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Abstract: Fault monitoring is often employed for the secure functioning of industrial systems. To
assess performance and enhance product quality, statistical process control (SPC) charts such as
Shewhart, CUSUM, and EWMA statistics have historically been utilized. When implemented to
multivariate procedures, unfortunately, such univariate control charts demonstrate low fault sensing
ability. Due to some limitations of univariate charts, numerous process monitoring techniques
dependent on multivariate statistical approaches such as principal component analysis (PCA) and
partial least squares (PLS) have been designed. Yet, in some challenging scenarios in industrial
chemical and biological processes with notably nonlinear properties, PCA works poorly, according to
its presumption that the dataset generally be linear. However, Kernel Principal Component Analysis
(KPCA) is a reliable and precise nonlinear process control methodology, but the interaction mainly
through upper control limits (UCLs) dependent on the Gaussian distribution may weaken its output.
This article introduces time-varying statistical error tracking through Kernel Principal Component
Analysis (KPCA) based on Generalized Likelihood Ratio statistics (GLR) using a sequential sampling
scheme named KPCA-SSGLR for nonlinear fault detection. The main issue of employing just T2

and Q statistic in KPCA is that they cannot correctly give practitioners the change point of the
system fault, preventing practitioners from diagnosing the issue. Based on this perspective, this
study attempts to incorporate KPCA with sequential sampling Generalized Likelihood Ratio (SSGLR)
for monitoring the nonlinear fault in multivariate systems. The KPCA is utilized for dimension
reduction, while the SSGLR is employed as a tracking statistic. The kernel density estimation (KDE)
was employed to approximate UCLs for variational system operation relying on KPCA. The testing
efficiency of the corresponding KPCA-KDE-SSGLR technique was then analyzed and competed
with KPCA and kernel locality preserving projection (KLPP), the UCLs of which were focused on
the Gaussian distribution. The purpose of this analysis is to enhance the development of KPCA-
KDE-SSGLR to accomplish future enhancements and to advance the practical use of the established
model by implementing the sequential sampling GLR approach. The fault monitoring efficiency is
demonstrated through different simulation scenarios, one utilizing synthetic data, the other from
the Tennessee Eastman technique, and lastly through a hot strip mill. The findings indicate the
applicability of the KPCA-KDE-based SSGLR system over the KLPP and KPCA-KDE methods by its
two T2 and Q charts to recognize the faults.

Keywords: generalized likelihood ratio chart; multivariate statistics; kernel principal component analysis;
kernel density estimation; fault detection and identification; kernel locality preserving projections

1. Introduction

Fault assessment serves a pivotal part in maintaining the consistency of manufacturing
as well as factory enrichment. Several factors are monitored in different working units
within newly constructed industrial process units, and these factors are captured at several
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time periods. The generated data points are strongly linked and contain a significant
amount of distortion. Relatively very less information can be retrieved in the absence of an
adequate mechanism for analyzing relevant inputs, and as a result, maintenance crews have
an inadequate grasp of the mechanism. Because of this misunderstanding, the operation
becomes unsteady. Statistical process control (SPC) provides the most potent mechanism for
detecting imperfection scope. Control charts are widely employed to describe modifications
in systems that can react to a degradation of the commodity’s output and track the function
of industrial output. Statistical process control (SPC) charts, notably Shewhart, CUSUM,
and EWMA, have been applied to analyze procedures and enrich product performance
in the previous era. Consequently, experiments have demonstrated that these approaches
are ineffective in identifying significant variations in the system. Establishing a valuable
detection framework for identifying means shifts is becoming a critical problem in a
simple operation.

A few of the drawbacks of a univariate control system are that specific parameters can
indeed be measured and manipulated for a singular process [1]. This provokes the elabo-
ration of multivariate quality control approaches to address these drawbacks by testing
multiple factors simultaneously [2]. Through multivariate methodology, professionals and
manufacturing firms that track complicated systems can regulate their system’s reliabil-
ity. The kernel principal component analysis (KPCA) has become one of the increasingly
prevalent nonlinear statistical techniques [3]. Statistical flaw detection methods focused
on hypothesis tests, such as the Generalized Likelihood Ratio chart (GLR), seem useful
calculation statistics for PCA and KPCA. The Generalized Likelihood Ratio (GLR) frame-
work is a statistical hypothesis method that utilizes the principle of maximum likelihood
estimation. Therefore, it is designed to have the optimal identification outcomes as it
significantly increases the detection accuracy with a specific false warning rate [4]. It is one
of the leading efficient strategies of univariate system identification. The GLR framework
presently used throughout research (attributed to residues derived from the PCA concept)
was developed to monitor the mean changes for numerous purposes, including ozone
research [5] and chemical process data [6].

The foremost aim of this article is to analyze the sequential sampling GLR chart’s
efficiency under multiple fault situations through a nonlinear system identification al-
gorithm that relies on KPCA-KDE. With such a short measurement of the SPE in future
space, the KDE framework is used to generate UCLs for PCA and KPCA. In a linear ap-
proach such as PCA, the estimation of the upper control limits (UCLs) is dependent on the
proposition that the state variables used in the measurements are Gaussian. Based on this
statement, the specific model can be extracted analytically. The UCLs can therefore also be
extracted analytically.

Moreover, numerous actual manufacturing systems are nonlinear. Although the origin
of such a system’s unpredictability may be considered Gaussian, the variables used in the
calculated results are non-Gaussian due to the intrinsic nonlinearities. Thus, the adoption
of UCLs for fault diagnosis depending on multivariate Gaussian assumptions in such
methods is improper, in addition to that it can contribute to imprecise outcomes.

