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Abstract: Unlike conventional software, robotic software suffers from a lack of methods and processes
that could systematize and facilitate development. Thus, the application of software engineering
techniques is at the heart of current issues in robotics. The work presented in this paper aims to
facilitate the development of robotic software and to facilitate communication between experts in the
field through the use of software engineering techniques and methods. It proposes RsaML (Robotic
Software Architecture Modeling Language), a Domain Specific Modeling Language (DSML) dedicated
to robotics, which takes into account the different categories of robotic software architectures and
makes it possible to describe the latter independently from the implementation platform. The
conceptual model defining the terminology and the hierarchy of concepts used for the description
and representation of robotic software architectures in RsaML are presented in this article. RsaML is
defined through a meta-model which represents the abstract syntax of the language. The real-time
properties of robotic software architectures are identified and included in the meta-model. The use
of RsaML is illustrated through several experimental scenarios of the language: the definition of a
robotic system and the description of its software architecture, the verification of the semantics of a
robotic software architecture, and the modeling of a robotic system whose software architecture does
not belong to the usual categories. The support tool used for implementations and experimentation
is Eclipse Modeling Framework (EMF). The results of experimentation showed good working of the
proposed solution and made it possible to validate the main concepts of the RsaML language.

Keywords: robotics; software engineering; model driven engineering; domain specific languages;
real-time properties; Eclipse EMF

1. Introduction

Robotic systems are real-time systems whose behavior, of type “perception, decision,
action”, is founded on information extracted from the environment with the help of sensors
(for example, images captured by a camera). The information provided by the sensors
should be processed within a bounded time interval in order to provide a new command
to the robot, before the capture of new data.

Robotic systems are generally composed of two parts: a material part and an immate-
rial part. The material part contains the physical elements of the robot. The immaterial part
contains the knowledge (programs) that allow the robot to operate in a complex, dynamic,
and unstructured environment, and that affects its behavior [1]. This second part is called
the control system of the robot. The control system can be completely embedded in the
robot. It can also be split into two sub-parts: a remote sub-part and a sub-part embedded in
the robot. The control system comprises control software system as well as other automated
control processes. This paper focuses mainly on control software systems of robots. This
software part has an architecture that is considered as the software architecture of the
robotic system.

Appl. Sci. 2022, 12, 2982. https://doi.org/10.3390/app12062982 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12062982
https://doi.org/10.3390/app12062982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8814-7995
https://doi.org/10.3390/app12062982
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12062982?type=check_update&version=2


Appl. Sci. 2022, 12, 2982 2 of 25

The software integration of the robot’s functionalities, which for a long time has been
the hidden face of robotics, has become a central issue for the future robotic service industry
(medical, assistance, etc.). Due to the increasing complexity of robotic systems and the ever-
increasing diversity of applications and missions of robots, the design and development of
performing and correct robotic software architectures has become a major issue [2]. The
progress of the software industry has opened new opportunities and made the application
of software engineering one of the main research areas in the robotics field, as shown by
the important number of recent research works carried out on the development of robotic
software ([3–17], etc.). One of the challenges of robotics today is to use techniques, tools,
and methods that are proven in the development of “traditional” software systems to
increase productivity in the development of robotic systems while ensuring the quality of
their software architecture. The proposals [18] in this field aim to define methods, making
it possible to describe and encapsulate the various functions of the robot in the form of a
set of interactive software entities(function, class, module, components, etc.). The goal is to
provide a solution for the design of robotic software that satisfies properties of modularity,
portability, reusability, maintainability, etc. Describing the robotic software architecture is
not enough. Indeed, it must be implemented, deployed, and executed in order to be fully
used. Implementing the robotic software architecture and deploying it on an execution
target, while controlling the logical and temporal constraints of the robotic system, requires
the constraints coming from the underlying platform (hardware, operating system, and
programming languages) to be taken into account. Building sustainable, reusable, and
adaptable architectures for a wide variety of physical platforms and components (sensors
and actuators, but also processors, networks, and other hardware sometimes specific to
robotics) is a significant challenge [2]. In order to meet the aforementioned challenges,
robotics is currently facing a fundamental question: How can we develop standardized
and understandable control architectures that can capitalize designers’ knowledge and best
practices, and which are based on reliable, composable, and reusable software entities, thus
leading to optimization of time and development costs?

To answer this question, one needs to respond to several other questions:

• How can we capitalize know-how in terms of architectural design?
• How can we describe and encapsulate the functions of the robot in the form of

software entities?
• With which paradigm should these software entities be represented in order to facili-

tate their use and reuse?
• Which formalism should be adopted to provide a standard representation of robotic

software architectures? Which languages should be used to specify the conceptual
model of these architectures? Generalist languages? Or languages that are specific to
this field?

• At which level of abstraction should we reason to guarantee the independence of
architectures described with respect to technologies, and thus facilitate their reuse and
possibly reduce a system’s development cost?

• How can we build tools making it possible to quickly define these architectures and
validate them at the design stage (upstream validation)?

A correct application and rigorous monitoring of the different steps of the software
engineering development process (see Figure 1) to the construction of robotic software
architectures could help to answer these questions. Nevertheless, such application requires
investigating and proposing solutions adapted to the robotic domain at the different levels
(expression of need, detailed design, etc.).

This paper, therefore, aims at proposing answers to the above questions of roboticists,
by proposing software engineering solutions adapted to the robotic field and following the
software engineering process. It focuses on the design step of the software engineering
process and, more precisely, on the investigation and proposal of RsaML, a DSML for the
robotic domain that makes it possible to facilitate the design of robotic software architectures
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satisfying software engineering principles (modularity, reusability, scalability, portability,
maintainability, etc.).

Figure 1. General software system development process.

