 0.000
MT-6 −1788.877 * 24.5963 0.000

MT-2

MT-1 345.451 * 25.0213 0.000
MT-3 −491.193 * 25.4514 0.000
MT-4 −393.838 * 24.9529 0.000
MT-5 −1412.975 * 24.8859 0.000
MT-6 −1443.426 * 25.6261 0.000

MT-3

MT-1 836.644 * 24.4142 0.000
MT-2 491.193 * 25.4514 0.000
MT-4 97.355 * 24.3441 0.001
MT-5 −921.782 * 24.2755 0.000
MT-6 −952.233 * 25.0337 0.000

MT-4

MT-1 739.289 * 23.8941 0.000
MT-2 393.838 * 24.9529 0.000
MT-3 −97.355 * 24.3441 0.001
MT-5 −1019.137 * 23.7523 0.000
MT-6 −1049.588 * 24.5267 0.000

MT-5

MT-1 1758.426 * 23.8241 0.000
MT-2 1412.975 * 24.8859 0.000
MT-3 921.782 * 24.2755 0.000
MT-4 1019.137 * 23.7523 0.000
MT-6 −30.451 24.4586 0.815

MT-6

MT-1 1788.877 * 24.5963 0.000
MT-2 1443.426 * 25.6261 0.000
MT-3 952.233 * 25.0337 0.000
MT-4 1049.588 * 24.5267 0.000
MT-5 30.451 24.4586 0.815

(*) represents a significant level of 0.05 for the Mean Difference (I–J).

Table A2. iEMG value and Tukey HSD for MUSCLE.

(I) MUSCLE (J) MUSCLE Mean Difference (I–J) Std. Error Sig.

MUSCLE-1

MUSCLE-2 2557.925 * 24.5518 0.000
MUSCLE-3 2649.010 * 24.5518 0.000
MUSCLE-4 2483.068 * 24.5518 0.000
MUSCLE-5 2101.673 * 24.5518 0.000
MUSCLE-6 1748.471 * 24.5518 0.000

MUSCLE-2

MUSCLE-1 −2557.925 * 24.5518 0.000
MUSCLE-3 91.085 * 24.5518 0.003
MUSCLE-4 −74.857 * 24.5518 0.028
MUSCLE-5 −456.252 * 24.5518 0.000
MUSCLE-6 −809.455 * 24.5518 0.000

MUSCLE-3

MUSCLE-1 −2649.010 * 24.5518 0.000
MUSCLE-2 −91.085 * 24.5518 0.003
MUSCLE-4 −165.942 * 24.5518 0.000
MUSCLE-5 −547.337 * 24.5518 0.000
MUSCLE-6 −900.540 * 24.5518 0.000
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Table A2. Cont.

(I) MUSCLE (J) MUSCLE Mean Difference (I–J) Std. Error Sig.

MUSCLE-4

MUSCLE-1 −2483.068 * 24.5518 0.000
MUSCLE-2 74.857 * 24.5518 0.028
MUSCLE-3 165.942 * 24.5518 0.000
MUSCLE-5 −381.395 * 24.5518 0.000
MUSCLE-6 −734.598 * 24.5518 0.000

MUSCLE-5

MUSCLE-1 −2101.673 * 24.5518 0.000
MUSCLE-2 456.252 * 24.5518 0.000
MUSCLE-3 547.337 * 24.5518 0.000
MUSCLE-4 381.395 * 24.5518 0.000
MUSCLE-6 −353.202 * 24.5518 0.000

MUSCLE-6

MUSCLE-1 −1748.471 * 24.5518 0.000
MUSCLE-2 809.455 * 24.5518 0.000
MUSCLE-3 900.540 * 24.5518 0.000
MUSCLE-4 734.598 * 24.5518 0.000
MUSCLE-5 353.202 * 24.5518 0.000

(*) represents a significant level of 0.05 for the Mean Difference (I–J).
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