Current GLR charts research assesses the output utilizing ARL1 measurements [4,7,8].
The next importance of this study is to investigate the SSGLR chart’s efficiency using all
necessary fault diagnosis conditions: false detection rate (FDR), false alarm rate (FAR),
and ARL1. Ref. [9] implemented a linear PCA-based GLR to identify faults, such that
the dataset will be first designed using a linear PCA framework. Afterward, the flaws
are identified through GLR statistics. The drawback of PCA is that it is not applicable
in nonlinear situations and suggests that the interaction amongst variables is linear, thus
might not necessarily be the most acceptable measurement form.

In conclusion, several chemical mechanisms, such as fractional distillation, are typ-
ically represented as nonlinear systems. Numerous measures have been developed [10]
(Choi et al., [11] and Nguyen and Sheriff et al. [12]) to fix nonlinear PCA extensions and
to produce virtuous results across linear models. KPCA is amongst the most renowned
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nonlinear mathematical techniques [11] (Schoellkopf et al. (1997) [3], Hoffmann [13], and
Fan et al. [14]) which is a tool for performing a nonlinear type of principal component
analysis that can effectively measure main components in elevated structures linked to
input space through specific nonlinear modeling and assessment. As a result, in this study,
we tackle the problem of nonlinear fault identification by first modeling the data with the
KPCA method and then detecting the faults with SSGLR. In reality, the KPCA model has
proved to be effective in obtaining realistic principal components of a collection of the data
and dealing with variable nonlinearity. By reflecting the source data onto a space with
much fewer dimensions, the KPCA model reduces the complexity of the data. The KPCA
is employed to build the model and discover nonlinear combinations of parameters that
characterize the significant patterns in a dataset, while the SSGLR is employed to find flaws.
Both are used to enhance the flaw detection method.

The rest of the article is designed as follows. In Section 2, an overview of the KPCA-
KDE procedure is provided, accompanied by an explanation of the two primary identifica-
tion metrics, T2 and Q, which are typically utilized with the KPCA for fault identification.
The Generalized Likelihood Ratio (GLR) statistics using a sequential sampling scheme
developed to identify faults are then discussed in Section 3. Section 4 sets out the KPCA-
KDE-based SSGLR method of analysis and highlights how it can be applied to monitor
online procedures. Section 5 provides an illustration of synthetic data assessing the efficacy
of KPCA-KDE-SSGLR statistics under specific fault situations. Section 6 is designed to
analyze and compare the effectiveness of KPCA-KDE-SSGLR and KLPP. Implementation
of tracking initiatives to the TE benchmarking method is described in Section 7. Lastly, the
conclusions grasped from the research are stated in Section 8.

Literature Review

Synthetic nonlinear data can be simulated through the following. In 1924, She-
whart [15] initially introduced an X-chart to track output metrics online in an attempt
to identify deficiencies in the system in the right direction. However, only recent obser-
vations were taken into account in the X-chart. Hence, it is inefficient to identify minor
and medium mean changes in the procedure. The Cumulative Sum (CUSUM) defined
by Page [16] and the Exponentially Weighted Moving Average (EWMA) suggested by
Roberts [17] take into consideration previous results to detect slight mean changes in the
procedure. As a result, investigations have shown that both techniques are inadequate at
detecting substantial system alterations. This prompts the development of multivariate
quality control systems to solve these flaws by concurrently assessing numerous aspects [2].
Experts and industrial organizations that monitor complex processes can control their
system’s dependability using the multivariate approach. Chi-square and Hotelling T2

charts [18] are the most prominent multivariate control charts. In particular, these models
are an expansion of the univariate Shewhart-type control chart. Thus, they are generally
prone to minor and medium system changes.

Healy [19] suggested a multivariate CUSUM (MCUSUM) monitoring plan resulting
through a Sequential Probability Ratio Test (SPRT). The MCUSUM successfully identifies
changes all along the pre-specific path defined by the out-of-control mean curve. This indi-
cates that MCUSUM may be unsuccessful if the system requires turning in an unexpected
direction. Lowery et al. [20] described a multivariate EWMA (MEWMA) process chart that
has been irreducible in the context of the change. Its efficiency has been perceived to be at a
minimum as high as MCUSUM. Wang and Reynold [21] further developed a multivariate
GLR monitoring model and demonstrated that the MGLR chart may provide significantly
superior total efficiency in predicting a considerable variation of changes. The other option
of advancing performance is using the GLR (Generalized Likelihood Ratio) control charts
based on Sequential Probability Ratio measures. The literature has too many GLR statistic
discoveries to track: Bernoulli/binomial models and procedures, GLR charts for geometric
observation, auto-correlated structures, and univariate standard processes. For reference,
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see Xu et al. [22], Huang et al. [7], Shahzad and Huang [8], Reynolds and Lou [4], Apley
and Shi [23], and Lai [24].

There seems to be a growing concern in multivariate statistical process monitoring
(MSPM) across both scientific and corporate systems. Specific renowned data-focused fault
analysis approaches have been established comprising independent component analysis
(ICA) [25], principal component analysis (PCA), partial least squares (PLS) [26,27], and
canonical variate analysis (CVA) [28].

PCA-based instability analysis and evaluation is an appealing factual domain and
has received substantial interest among numerous researchers in the disciplines (Yoon and
MacGregor [29]). PCA (Jackson [30]) is a multivariate statistical process control (MSPC)
methodology used to diagnose irregularities in the evaluation of heavily reliant factors.
The PCA’s central research goal is to quantify observations and factors. It also minimizes
the uncertainty of original data (X) by moving data selection to a restricted dataset and
compiling specific parameters to protect many current dataset descriptions.

The PCA concept describes a dataset (consisting of many system factors) using a
smaller range of preserved variables identified as the key elements representing much
of the model uncertainties. This improves computing performance, reducing the time to
locate and transmit flaws. These properties make it a prominent option for surveillance of
the manufacturing processes (Chiang et al. [31]). Two operational measurements are occa-
sionally employed with the PCA concept; for details, see Sheriff et al. [9]. The Hotelling T2

metric tracks irregularities in the PCA framework, and the Q statistic evaluates fluctuations
in the residual storage provided by the PCA method. Such charts were primarily expended
to distinguish changes in variance, mean, and concurrently mean/variance tracking for the
control chart.