The remainder of the paper is organized as follows. The second section is dedicated
to the literature review. The third section deals with the RsaML language. The fourth
section presents the experimentation of RsaML on a sample robotic system. A discussion
is presented in the fifth section. The paper ends by conclusions and future works in the
sixth section.

2. Literature Review

In this section, we first introduce some notions useful for a better understanding of
the work presented in this paper, namely notions related to robotics software architectures
and model-driven engineering, then we present related works.

2.1. Background
2.1.1. Overview of Robotic Software Architectures

Robotic software architectures can be classified into four categories: (i) traditional cen-
tralized architectures, (ii) hierarchical architectures, (iii) behavioral or reactive architectures
and (iv) hybrid architectures. These different categories are briefly described hereafter.

i Centralized architectures
The first work on robotic control architectures belongs to the centralized architectures’
category. Centralized architectures were inspired from artificial intelligence, that
is, organized around decision making and a symbolic state of the world and the
robot [19,20]. These architectures place planning at the system’s center and share the
axiom according to which the central problem in robotics is cognition, that is to say, the
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manipulation of symbols to maintain and act on a model of the world. The world is the
environment with which the robot interacts. Among centralized architectures, we can
mention the planning system STRIPS [19] which assumes that the plan remains static
and the world is unchanged during its execution, and Blackboard architecture, ref. [21]
which gathers information on a world that is assumed non static and takes decisions
based on the world state and goals that could evolve during mission execution. Other
examples of centralized architectures can be found in [22].

ii Hierarchical architectures
The organizational model of hierarchical architectures, also called deliberative archi-
tectures, centers the design over the decisional system [19,20]. These architectures
are organized in several hierarchical layers (also called Levels) [21,23,24]. A layer
only communicates directly with the levels immediately above and below itself. It
breaks down a task, recommended to it by the immediately higher level, into more
simple tasks for the immediately lower layer. The highest level manages the over-
all objectives of the application, while the lowest controls the robot’s actuators [20].
These architectures typically have three layers: functional (contains the perception
modules), executive (in charge of the supervision of robot’s tasks execution), and
decisional (in charge of planning). In this category of architectures, we can mention
the following examples: NASREM (NASA Standard Reference Model) [25], the LI-
FIA architecture [26], the architecture Smach of I3S (Computer Science, Signals, and
Systems Sophia Antipolis) [27], and FLEXHRC+ architecture, designed to provide
collaborative robots with more autonomy when helping operators in shop-floor tasks
that have large variability [28].

iii Behavioral or reactive architectures
In a reactive architecture [29], several modules connect the sensor inputs to the ac-
tuators. Each module implements a behavior, i.e., a basic functionality of the robot
associating each input vector (the set of sensor values) to an output vector applied to
the actuators. These behaviors are called “reactive” because they immediately provide
an output value from a value in their entry. Inspired by observing animals’ behavior,
these architectures are built according to the idea that a more mature behavior can
emerge from a combination of a set of simple, basic behaviors.
Subsumption architecture was the first behavioral architecture [29]. It was proposed
by Brooks in the middle of the 1980s. Based on Brooks’ subsumption architecture,
Rosenblat [30] proposed a new behavioral architecture called DAMN (Distributed
Architectures for Mobile Navigation). Martín recently proposed an evolution of
a behavior-based architecture developed at the Universities of Leon and Rey Juan
Carlos [31]. This architecture takes into account the need for modular decomposition
as well as the need for frequent reconfigurations to adapt to different competitions
such as RoboCup Soccer and European Robotics League. It has been experimented
with different robots, such as the four legged Aibo robot, the bipedal robot Nao, and
wheeled robots TIAGo and RB1.

iv Hybrid architectures
Hybrid architectures combine the reactive capacity of behavioral architectures and
reasoning skills (decisional) of hierarchical architectures [19,20]. These architectures
include a hierarchy of layers and reactive nested loops, allowing each layer to provide
responses tailored to its dynamics. Among hybrid architectures, we can mention The
CONTROLSHELL [32]; LAAS architecture [33], which proved effective in the fields
of mobile robotics both on the HILARE platform and in the MARTHA experiment;
the ORCCAD architecture (Open Robot Controller Computer Aided Design System)
of INRIA [34,35] that integrated formal verification of missions at the early steps of
its design; The IDEA architecture (Intelligent Distributed Execution architecture) [19];
CLARATy (Coupled Layer aRchitecture for Robotic Autonomy) [36,37]; the architec-
ture of the ISTL (Higher Technical Institute of Lisbon) [38]; and the Autonomous Robot
Architecture (AuRA) [39].
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As mentioned earlier, one of the challenges of robotics today is to use well-known
and proven software engineering techniques for the development of software dedicated
to robots. In the next subsection, we present an overview of MDE, a software engineering
technique, that we have chosen in this perspective. MDE has proven its efficiency in the
development of traditional software systems.

2.1.2. Model-Driven Engineering

MDE technology combines [40] domain specific modeling languages (DSML), the
ability to describe constraints on DSML, transformation engines, and support tools. In this
section, we present this technology as well as the concepts related to DSML, an example
of language dedicated to the definition of constraints, and a framework that supports the
implementation of the MDE technology.

Brief Presentation of MDE

A model is an abstraction, a simplification of a system that allows to understand
and answer the questions asked about the latter. A system can be described by different
models related to each other. Model is at the heart of MDE technology, which combines
two major activities:

• The meta-modeling, which aims at building a model called meta-model that makes
it possible to define models description languages, i.e., modeling languages. The
meta-modeling enables the definition of a modeling language for a domain, also
called Domain Specific Modeling Language (DSML), through the definition of domain
concepts, relationships between these concepts, and specific constraints required by
the domain.