In addition to that, PCA is a linear strategy and thus would not recognize or identify
any nonlinearity involved in several other actual engineering processes [10]. Its output
is thus reduced once added to systems that show significant nonlinear component asso-
ciations. Kramer [32] established a nonlinear PCA approach focused on auto-associative
neural networks to solve the variational issue. Consequently, the framework suggested
by Kramer is complicated to practice since it has multiple phases. In addition, it would be
problematic to calculate the number of neural networks. Dong and McAvoy [33] suggested
a nonlinear PCA integrating the critical function and the neural network (NN). Nonlinear
PCA approaches have been further suggested by Jia et al., Cheng and Chiu, and Kruger
et al. [5,6,34]. However, these kinds of approaches are dependent on NNs, which demand
a platform for a nonlinear computation issue.

Scholkopf et al. [35] suggested that the Kernel PCA (KPCA) be a nonlinear extension
of the PCA. KPCA could effectively approximate PCs in elevated domains using combined
operations, including nonlinear kernel functions. The fundamental concept of KPCA is to
first transform the source space to a feature space through variational modeling and after-
ward calculate the PCs within the feature space. For any procedure that can be represented
purely in contexts of dot products (for example, despite the explicit practice of the variables
themselves), such kernel approach allows the creation of various nonlinear variants of the
existing procedure (Christianini and Shawe-Taylor) [36]. Compared to many nonlinear
techniques, the primary benefit of KPCA is that it does not entail nonlinear virtualization
(Scholkopf et al. [28]); it involves just linear algebra, rendering it as straightforward as tradi-
tional PCA. Like the PCA, the Hotelling T2 metrics and the Q statistics (as well recognized
as squared prediction error, SPE) are two calculation indicators used by the KPCA. The T2

statement is a measurement of the alteration obtained in the reference frame, and hence the
Q factor is employed to track the variability in the residual domain.

2. Kernel Principal Component Analysis (KPCA)

Kernel Principal Components Analysis is a nonlinear PCA extension that comprises
observations to a more enormous (potentially infinite) dimensional feature structure using
a nonlinear array and then measuring dot products in a feature space. As an approximation
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is used in future space, the KPCA is retrieved. KPCA is a kind of kernel-based computing
system. KPCA’s central premise is, therefore, logical and popular. The fundamental premise
of KPCA is to allocate the source values x to the function feature space, first employing a
nonlinear projection and afterward implementing a regular PCA in future space.

A dataset matrix was identified by n measurements representing m variables, so that
the matrix X is defined as:

X = (x1, x2, x3 . . . xn) =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


The covariance matrix in the domain of a function is then determined as:

CF = 1/n∑n
i=1(Φ(xi), Φ(xi)) (1)

where Φ is the nonlinear mapping due to which the the measured inputs are extended
into hyper dimensional feature space and Φ(xi) is anticipated to take unit variance and
zero mean. To diagonalize the covariance matrix, we illustrate the eigenvalue hitch in the
feature space as:

λA = CF A (2)

where λ is an eigenvalue of CF and A is the consequent eigenvector (λ ≥ 0, A 6= 0), where
A = ∑n

j=1 Ai

〈
Φ
(

xj
)〉

.
The eigenvectors of CF are specified by:

1
n ∑n

j=1 Ai〈Φ(xk), ∑n
i=1Φ(xi)〉

〈
Φ(xi), Φ

(
xj
)〉

(3)

Rather than conducting eigenvalue reduction explicitly on CF in Equation (1) and fig-
uring eigenvalue and principal components (PCs), we employ the kernel trick by describing
the n × n (kernel) matrix as follows:

[K]ij = Kij = (Φ(xi), Φ(xi)) = k
(
xixj

)
(4)

For all i, j = 1, 2, . . . , n, presenting the kernel function of the system k(x, y) = 〈φ(x), φ(y)〉
in Equation (4) allows the computation of the inner products

〈
φ(xi), φ

(
xj
)〉

in the feature
space as a function of the response statistics. This prohibits the necessity to conduct the
nonlinear mappings and the explicit computation of inner products in the feature space
(Schoellkopf et al., 1998) [35]. Employing the kernel matrix, we revise Equation (4) as
λmKα = K2α for k = 1, 2, . . . , n, where it is comparable to the eigenvalue problem as
λmα = Kα.

The kernel matrix can be mean centered as follows:

Kct = K−UK−KU + UKU (5)

where U is an n × n matrix in which each integral is equivalent to 1
n , and K is the kernel

trick. Eigen breakdown of Kct is identical to the output of PCA in RF. This totals to
determining the eigenvalue problem, which produces eigenvectors α1 , α2 , . . . αn and the
consequent eigenvalues λ1 ≥ λ2 . . . λn.

Meanwhile, the kernel matrix Kct is symmetric, and the resulting principal components
are orthonormal, such as: 〈

αi, αj
〉
= δi,j (6)

where δi,j = (i, j = 1, 2 . . . m) signifies the Dirac delta function.
The score vectors of the nonlinear mapping of mean centered training observations

xj , i = 1 , 2 , . . . , n, can then be obtained by projecting φ
(
xj
)

onto the principal com-
ponent space spanned by the eigenvectors αk , k = 1, . . . , m, and applying the kernel
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trick, so we can obtain the below equation, and by using this equation we can obtain the
nonlinear components.

zk,j = ∑n
i=1αk,i[Kct]i,j (7)

To determine how many PCs to retain, different procedures may be needed, such as the
scree map, the likelihood model [37], cumulative percent variability (CPV), parallel estima-
tion, concurrent checks, re-sampling, and characteristic likelihood (Jolliffe (2002) [38]). CPV
is widely used, as it is easy to measure and frequently offers consistent effects. The series
of key components to be retained must be persistently centered on the lowest collection of
functional variables required to fulfill the CPV. Taking into consideration that 95% of the
overall percentage variance (CPV) is sustained:

CPV(k) =
∑k

i=1 λi

trace(Σ)
= 0.95 (8)

The innovative data matrix can promptly be signified as X = XP̂P̂T + e = X̂ + e,
with X̂ denoting the expected data operating only the reserved principal components and
e the model residual given by X(Iki − P̂P̂T).