• The model transformation that aims to build processing engines, enabling movement
from one model to another and the creation of operational models (for code generation,
documentation, testing, verification, implementation, etc.) [41].

MDE has several significant improvements in the development of complex systems,
allowing us to focus on a more abstract concern than conventional programming. This is
a form of generative engineering in which all or part of an application is generated from
models [41].

The benefits of MDE are many: independence from technological changes, better
management of complexity, greater reusability, etc. The number of views increases, the
models used and their associated semantics are becoming better defined and, little by little,
models occupy a central position in the development process: the virtual prototype of the
system to achieve. Indeed, the evolution of software workshops (such as I-Logix Rapsody,
and Artisan Software Studio) and languages allows executable model building today [42].
Meta-models have significant advantages over other techniques, such as BNF grammars or
the UML profile [43].

Domain Specific Modeling Languages (DSML)

DSMLs are languages that are designed on purpose for a specific domain, context,
or company, to ease the task of people that need to describe things in that domain [44].
They are particularly useful because they are tailored to the requirements of the domain,
both in terms of semantics and expressive power (and thus do not force end users to
study more general-purpose languages that may be full of concepts completely irrelevant
for the domain) and of notation and syntax (and thus provide appropriate modeling
abstractions and primitives closer to the ones used in the domain). A modeling language is
defined through three core ingredients. (i) Abstract syntax: Describing the structure of the
language and the way the different primitives can be combined together, independently
of any particular representation or encoding; (ii) Concrete syntax: Describing specific
representations of the modeling language. It consists of one or more diagrams. The
concrete syntax can be either textual or graphical; and (iii) Semantics: Describing the
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meaning of the elements defined in the language and the meaning of the different ways of
combining them.

OCL: A Language for Verification of UML Models

OCL (Object Constraint Language) is a functional language based on first-order logic
for expressing specifications on a UML model. By the representation of different types
of UML diagrams in the form of class diagrams, OCL can be used as the meta-model
specification language, which requires a good knowledge of the syntax and semantics of
modeling elements. OCL rules may be attached to a meta-model not only to check the
own semantic rules of the modeled domain, but also to restrict the set of valid instances
(models). OCL allows navigation in class diagrams (particularly in the meta-model) and
has set-primitive and iterators on data collections. One can thus express the pre- and
post-conditions of methods, class invariants, etc. [45].

Overview of Eclipse Modeling Framework (EMF)

The choice of a meta-modeling technology depends primarily on the availability of
tools to support the development of a complete solution. The Eclipse Modeling Framework
(EMF) [26] is the leading open-source tool in this area. It provides enhanced support for
graphical and textual notations modeling languages and for validating model constraints,
the model to model and the model to text transformations. The various tools of this
framework follow the standards of the Object Management Group (OMG) [46–48]. EMF
provides code generation capabilities, allowing us to define a model either in UML, XML,
or Java form, and to generate the other forms from this latter as well as the corresponding
implementations classes. Regardless of the technology used to define a model, EMF is
the common high-level representation that “gathers“ them all together [49]. EMF models
are usually represented with the help of a UML class diagram notation [50]. However,
in contrast to models created in UML, models created with meta-modeling solutions are
formal and precise [51]. These models are Ecore models that represent the abstract syntax
of the language defined for a given domain. EMF will then be used to generate a model
from ecore (an XMI model) that represents the concrete syntax.

2.2. Related Work

In the last few years, more and more solutions for the use of software engineering
techniques in robotics are proposed at different levels. We present some of them.

In [52], Passama proposes a solution to the problem of representation and communi-
cation of Robotic software architectures between domain experts. He proposes a specific
modeling language for the domain, with the aim to express and easily compare different
architectures.

In [53], Xavier Blanc et al. address the benefits brought by the MDE (Model Driven
Engineering) approach to the development of embedded systems and robotics. They apply
this approach to develop a software system for the Aibo robot.

The authors of [54] address the issue of model driven engineering applied to the
design of a service robot controller. They develop a scalable modeling approach for the
development of real-time control software of a prototype of seven-axis arm actuated by
artificial muscles.

In [55], authors also address the issue of MDE process for robotic systems. They are
particularly concerned with taking into account of non-functional properties in modeling
properties such as quality of service and management of real-time resources (e.g., the
schedulability analysis of real-time tasks).

The work proposed in [56] uses an MDE approach to design specific domain solutions
for the development of robots control systems, using subsumption architecture. It presents
a case study of the entire process: identification of domain meta-model, definition of
graphic notation, and code generation.
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The authors of [1,57] formulate the problem of the development of stable software sys-
tems in the robotics field, analyze the elements that make this problem difficult, and identify
challenges that robotics community must face in order to build stable software systems.

In [58], authors present the contributions of model driven approach compared to code
driven approach in the development of robotic software systems.

In [18], the authors propose an overview of Model Driven Engineering approaches
in robotics. They point out the complexity of robots development due to the variety of
hardware and software components and the lack of common standards.

The PuRSUE (Planner for RobotS in Uncontrollable Environments) approach defined
in [59] aims to support developers in the rigorous and systematic design of high-level
execution control strategies for robotic applications.

In [60], the authors provide a catalog of 22 mission specification models for mobile
robots, as well as tools to instantiate them to create robotic mission specifications.

The work carried out in [61] provides an end-to-end overview of how robotic software
systems can be formally specified from requirements modeling to architecture modeling,
and from the latter to executable code generation.

The above works are related to a general application of MDE to robotics. Other works,
such as those presented in [62], targeted more specifically the development of DSML for
robotics. Hereafter, we briefly present SmartSoft [63] and RobotML [64], that are among
the most recent.

SmartSoft is a component-based framework for robotic software that focuses on the
communication model between components. It offers a predefined set of generic communi-
cation patterns based on standard communication services (client/server, master/slave,
request/response, etc.) that the user can compose to build components. It allows the
implementation of systems based on standardized components, whose interaction can be
adjusted according to the context and current requirements. It builds on a meta-model
called SmartMars [55] implemented as a UML profile, and was used as a basis for building
an integrated Eclipse tool called SmartMDSD [65]. The latter provides an integrated devel-
opment environment for robotic software using a model-driven approach and generates
code to CORBA [66] and ACE [67].

RobotML is a language specific to the field of robotics, supported by a tool-chain
to facilitate the design, simulation, and deployment of robotic applications on different
target execution platforms. RobotML and its tool-chain were developed in the framework
of the PROTEUS project (Platform for Robotics Organizing Transfer between Users and
Scientists) [68]. It allows specifying the architecture of a robotic system (components, ports,
and data types exchanged), the communication between the components through ports
(flow of data or service) and their type (synchronous or asynchronous), the behavior of
components through state machines or algorithms, and a deployment plan that defines sev-
eral heterogeneous target platforms (simulators and middleware). RobotML is supported
by a graphical editor designed using the Papyrus tool.

Analysis of the works summarized above allows us to identify a number of key
points. Some of these works apply MDE only to a particular architecture or a particular
robot. The management of functional constraints that cannot be addressed using graphical
relationships between concepts is hardly addressed by these works. Likewise, very few
of them deal with non-functional constraints. Additionally, among the works related
to the definition of a DSML, only a few offer the possibility to describe the behavior of
the components of an architecture. This does not facilitate information sharing on the
architectures thus defined. Indeed, being able to describe the behavior of a component
makes it possible to better guarantee its compositionality with other components and its
reusability. Apart from the type of task (periodic, aperiodic) defined in one of the proposals,
none of the works are able to specify real-time properties of the modeled systems.

After this overview of related works, the next section is devoted to the definition of
RsaML, which has been proposed in order to remedy shortcomings observed in the exist-
ing solutions regarding the specification of non-functional constraints, the description of
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components behaviors, specification of real-time constraints, and description of functional
constraints that cannot be handled graphically.

3. The New Domain Specific Modeling Language Proposed

In this section we first present the design approach adopted for the definition of the
new DSML RsaML, then we present the different design steps: domain analysis; proposal of
an abstract model of the language, semantics definition, constraints and real-time properties
support, and definition of a concrete syntax of the language. An implementation of the
abstract syntax with the integration of constraints properties is also presented to illustrate
their working.

3.1. Design Approach

The development of a domain specific modeling language begins with the identifi-
cation of modeling concepts. This requires one to understand the functioning of the field
and the notions which are used in the domain, how to use them, and the links between
them. In our case we relied on reference documents (original publications) of each class
of architectures as well as publications in the field. Different concepts are used in each
category. Thus, the main design steps and challenges are to: (i) define concepts which allow
us to represent any robotic software architecture; (ii) define the types of these concepts
in the model, the relationship between them, and especially cardinality, which allows us
to implement structural and functional aspects of these architectures; (iii) be concise, but
accurate and complete, to avoid proposing a model that is dense and therefore complex,
which may be difficult to analyze and understand for end users of the language; (iv) provide
the opportunity to define the real-time properties in the models that will be built.

3.2. Domain Analysis: The Main Modeling Concepts

This activity aimed to:

• Identify the notions handled in the categories and examples of architectures;
• To abstract and define the resulting concepts, their properties, and the relations be-

tween them;
• Analyze the real-time properties handled in the domain and their context of use;
• Organize these concepts in a hierarchy.

To do this, a careful study of each robotics software architecture class was made,
followed by a synthesis of the concepts handled. This initial work resulted in a list of
concepts per architecture. Thereafter, all the concepts were integrated into a single set of
concepts comprising all the concepts of all the classes of architectures. Once identified,
each concept was described based on the concept of robotics it models. Table 1 shows in
alphabetical order some of these descriptions.

Table 1 presents in its left column the different concepts used to specify robotic software
architectures and in the right column a brief meaning of each concept.

For a better understanding and ease of use of the concepts in the language, a hierarchy
of all the concepts has been built. The diagram in Figure 2 shows the hierarchy of the
different concepts identified.

This hierarchy can be described as follows. A robotic system consists of a robot,
the environment in which it operates, and the software that controls it. A robot has a
central part which we call the “body of the robot” and a set of hardware components.
The software allows the robot to evolve in its environment (set of physical and logical
resources). The hardware components can be either sensors, actuators, or any other device
for communicating and evolving (observation, perception, and reaction) in its environment.
The software consists of a set of decision-making components (layer, activity, database,
knowledge, etc.) and behavioral components (action, function, module, modifier, goal, etc.).
There are two types (small empty triangle in the figure) of ports: input ports and output
ports. In some architectures, such as subsumption, the port data can be modified by those
of another. Thus, an input port can carry multiple suppressors and an output port several
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inhibitors. The multiplicity [1..*] on the relationship between the elements Software and
Software Component for example, means that a software is composed (small black diamond)
of one or more software components.

Table 1. An extract of the concepts used in the language definition.

Concepts Descriptions

Action basic task of the robot
Actuator allows the robot to act on the environment
Activity task or sequence of tasks of the robot
Database database, knowledge base, etc.
Function set of functions implementing a module
Goal goal to be achieved by the robot; it can have sub-goals
Inhibitor allows to inhibit some outputs
Knowledge data handled and how they are used
Layer level in the hierarchy of the architecture
Mission established set of goals, tasks, and paths
Module any robotic software component
Order order sent to the robot to perform a task
Plan sequence of actions to perform a mission
Ports allows communication between modules; they can be input or

output ports
Sensor allows the robot to detect its environment
Supervisor controls plans execution
Suppressor allows to remove or modify entries

Figure 2. Conceptualization of components used for the description of robotic software architectures.