Monitoring Metrics with KDE Control Limits

Commonly, the KPCA-based fault recognition utilizes two statistics, the Hotelling
T2 statistics, and the SPE or the Q statistics. The Q metric is mainly preferred for fault
identification over the T2 graph since it is highly resilient to minor flaws. The T2 statistic
is described by the Mahalanobis interval, while the Euclidean distance characterizes the
Q statistic.

The Hotelling T2 of the jth samples in the feature space used for KPCA fault exposure
is calculated as:

T2
j = XTC−1X (9)

where X =
[
z1,j , . . . , zq,j

]
denotes the PC scores of the jth samples, q is the total of PCs

retained and C−1 signifies the inverse of the matrix of eigenvalues consequent to the
retained PCs.

The T2 threshold can also be anticipated from its probability density function (PDF).
Kernel density estimation is a strategy for incorporating a dataset with an appropriate
streamlined PDF from several random measurements. It is popularly utilized for approxi-
mating PDFs, particularly for univariate random data [39]. The KDE is relevant to GLR, T2,
and Q statistics, since they are all univariate, though its framework exemplified by these
statistics is multivariate.

Control bounds for evaluating statistics can be computed from their corresponding
PDF projections. ∫ T2

α

−∞
g
(

T2
)

dT2 = α (10)

Once all scores are of Gaussian distribution, the control bound is related to a signifi-
cance level, α, and T2

α can be originated from F-distribution as:

T2
α ∼

q(n− 1)
n− q

Fq,n−q,α (11)

where F(q, n− q, a) is the value of the F-distribution relating to a significance level α, with
degrees of freedom q and n − q, for both the numerator and denominator.

In addition, a basic calculation of the Q-statistic has been suggested [10]. For the
jth samples:

Qj = ∑n
i=1z2

i,j −∑
q
i=1z2

i,j (12)
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For testing data, an error is confirmed when the limit rate is disrupted as follows:

Qα > C
√

2ϕ2

(
1− 2ϕ1 ϕ3

3ϕ2
2

)
+ 1 +

ϕ2

ϕ2
1

(
1− 2ϕ1 ϕ3

3ϕ2
2

)(
2ϕ1 ϕ3

3ϕ2
2

)
(13)

where, ϕi = ∑i
j=l+1 λi

j , i = 1, 2, 3 . . . and C is the value achieved from the normal
distribution of 95% significance.

The KDE control limit is as follows:∫ Qα

−∞
g(Q)dQ = α (14)

3. SSGLR-Based Monitoring

Hypothesis assessment procedures such as the Generalized Likelihood Ratio (GLR)
have acknowledged significant consideration in earlier research [9,12]. Inference method-
ological processes utilize precise mathematical assumptions to decide whether the data
are compatible with or divergent from a prescribed mechanism. The null hypothesis
matches a negative distortion, termed an alternate concept. For efficiency evaluation meth-
ods, the shortcomings of contingent and self-reliant variable assessments are explicitly
defined using examples from standard and irrational operating techniques [1]. The Gen-
eralized Probability Ratio model can be utilized for this reason and is discussed in the
following section.

The Generalized Likelihood Ratio (GLR) procedure with sequential sampling identifies
replacement theories based on parameters that support infinite values and is commonly
alluded to as a composite theory. The sequential sampling considered here refers to the
situation in which observations are taken one by one. A reasonable quality estimation
method that uses the Maximum Likelihood Estimates (MLEs) concept has been used to
estimate the appropriate criteria. The SSGLR chart follows the idea of maximum probability
projections to optimize the identification frequency with a set untrue warning level. The
SSGLR mechanism is carried out in the subsequent section:

1. The zero and alternative assumptions are established, and their corresponding proba-
bility features are obtained.

2. All uncertain dimensions in the alternative hypothesis are calculated from the test
results through the MLE.

3. The log probability proportion of alternative to null hypotheses is then estimated, and its
maximal probability is determined that significantly increases the measurement distance.

Consider at sampling point k we have the data X1, . . . Xk, where i = 1, 2, . . . k− 1,
Xi = Xi1, . . . Xini and there are l observations in sample k. The null assumption once there
is no alteration in the mean can be interpreted as:

L(∞, µ0|X1, X2, . . . , Xk) =
(

2πδ2
0

)− Nk,l
2 exp

[
− 1

2δ2
0

k−1

∑
i=1

ni

∑
j=1

(
Xij − µ0

)2
+

l

∑
j=1

(
Xkj − µ0

)2
]

Assume that a distinct source produces an abrupt change in the procedure amongst
the observation τ and τ + 1 then parameter µ moves to µ1 (µ1 6= µ0) from µ0, i.e., samples
Xτ+1, Xτ+2, ... are strained from a procedure that is out-of-control with the parameter µ1.
Then, the likelihood function can be presented as follows:

L(τ, µ1|X1, X2, . . . , Xk) =
(

2πδ2
0

) Nk,l
2 exp

[
− 1

2δ2
0

τ

∑
i=1

ni

∑
j=1

(
Xij − µ0

)2
+

k−1

∑
i=τ+1

ni

∑
j=1

(
Xij − µ1

)2
+

l

∑
j=1

(
Xkj − µ1

)2
]
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We can attain the maximum likelihood estimation of µ1, i.e., µ̂1, through the maxi-
mization of L(τ, µ1|X1, X2, . . . , Xk), which is:

µ̂1,τ,k =
1

N1,k,l,τ
∑k−1

i=τ+1∑ni
j=1Xij + ∑l

j=1Xkj (15)

Subsequently, a log likelihood ratio statistic for defining whether there has been a
change in the procedure mean in the previous k trials is:

Rk,l = ln max
0≤τ≤k

L(τ, µ̂1|X1, X2, . . . , Xk)

L(µ0|X1, X2, . . . , Xk)

Rk,l = max
0≤τ≤k

N1,k,l,τ

2δ2
0

(µ̂1,k,l,τ − µ0)
2

In calculating Rk,l , we must track all previous data points from samples 1 to k in
addition to finding the maximum, which entails large computation when k is big. A window
of size m pertaining to the maximization in Rk,l is occupied only over the past m samples.

The SSGLR statistic can be then expressed as:

Rk,l,m = max
max (0,k−m)

N1,k,l,τ

2δ2
0

(µ̂1,k,l,τ − µ0)
2 (16)

The SSGLR control chart decision rule calls for specifying two limits, g and h, which
satisfy the condition 0 < g < h, where g is the limit that tells when it is time to stop
sampling at the present point of sampling while h is the control limit. This is how the
decision rule is defined. Taking k to be the current sampling point and l as the present sum
of observations at the specified sampling point:

A. Evaluate Rmkl .
B. If Rmkl ≤ g, it means that at the sampling point k, you will stop sampling and then

wait until you reach sampling point k+1 to re-sample. Therefore, the sample size at
the k sampling point here is now nk = l.

C. If g < Rmkl < h, we have two options that we need to follow, which include:

(i) Taking the subsequent observation at the sampling point k;
(ii) Moving to step A, which is given above with the present sum of observations

at the k sampling point provided as l = l +1.

D. In case Rmkl > h, it signals that the process vector mean µ has experienced a change.

You can choose the control chart parameters h and g to meet the in-control performance
requirements that have been specified.

If Ŕk,m,l falls outside the interval
[

h́GLRδ0, ǵGLRδ0

]
, then the chart will trigger a signal.

The KDE control limit can be obtained by using the equation below:

∫ h́GLRδ0

−∞
g
(

Ŕk,m,l
)
dŔk,m,l = α and

∫ ǵGLRδ0

−∞
g
(

Ŕk,m,l
)
dŔk,m,l = α (17)

4. Fault Monitoring Using KPCA-KDE-SSGLR

This research does establish a detection technique to identify a diverse variety of
process shifts for nonlinear multivariate frameworks. Significantly, the suggested approach
combined KPCA-KDE and GLR statistics using sequential sampling. Figure 1 shows the
flow chart of the KPCA-KDE-SSGLR procedure. The KPCA is considered to minimize
the dimensionality in the procedure, and the SSGLR is being used as a tracking statistic.
The current technique consists of two stages, stage I for offline training and stage II for
online fault detection. Step 1 uses standard data to create a measurement structure and
approximate the related parameters. For Step 2, new data obtained through the virtual
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system are being used to determine the system’s state; details of the two phases are
given below.

Figure 1. Flowchart of KPCA-KDE-SSGLR monitoring.

4.1. Offline Model Development

1. Collect the results during normal operating conditions (NOC) and level the dataset
utilizing the mean and standard deviation of the sample collection sections describing
different variables.
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2. Pick the type of kernel structure to be used and specify the kernel parameter.
3. Develop and cluster the kernel module of the NOC dataset utilizing Equation (5).
4. Attain eigenvalues and their consistent eigenvectors then reorganize in a descendent

direction.
5. Orthonormalize the eigenvectors employing Equation (6).
6. Achieve nonlinear modules by applying Equation (7).
7. Calculate the optimum number of principal components to be utilized by CPV.
8. Calculate monitoring indices Ŕk,m,l , T2 and Q grounded on the kernelized NOC data

through Equations (9), (12) and (16).
9. Accomplish control limits of Ŕk,m, T2 and Q by Equations (10), (14) and (17).

4.2. Online Monitoring

1. Attain trial sample §tt and stabilize utilizing the mean and standard deviation stan-
dards exercised in step 1 of the offline stage.

2. Calculate the kernel vector of the trial sample utilizing the below equation:

[ktt] = k(§i , §tt) (18)

3. Center the kernel vector as per the equation given below:

Kctt = Ktt − u1K−KttU + u1KU (19)

4. Obtain the principal component of the test sample from by utilizing the equation:

ztt,k = ∑n
i=1αk,i[Kctt]i (20)

5. Attain the T2 and Q of the test sample with their individual control limits acquired in
the model improvement phase.

6. Analyze the charting statistics Ŕk,m,l .
7. If Ŕk,m,l > UCLR then it specifies an unstable condition occurring in the procedure and

the expert must instantaneously find out the root causes and resolve it.
8. The process is in-control if both T2 and Q are smaller than their scrutinizing values. If

either T2 or Q surpasses its threshold, the procedure is out-of-control and consequently,
fault identification is conceded to distinguish the basis of the fault.

To appropriately assess the outcomes [12,40] the fault detection rate (FDR) and false
alarm rate (FAR) are described as follows:

FDR =
AN

TAN
and FAR =

NN
TNN

Whenever the procedure is normal, NN is the number of defective instances which
are assessed. The cumulative number of normal trials is TNN, the amount of faulty data is
AN when the procedure is faulty, and the total number of anomalous samples is TAN.

5. Synthetic Data Example

Through this illustration, the superior SSGLR malfunction prevention methodology’s
efficiency-focused KPCA-KDE is evaluated through recognizing faults in the process. The
KPCA-KDE-based SSGLR model is assessed in magnitude unity mean shift condition,
using two illustrative examples: the modeled simulated data collection [40,41] and the
Tennessee Eastman Process benchmark (TEP). Three fault detection metrics are used to
measure efficiency, fault detection rate (FDR), false alarm rate (FAR), and average run
length (ARL1).