After this presentation of the main concepts used in robotics software architectures,
the next subsection deals with the use of these concepts to define an abstract syntax for the
Domain Specific Modeling Language RsaML.
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3.3. Abstract Syntax of RsaML: The Proposed Meta-Model

The abstract syntax of RsaML is defined through a meta-model, which shows the way
in which the concepts identified in robotic software architectures are put in relationships
to define an architecture. This meta-model was built using Ecore meta-meta-model. It is
shown in Figure 3.

Figure 3. Proposed meta-model for the definition of robotics software architectures.

The diagram in Figure 3 can be described as follows: a robotic control software can
be composed of a database containing a set of knowledge and several layers, and must
have one or more goals to achieve. The goal can be broken down into sub goals reached
by performing a set of activities. These activities follow a given strategy. The activities
are carried out by execution of processes that are implemented in modules. The modules
that are on the layers may have several functions that implement processing. The modules
communicate through ports. Each function is a set of actions that can be simple or contain
real-time constraints (real-time action). An action can be followed sequentially by another
or run in parallel to several others.

Generally, the abstract syntax of the DSML does not have enough information to define
the meaning of the constructs of the latter. Additional information is needed to determine
this meaning. This is achieved through the semantics of the language. There are two types
of semantics: static semantics and dynamic semantics. In this paper, we focus on the static
semantic. It is defined at two levels:

• When defining the meta-model, by defining the multiplicities of the relations between
the concepts;

• By defining and integrating semantic constraints to the meta-model. This is the
purpose of the next section.
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3.4. RsaML Semantics: Definition of Constraints on the Meta-Model

The definition of RsaML semantics requires us to identify and organize information
which make it possible to give a meaning (in relation with the field of robotics) to the
built models, then to define the latter as semantic rules of RsaML. After defining the
semantic rules, a solution is needed for their integration in the meta-model. Although
constraints such as the multiplicities of relations between the concepts can be directly
included in the graphical model, the other semantic constraints are generally defined
using a textual approach. In this work, OCL is used for the definition of these additional
semantic constraints. It is a well known standard for textual constraints definition which is
commonly used in MDE.

This subsection is structured in two parts: the first presents some defined semantic
rules and the second presents the OCL constraints defined for their integration in the
meta-model.

3.4.1. Definition of Semantic Rules

Using the operating principle of the different categories and examples of architectures,
we have identified and defined semantic rules. Some of them are presented below.

There are rules related to the general operation of architectures among which:

1. The number of declared layers must be equal to the number of layers actually in
the system.

2. Two communicating modules must exchange the same type of data on their commu-
nication interfaces.

3. A module only communicates with modules that are either on the same layer as it, or
on the layer directly above or directly below.

4. For some architectures in the category of behavioral architectures, a module can inhibit
(or delete) only the outputs (resp inputs) of the modules of the immediately lower
layer.

And specific rules regarding real-time aspects, such as the following:

1. If the type of a module is real-time, its period and delay must be non-zero.
2. A module is real-time if all its functions are real-time.
3. A function is real time if all its actions are real-time.
4. Runtimes of all the modules of a layer are bound by the maximum execution time of

the layer.

3.4.2. Defining OCL Constraints to Check Semantic Rules

In order to integrate the semantic rules of RsaML in the meta-model (abstract syntax)
of RsaML, these rules are translated into OCL constraints. These last serve as rules of good
formation of models. Some of the OCL constraints are presented in Listing 1. Each time,
the constraint in natural language is given in the form of a comment, followed by the OCL
code (context and invariant) corresponding to its definition.

Listing 1. Some OCL constraints imposed on the domain’s meta-model.

−−1. Each system has a name and at least one layer
context Software
inv : name<>‘‘‘‘ and layer−>size()>0

−−2. The number of a layer is always less than the number of layers of the system, we
assume that the first layer is always 0
context Layer
inv : number<Software.layer−>size()

−−3. Two modules must not have the same name
context Module
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inv : Module.allInstances()−>forAll(m1, m2|m1<>m2 implies m1.name<>m2.name)

−−4. Two modules that communicate must share the same type of data on their
communication interfaces .
context EntryPort
inv : self .dataType=outputport.dataType
context OutPutPort
inv : self .dataType=entryport.dataType

−−5. A module communicates with the modules that are either on the same layer as it , or
the layer directly above or directly below.

context OutPutPort
inv : entryport−>forAll(e|((e.module.layer.number−1=module.layer.number) or (e.
module.layer.number=module.layer.number) or (e.module.layer.number+1=module.
layer.number))

context EntryPort
inv : let s : OutPutPort= self.outputport in ((s .module.layer.number+1)=module.
layer.number) or ((s.module.layer.number)=module.layer.number) or ((s.module.layer.
number−1)=module.layer.number)

−−6. A module can inhibit ( resp remove) the outputs ( resp entries ) module of
immediately lower layer .
context OutPutPort
inv : self . control−>forAll(m|m.port.module.layer.number=self.module.layer.number
−1)

3.5. Real-Time Properties Support

The integration of real-time properties was made at different levels in the definition
of the meta-model: firstly in the structure of the meta-model, by setting attributes for
specifying these real-time properties; then, through the definition and adding of constraints
to the meta-model. Table 2 describes some of these properties.

In Table 2, the first column lists the real time properties used, the second column gives
the meaning of each property and the third column specifies the concept on which this
property has been defined. The mark—on a line means that the concept concerned is the
same as in the last line filled in.

Table 2. The real-time properties used in the RsaML meta-model.

Attributes Descriptions Concepts

MaxExecTime Maximum execution time layer
type type of the element (simple or real-time) activity, module, action,

function
period period of execution - - - - -
delay response time - - - - -
execDuration execution duration - - - - -
startDate start time action
timeUnit time unit - - - - -
execType sporadic, periodic or not - - - - -
synchroType synchronous or not function
schedPolicy scheduling Policy: FIFO, SJF, RR, RM,

DM, EDF, LLF, etc.
function
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These constraints are shown in Listing 2. Note that these constraints are defined after
laying a few assumptions. We assume that: (i) the system response time, switching time,
and the generation time of the mission plan are all zero; (ii) every action has a limited and
known time; and (iii) any time other than execution one is assumed to be zero.

Listing 2. OCL constraints for management of real-time properties.

−−1. If the type of module is real time , its period and delay must not be null .
context Module
inv : self . type=ElementType::realTime implies (delay<>0 and period<>0)
−−2. A module is real time if all its functions are real time
context Module
inv : self . type=ElementType::realTime implies (function−>forAll(f|f.type=

ElementType::realTime))
−−3. A function is real time if all its actions are real time
context Function
inv : self . type=ElementType::realTime implies (action−>forAll(a|a.oclIsTypeOf(

RealTimeAction)))

−−4. Runtimes of all modules of a layer are bounded by the maximum execution time of
the layer .

context Layer
inv : module−>forAll(m|m.execDuration<=self.maxExecTime)

3.6. Implementation: Meta-Modeling in Eclipse

This subsection deals with the implementation of the abstract syntax of the RsaML
language (its meta-model) and the integration of its semantic rules (as OCL constraints) in
the meta-model, in order to verify their good working. The Framework EMF and the OCL
project of Eclipse were, respectively, used for the implementation of the meta-model and
the integration of OCL constraints in the meta-model.

Once the meta-model is built, it was checked to verify that all the syntactic rules of
construction were satisfied (for example, to ensure that the type of each attribute was
specified). The next step was, therefore, the integration of OCL constraints in the meta-
model under Eclipse.

Before integrating the OCL constraints to the meta-model, each of them was first
checked to ensure that it was syntactically correct, and provided the expected result. For
this, the interactive console of the Eclipse OCL project was used. Figure 4 shows an example
of verification with the result in the red rectangle. The result is False in this case, because
two modules (m12,m12) have the same name.

In Figure 4, we have three blocks: The first contains the RsaML meta-model, which is
presented in Figure 3; the second contains an instance of the meta-model, which represents
an architecture in which two modules have the same name (m12 highlighted in yellow);
the third is the interactive console that allows us to evaluate the constraints before their
insertion in the meta-model. It presents a constraint and the result (red rectangle) that it
produces when it is applied to the example model of block 2.

To add OCL constraints in the meta-model, its textual version is edited and constraints’
invariants are added, as shown in the red boxes in Figure 5.
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Figure 4. Syntax checking of OCL constraints.

Figure 5. Integration of OCL constraints in Ecore meta-model.

After this presentation of the implementation of the abstract syntax and the semantics
rules of RsaML, the next subsection is dedicated to the definition of a concrete syntax
for RsaML.

3.7. Definition of a Concrete Syntax: The Tree Editor of RsaML

The concrete syntax defines the interface and the notations that will be used by the
users to represent the different concepts of the language, and thus to build their models
(architectures). This syntax can take many forms. For this first version of RsaML, we
propose a tree editor, which will be enriched later to evolve towards a graphic editor.
Eclipse EMF offers the possibility of producing the tree editor from the abstract syntax
(meta-model) of a language. This requires associating an editor generator with the meta-
model. An EMF project was therefore created, and the meta-model was integrated in this
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project by importing the RsaML Ecore file. This led to the creation of a .genmodel file that
is the template generator. Subsequently, the .genmodel project was used to generate code
for a set of projects, including an .emf.editor project. The execution of the latter produced
the RsaML tree editor presented in Figure 6.

Figure 6. The RsaML editor for description of robotic software architectures.

The editor of Figure 6 has, among others (1, 2, and 3 in the figure):

1. An explorer of already created models. These models have a language-specific exten-
sion (.rsaml);

2. The space reserved for the construction of the models;
3. A menu allowing, among other things, to validate the model being built.

With this editor, RsaML models can now be built, just by choosing the type of model
in the proposed list, as shown in the diagram of Figure 7.

Figure 7. Dialog box for the creation of a new RsaML model.

After this presentation of the RsaML language, the next section deals with its validation
through experimentions.

4. Validation: Experimentations of RsaML

Three experimentations were performed in order to validate the proposed DSML.
They were chosen so as to show the use of the language for the modeling of a system
having any type of architecture (i.e., belonging, or not, to the classical categories of robotics
architectures), and to validate the semantic constraints defined in the language. The first
experimentation uses the language to represent a category of architecture, the second
focuses on the test of the semantics of the language, and the third represents a system
whose architecture belongs to none of the classical robotics architectures.



Appl. Sci. 2022, 12, 2982 16 of 25

4.1. Experimentation 1: A Robotic System Having a Hybrid Architecture

The goal of this first experiment is to ensure that the language is operational and ready
for use. For this, it is necessary to describe a system and to specify its architecture using the
language. This section, therefore, begins with a description of the system to be modeled,
and then presents the use of the RsaML language to build the model of its architecture.

4.1.1. Description of the System

The system considered is a robotic system whose software architecture belongs to the
category of hybrid architectures. This category of architectures has been chosen because it
is more representative. Indeed, as mentioned in Section 2.1.1, hybrid architectures combine
the reactive capabilities of behavioral architectures and reasoning abilities (decision making)
specific to hierarchical architectures. The proposed system has an architecture that is
divided into three layers:

• A decision layer containing two modules. A module called temporal executive, that
manages the planning of the global mission of the robot, and another module that
oversees the missions sent by human operators.