Appl. Sci. 2022, 12, 2981 11 of 25

Data Generation

The outputs of three variable vectors as functions of time x1, x2, x3 are obtained
utilizing the simulated model as given below:

x1 = −1× ones(400, 1); 2× ones(600, 1)

x2 = sin(0.1 : 0.1 : 100)T + cos(0.1 : 0.1 : 100)T

x3 = x2
1 + x2

2 + 0.3× sin(2ϕx1)

The distortion in these modeled scenarios is considered to be zero. They are then pol-
luted with zero mean Gaussian errors, i.e., measurement noise υk−1 ∼

(
0, δ2

υ

)
, resulting in:

X1 = x1 + ευ × randn(size(x1))

X2 = x2 + ευ × randn(size(x2))

X3 = x3 + ευ × randn(size(x3))

Training data of 1000 and testing data of 600 samples each are produced utilizing
the model above. The created data were organized as a matrix X = [X1 ,X2 ,X3 ,] hav-
ing 1000 illustrations and three variables. The responses of the three state variables
X1 ,X2 , and X3 , are displayed in Figure 2.

Figure 2. The time evaluation of generated data.

As asserted in the methodology, fault-free series training data were employed to create
a KPCA standard framework for malfunction classification. The fault-free design dataset
was structured as an Xtt matrix with 600 measurements and three model variables. These
measurements were first standardized (zero mean and unit variance) and then employed
to create the KPCA structure. Responses to the fault-free training results are displayed in
Figure 3.

In KPCA, several primary variables in the dataset are usually recorded in the principal
PCs contributing to the maximal eigenvalues, as shown in Figure 4. This analysis uses the
CPV procedure to assess the optimal number of PCs maintained. The CPV approach is
employed to determine the optimal number of retained PCs with a threshold value of 95%,
resulting in three PCs’ retention.
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Figure 3. The time evaluation of fault-free data.

Figure 4. Variance gained by each principal component.

Case 1. No-fault
The detection approaches, including SSGLR, T2 and Q statistics, are first conducted

utilizing the training fault-free data Xtt (Figure 3). It can be observed from Figure 5a–c, that
the SSGLR, T2 and Q statistics are continuously underneath the limit standards. The dotted
and dashed lines denote the control limits at 99% confidence level grounded on Gaussian
distribution and KDE, correspondingly. From Figure 5, it can be observed that the data fit
the KPCA model satisfactorily (because it can catch maximum deviations in the data), and
approves that the procedure works under ordinary situations, where no faults are existent.

Case 2: Mean shift of magnitude unity
This condition explores all fault diagnosis charts’ efficiency where a continuous step

breakdown in the mean of amplitude unity is present from measurements 300 to 600. This
degree of phase flaw was selected to demonstrate appropriate identification using the
KPCA-KDE-based Q chart and allow the output of the KPCA-KDE-SSGLR figures to be
contrasted and investigated.

The outcomes of the error identification for the KPCA-KDE-based T2 and Q charts are
presented in Figure 6b,c. According to the severity of the defect, the KPCA-KDE-based T2
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map cannot locate the whole fault efficiently (see Figure 6c), whereas the KPCA-KDE-based
Q chart (see Figure 6b) can accomplish substantially stronger identification.

Figure 5. (a) KPCA-KDE-based SSGLR charts for the fault-free data; (b) KPCA-KDE-based Q chart
for the fault-free data; (c) KPCA-KDE-based T2 chart for the fault-free data.
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Figure 6. (a) KPCA-KDE-based SSGLR charts; (b) monitoring fault using KPCA-KDE-based Q chart;
(c) monitoring fault using KPCA-KDE-based T2 chart.
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The KPCA-KDE-based SSGLR chart proposed to identify changes in the mean pre-
sented in Figure 6a displays that the SSGLR chart considered mainly to spot changes in the
mean is capable of detecting the whole fault, with minimum missed detections.

It can be perceived that the KDE-based control bounds are underneath the Gaussian
distribution-based control bounds for T2 and Q charts, while it is above the Gaussian
limit as in the case of SSGLR statistics. In other words, the tracking indicators surpass
the KDE-based threshold values to a larger extent than the Gaussian distribution-based
thresholds. This suggests that KDE-based control levels for the KPCA methodology result
in better tracking efficiency relative to Gaussian distribution-based constraints.

Assessing the overview of the findings of the failure identification, Table 1 shows that
the KPCA-KDE-SSGLR chart constructed to evaluate changes in the mean offered the most
considerable false detection rate (FDR) and gives a minimal ARL1 value relative to the T2

statistic and the Q statistic.

Table 1. Summary of fault detection results.

FDR (%) FAR (%) ARL1

KPCA-KDE-based T2 14.47 2.71 1.025
KPCA-KDE-based Q 40.58 5.87 5.50
KPCA-KDE-SSGLR 99.50 0.07 3.55

KPCA-based T2 11.58 2.50 1.025
KPCA-based Q 40.58 9.46 5.50

KPCA-based GLR 96.40 13.80 3.55

From the outcomes displayed in Table 1, it can be seen that the KPCA-KDE-SSGLR
graph explicitly developed to discover shifts in the mean exceeds almost all statistics in
context of the false detection level, whereas it offers nearly equivalent ARL1 values to
other methods. The KPCA-KDE-SSGLR shows excellent performance, as can be seen
from Table 1 its false detection rate is as high as 99.50%, whereas KPCA-based T2 has
only an 11.58% false detection rate. This shows that KPCA can perform much better by
integrating it with the SSGLR statistic. The SSGLR statistics already proved to have much
better performance in terms of ARL [4,8]. Moreover, the findings demonstrate that KDE
control bounds editions obtain a substantially higher error detection accuracy relative to the
consequent Gaussian distribution-based models. In addition, Table 1 shows that the missed
prevalence estimates of KDE-based models are mainly equivalent to or lesser than non-
KDE-based methodologies. This assumes that KDE-based initiatives to UCLs identified
flaws relatively earlier than their Gaussian distribution-based counterparts. Affiliating
the KDE-based threshold values with the KPCA failure detection method gives excellent
tracking, especially compared to using the Gaussian accusation critical bounds.