• A control layer containing three modules. A module that checks the requests sent to
the modules of the functional layer, another that verifies the use of the resources of the
robot, and a last one that manages the aspects related to robustness and dependability.

• A functional layer containing two modules that offer services via queries to start/stop/
parameterize them, and making it possible to manage physical and logical resources
(sensors and others). These modules have functions containing the actions that are
necessary for the control of these resources.

Figure 8 shows the block diagram of the architecture of this system.

Figure 8. The architecture of the system to be modeled.

4.1.2. Description of the Architecture with RsaML

The tree editor of RsaML presented in Section 3.7 has been used to build the architec-
ture of the robotic system presented in the previous subsection. The diagram in Figure 9
shows the constructed model.

For a better understanding, Table 3 gives the correspondence between some elements of
the robotic software architecture presented in Figure 8 and the corresponding RsaML concepts.
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Table 3. Correspondence between some elements of Figure 8 and the concepts of RsaML.

Element of the System Concepts of RsaML

Decision Layer Layer
Procedural Exec Module
f0-01 Function
a0 Action
aRT RTAction
e0 EntryPort
s0 OutPutPort

Figure 9. The RsaML model corresponding to the architecture presented in Figure 8.

This first experimentation shows that the syntax of the RsaML language is operational.
The second experimentation aims at testing RsaML semantics. It is presented in the
next subsection.

4.2. Experimentation 2: Test of Semantics and Verification of a Model

The objective is to check that the semantic rules in the meta-model (i.e., the abstract
syntax of RsaML) are well integrated, making it possible to detect semantic errors correctly.
In order to reach this goal, some semantic errors (with respect to the semantic rules defined)
have been introduced in the case study described in Section 4.1.1, then the verification
of the obtained model has been carried out and finally the errors generated have been
compared with those expected.

The verification of the modified model (i.e., the model including semantic errors)
generated five (5) errors as shown in Figure 10.
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Figure 10. Semantic errors detected thanks to the semantic rules of RsaML.

Figure 10 shows the errors generated as a result of the following anomalies:

1. The number of defined layers is different from the number of layers actually created;
2. A port communicates with another port whose data type is different from its own;
3. A module of layer n modifies the data of another module located at layer n-2;
4. The execution time of a module is greater than the maximum execution time defined

for the layer that contains it;
5. A function is defined as real-time, but contains non-real-time actions.

Figure 11 shows details explaining these errors. It contains the numbers from 1 to 5
corresponding to the errors in Figure 10.

In the diagram of Figure 11:

• The problem items carry a small red cross;
• Extracts of couples (properties, values) of certain elements of the model are repre-

sented in rectangles connected to these elements by lines which we will call “links” in
the following.

The diagram in Figure 11 shows the following:

1. Four (4) layers are declared for the architecture (link 1a), but only three layers (deci-
sional, control, and functional) are actually created;

2. The type of data that the e0_prodExec input port can receive is “alphanumeric“ (link
2a), but it is connected to the output port (its Outputport property) s0_ressourceCheck,
which sends it data of type “numeric“ (link 2b);

3. The proceduralExec module deletes the entry e0_m01 (link 3a) of module m01, which is
at the functional layer (link 3b) at level n-2, whereas the decisional layer is at level n;

4. The execution duration of the resourceChecker module is 2.5 (link 4b), while the maxi-
mum time of execution of the layer where it is located is 2.0 (link 4a);

5. The function f0_m01 is real-time (link 5a), but it contains an action which is not real-time
(action a0_f0_m01).

This experimentation shows that the integration of OCL constraints in the language
works fine, that these constraints are well and truly verified when the language is used,
and therefore that the static semantics of RsaML is potentially well defined.
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Figure 11. Details showing and explaining the erroneous points of the constructed model.

4.3. Experimentation 3: A Robotic System Whose Architecture Belongs to None of the Classical
Categories of Architectures

The objective of this last experiment is to verify that the language RsaML can be used
to model robotic systems whose architecture belongs to none of the classical categories of
architectures. For this, we consider a robotic system taken from the literature and describe
its software architecture with RsaML. The robotic system considered is described in [54]. It
is a system with a real-time executive that is represented by a single processor. The latter
is connected to the sensors and actuators via two acquisition cards. Figure 12 shows the
structure of the robotic system.

Figure 12. An example of robotic system architecture [54].
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To build the software architecture of this system using the RsaML language, we
proceed as follows: The sensors and actuators (visible in the diagram of Figure 12) can be
represented by the concepts of sensors and actuators defined in the language, an action (the
parallelogram with the expression Ci = 1 ms, for example) by the concept of action, a task
(the parallelogram named Mvt Ctrl, for example) by the concept of function, the execution
system on which the real-time controller will be executed by the concept of processor,
other software components (acquisition of sensor data, processing of these data, etc.) by
the concept of module, the connections between the components by links between their
respective ports, and the memory by a database and the whole system by the concept of
Software. Thus, the architecture of this system is structured in a layer having two modules:

• A task interpreter: it has a function to provide this service;
• A motion controller: it has a function containing six actions named Instructions. These

actions are periodic, and each has a period of 20 ms and an execution time of 1 ms.

We built this architecture using the RsaML tree editor. The obtained model is shown
in Figure 13.

Figure 13. The RsaML model corresponding to the robotic architecture presented in Figure 12.

After these experimentations of RsaML, the next section discusses its advantages
and limits.

5. Discussion

Part of the related works presented in Section 2.2 addressed the question of the
application of MDE to the development of robotic software systems in general, and the
other part addressed the specific problem of definition of DSML for robotics. Each of these
works has contributed to filling the gaps regarding the application of software engineering
methods and techniques to the robotics field. However, with respect to the questions raised
in Section 1, these works present some shortcomings.

The work presented in [52] does not allow us to represent all categories of architectures.
For example, it does not take into account specific aspects of behavioral architectures such as
the mechanisms of inhibiting output and suppressing inputs. The works described in [55,58]
do not address the specific issue of the representation of robotic software architectures.
The proposition made by [56] is specific to the subsumption architecture. The study
conducted by [53] concerns the specific case of the Aibo system, and the proposed meta-
model is therefore restricted to this system. Likewise, the proposal made by [54] focuses
on the development of the system for the control of a given prototype. Almost all of
these works do not take into account the real-time aspects of robotic systems. Unlike the
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previous solutions, RsaML provides a solution taking into account all categories of robotic
software architectures and all types of robotic systems. It makes it possible to take into
account functional and non-functional properties of robotic systems that cannot be included
graphically in the meta-model. RsaML also offers the ability to include and verify real-time
properties for robotic systems that have time constraints.

As mentioned in Section 2.2, SmartSoft [63] brings a significant advance in the def-
inition of DSML for robotics. We can recall, among other things, the interoperability
provided by the possibility of generating code to CORBA and ACE (Adaptive Communi-
cation Environment). However, SmartSoft’s meta-model does not distinguish hardware
components from software components of robotic systems. This has the consequence of
reducing the level of abstraction and therefore the possibility of abstracting the material
that must support the developed system. RsaML provides the ability to model software
architectures independently of the underlying hardware by decoupling the hardware and
software components of a system. The components of smartSoft are kinds of “black boxes”
offered to manage the robot. Consequently, the possibilities to specify/modify the desired
behaviors of these components are almost nil. Furthermore, the tasks do not explicitly
describe the actions that carry them out. RsaML takes this level of granularity into account
by making it possible to specify at the level of the architectural model, the components,
and the tasks that constitute them as well as the actions of the latter. This way of doing
things promotes the modularity of the architectures defined, increases the maintainability
of the systems built, and facilitates the reusability of the components of the latter. The
SmartMars meta-model on which SmartSoft is built does not integrate semantic rules for
the management of non-functional properties. The authors made new works [69] dedicated
to the modeling of non-functional constraints for robotic software systems. RobotML [64]
has also paved the way for the application of software engineering in the field of robotics.
However, unlike RsaML, RobotML does not allow checking the non-functional properties
of built models. Moreover, although RobotML defines a property allowing to specify the
type of a task in the constructed model (periodic, aperiodic, etc.), it does not offer elements
for the specification of the real-time properties of the systems, which are essential elements
to specify, for example, the policy and parameters for scheduling tasks.

Table 4 summarizes the comparison of RsaML with some of the proposed solutions,
namely RobotML, GenoM3, SmartSoft, and BRIDE. The following criteria have been used
for the comparison:

• Ability to model any type of robotic software architecture;
• Ability to describe the behaviour of the components (possibility for the user to specify

new component and not only to use predefined components);
• Ability to express non-functional properties;
• Ability to express Real-time properties;

– with periodic tasks (PT);
– with aperiodic tasks (AT);
– with policy and scheduling parameters (PSP);

• Defines a DSML (language);
• Independent from the target platform.

As shown in Table 4, unlike the other approaches, RsaML satisfies all the criteria
defined above.

The limit of the work presented in this paper is that it does not cover the whole
software engineering process for the construction of robotic systems shown in Figure 1.
Future works are planned to cover other steps of this process.
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Table 4. Comparison of RsaML with other proposals.

Proposals Robotic
Software
Architecture

Behaviour
of the
Components

Non-
Functional
Properties

Defines
a DSML

Independent
from
Platform

Real-Time Properties

PT AT PSP

RobotML x x x x x x
GenoM3 x x x x x
SmartSoft x x x x
BRIDE x x
RsaML x x x x x x x x

6. Conclusions and Future Work

Robotic systems which are special cases of embedded real-time systems suffer from
the lack of development methods and processes that could systematize and facilitate their
development, such as those found in the development of classical software. One of the key
and topical issues is the application of software engineering techniques to robotics. One area
of software engineering that opens new opportunities is model-driven engineering (MDE)
that makes it possible to define Domain Specific Modeling Languages (DSML). In this
article, we have addressed the issue of formalization of the description of robotic software
architectures. A DSML called RsaML has been proposed for the design of the latter. It takes
into account the different categories of robotic software architectures, with the possibility
to specify real-time properties when necessary. In order to define this DSML, an analysis of
the robotic domain was done and the different categories of software architectures were
investigated. This analysis ended with the identification and description of concepts useful
for the representation of these architectures. Useful attributes to take into account real-time
properties were identified, defined, and integrated into the relevant concepts. A meta-
model was proposed to describe robotic software architectures. This meta-model defines the
abstract syntax of RsaML. The static semantics of the language were defined and integrated
in the meta-model using OCL constraints. These OCL constraints make it possible to
verify semantic rules specific to the field of robotics as well as real-time properties. The
Eclipse EMF Framework was used to implement the RsaML language and experiments
were performed to validate the proposed solution. The comparison with related works
shows that RsaML provides several advantages. Unlike solutions proposed in most of the
related works, RsaML takes into account the different categories of architectures and the
functional and non-functional properties of robotic software systems. By decoupling the
representation of software components from that of hardware components, it is possible to
define architectures independently of the underlying hardware. This offers the possibility
of detailing the actions carrying out the behavior of a software component. This level of
granularity increases the maintainability and reusability of the architectures built, and
makes communication between experts of the robotic domain easier. RsaML also makes it
possible to specify real-time properties of robotic systems, including policy and parameters
for tasks’ scheduling.

Future work aims to develop a graphic editor to facilitate the representation of robotic
software architectures as well as a model transformation engine, so as to offer a complete
chain from modeling to code generation.
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