6. Tennessee Eastman Process (TEP)

In an attempt to scrutinize the usefulness of employing the KPCA-KDE-SSGLR graph
for tracking mechanism mean variations, its consistency needs to be measured utilizing
actual data. Many writers use the Tennessee Eastman Process (TEP) to test the efficiency
of their procedures [12,25,35]. The Tennessee Eastman Process is a practical model of the
natural chemical compound consisting of a generator, condenser, stripper, compressor, and
separator, and is generally recognized as a paradigm for fault identification [25].

The Tennessee Eastman Method includes a database of predetermined flaws that
researchers can use to test the efficiency of their designed flaw detection techniques. Further
details on the Tennessee Eastman Process, the overview of the procedure, and the accessible
defect database can be found in the literary works [4,12,25,35]. This research investigates
the fault situation Fault 12 of the TE method. Fault 12 (IDV12) is a random variation in the
condenser cooling water inlet temperature.
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Fault Situation: IDV 12, Random Variation in the Cooling Water Inlet Temperature

This particular fault scenario implemented the 3 h of purposeful alteration in the
inlet cooling water temperature. The KPCA-KDE-based T2 and Q charts and the KPCA-
KDE-SSGLR statistics are shown in Figure 7a–c, and the failure conclusions designation is
tabulated in Table 2.

Table 2. Summary of fault detection results (TEP: IDV 12).

FDR (%) FAR (%) ARL1

KPCA-KDE-based T2 10.18 6.10 45.00
KPCA-KDE-based Q 23.36 0.27 148.00
KPCA-KDE-SSGLR 81.35 7.13 70.00

KPCA-based T2 09.87 9.52 45.00
KPCA-based Q 12.69 0.25 148.00

KPCA-based GLR 78.67 10.36 70.00

From Figure 7b,c, it can be confirmed that perhaps the T2 and Q-based KPCA-KDE
statistics are not worthy of tracking the entire fault. Fascinatingly, the KPCA-KDE-SSGLR
chart developed primarily to examine mean alterations (see Figure 7a) can identify a
considerable number of defects with the lowest missing identification accuracy.

From the outcomes displayed in Table 2, it can be observed that the KPCA-based
Q statistic has a few low false alarm rate, 0.25%, but its false detection rates are too low
compared to all other statistics. The false detection rate (FDR) of KPCA-KDE-SSGLR is
81.35%, which is much higher compared to all other charts. Therefore, it can be perceived
from Table 2 that the KPCA-KDE-SSGLR process is much superior to its counterparts, such
as KPCA-based T2 and Q statistics.

The KPCA-KDE-based T2 statistic has a much smaller ARL1 value but cannot ade-
quately locate a number of the visible faults, and so the smaller ARL1 value can be related
to the noise signal.

Figure 7. Cont.
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Figure 7. (a) Monitoring fault IDV 12 using KPCA-KDE-SSGLR chart; (b) monitoring fault IDV 12
using KPCA-KDE based Q chart; (c) monitoring fault IDV 12 using KPCA-KDE based T2 chart.

7. Comparison of KPCA-KDE-SSGLR with KLPP for Hot Strip Mill

Suppose the HSM fault identification is to be disseminated. In that case, the data
acquisition scheme for the inspecting indication must be established initially, and various
accumulating methods and procedures for different signal types should be performed.

A hot strip mill is a highly complicated efficient production practice. Optimizing prod-
uct eminence can provide the manufacturer with long-term economic and societal benefits.

There are numerous different monitoring and supervision signals for a particular HSM
platform, making it hard for us to choose all of them.

In the finishing mill division, there are typically seven stand mill units. Each mill stand
comprises an active roll, a standing arch, a reserve roll, the hydraulic screw-down, work
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roll bending, and balance and backup roll balance devices. A big AC motor generally drives
every mill. The precision controls of the hydraulic servo system primarily complete the
roll gap among upper and lower work rolls, so that a specified thickness of strip can be the
exit thickness after such mill. A texture gauge, thermometer, breadth gauge, flatness gauge,
and other devices are commonly found near the exit of the finishing machine. Automatic
gauge control (AGC), finishing temperature control (FTC), and automatic slab control (ASC)
are frequently included in the rolling mill control system to ensure that the exit thickness,
temperature, and flatness comply with the requirements. Low-inertia hydraulic loops are
typically installed amongst stands to manage strip micro-tension. This maintains the mass
flow of each strip stably, allowing for smooth high-speed rolling. After completing seven
stands of high-speed cruising, the strip length grows dramatically. After laminar cooling at
the proper temperature to the appropriate temperature, strip winds form the final product.

AGC has to be the most effective component for dynamic thickness control in tradi-
tional rolling mills. The AGC system is meant to minimize disorders throughout the rolling
phase, such as strip roughness and temperature fluctuations, because it is accountable
for preserving the dynamic response of the projected thickness standard. The incredibly
complicated methods were created to accomplish the goal of active thickness management,
while the idea and attitudes for tuning were established separately.

We choose process variables such as roll force, roll gap, roll bending force, and delivery
thickness based on the gauge’s primary parameters. To test the algorithm’s performance,
we only use the 12 AGC-related indications or measured variables, as well as one quality
variable, as shown in Table 3.

Table 3. AGC-related signals.

No. Signal Name Number of Signals

1 Four FM stands roll gap 4

2 Four FM stands roll force 4

3 Four FM stands roll bending force 4

4 Finishing mills exit strip thickness 1

The training dataset consists of 150 coils rolled with the proper roll gap values. There
are 32 normal sets and 115 fault sets in the testing dataset. The first 1500 samples are
collected as modeling data to investigate the causes.

Fault 1 is that due to the stoppage of the hydraulic instrument in the third stand
bending roll route, the scheming roll bending force does not comply with the current one,
as shown in Table 4. The flaw is a phase that will change the contour of the outlet strip,
but it will have little impact on the thickness, and therefore it is non-pertinent in terms
of quality.

Table 4. Information of faults.

Fault No. Description Type

1 Blending force sensor fault quality non-pertinent

2 Cooling valve fault quality pertinent

Fault 2 is that the cooling valve amongst the first and second stands could not be
stopped during the setup mode. At the second stand entry, the strip temperature is low,
resulting in positive divergence. It impacts the thickness of the product, so it is essential in
terms of quality.

We used false alarm rate (FAR) and fault detection rate (FDR) to showcase practical
outcomes to evaluate different techniques. Table 5 summarizes the findings.
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Table 5. False detection/alarm rate and ARL1 of KPCA-KDE-SSGLR and KLPP.

FDR (%) FAR (%) ARL1.

KPCA-KDE-based T2 17.18 8.20 76.30
KPCA-KDE-based Q 20.36 6.32 130.00
KPCA-KDE-SSGLR 98.64 1.21 50.64

KLPP-based T2 80.35 17.74 105.00
KLPP-based Q 85.29 22.05 160.00

Table 5 shows that both T2 and SPE process metrics in KLPP are incompetent to
differentiate between normal and fault batches. Both T2 and SPE charts in KPCA-KDE
produce a notable FAR, and the KPCA-KDE can efficiently differentiate between normal
and fault sets, as shown in Figure 8a,b and Figure 9a,b. The best monitoring result is achieved
with a recognition rate of 85.29% with the KLPP-based Q chart, whereas Table 5 demonstrates
that the KPCA-KDE-based SSGLR chart has the best overall efficiency. It indicates that KPCA-
KDE-based SSGLR generates very few FAR, and ARL1 is also less. The best monitoring result
has a detection accuracy of 98.64%; however, KLPP has an accuracy of 85.29%.

Figure 8. Cont.
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Figure 8. (a) KPCA-KDE based T2 chart fault detection results in quality non-pertinent; (b) KPCA-
KDE-based Q chart fault detection result in quality non-pertinent; (c) KPCA-KDE-based SSGLR chart
fault detection result in quality non-pertinent.

Figure 9. Cont.
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Figure 9. (a) KLPP-based T2 chart fault detection results in quality non-pertinent; (b) KLPP-based Q
chart fault detection results in quality non-pertinent.

Figures 8–11 illustrate the related simulation graphs. FDR is higher with KPCA-KDE-
SSGLR, while FAR is nearly the same.

Figure 10. Cont.
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Figure 10. (a) KPCA-KDE-based T2 chart fault detection results in quality pertinent; (b) KPCA-KDE-
based Q chart fault detection results in quality pertinent; (c) KPCA-KDE-based SSGLR chart fault
detection results in quality pertinent.
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Figure 11. (a) KLPP-based T2 chart fault detection results in quality pertinent; (b) KLPP-based Q
chart fault detection results in quality pertinent.

As a result, KPCA-KDE-SSGLR should be adequate for finding more significant inher-
ent information buried in observations. For this reason, the model developed here might
be contemplated as a valuable means for detecting nonlinear faults in stream processing.
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8. Concluding Remarks

This article analyzes highly nonlinear fault monitoring and recognition using the
KPCA-KDE methodology. The Kernel Principal Components Analysis (KPCA)-based
Generalized Likelihood Ratio (GLR) index is used for variational defect identification using
a sequential sampling plan. The malfunction tracking issue was addressed so that the data
are first patterned using the KPCA strategy, and afterward, the flaws are analyzed utilizing
SSGLR statistics. The KPCA mechanism was thus evaluated as a forecasting algorithm
for error tracking tasks. Throughout this study, the limits used to create the control charts
were generated explicitly from its PDFs of the tracking metrics rather than applying limits
depending on the Gaussian distribution. The fault tracking efficiency of the KPCA-KDE-
based SSGLR was evaluated and correlated to that of the standard KPCA methodology
centered on Gaussian assumptions by two instances: the synthetic data and the Tennessee
Eastman method. Additionally, the hot strip rolling procedure was used to validate the
performance of the proposed KPCA-KDE-SSGLR technique over the KLPP method.

The findings illustrate the viability of the KPCA-KDE-based SSGLR methodology over
the KLPP and the KPCA through its two T2 and Q charts for nonlinear fault detection.
In particular, the research substantiates the assertion that the use of KDE-based critical
bounds and the SSGLR process provides more substantial tracking outcomes in nonlinear
procedures than Gaussian-based critical bounds and the KLPP process.

By using KDE control limits and integration of KPCA with the SSGLR statistic for mon-
itoring faults in industries, nonlinear fault detections can be improved dramatically. The
importance of manufacturing zero-defect coils in the face of increasing global competition
in the steel processing industries cannot be underestimated.

As future study, the bootstrap re-sampling method [42] can be employed to estimate
the control limit of the proposed method. Development of the mixed kernel function
can also be a good alternative to exchange the conventional kernel used in this study.
Still, somehow there are certain unanswered concerns that remain to be addressed in
further research, such as how to pick the ideal values of variables, an essential topic in
this study for the aim of model validation. Additionally, because it is of considerable
practical importance, the study into how to categorize the discovered irregularity as a
specific root-cause breakdown offers a major problem for process engineers.
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