
����������
�������

Citation: Vlaovič, B.; Vreže, A.

Discrete Time Model for Process

Meta Language with Fictitious-Clock.

Appl. Sci. 2022, 12, 2990. https://

doi.org/10.3390/app12062990

Academic Editor: Flavio Cannavò

Received: 20 January 2022

Accepted: 10 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Discrete Time Model for Process Meta Language with
Fictitious-Clock
Boštjan Vlaovič * and Aleksander Vreže

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
2000 Maribor, Slovenia; aleksander.vreze@4s.si
* Correspondence: bostjan.vlaovic@um.si; Tel.: +386-41-769-386

Abstract: Industries like telecommunications, medical, automotive, military, avionics, and aerospace
use complex real-time systems. Specification and Description Language (SDL) is one of the leading
domain specific languages that is formally defined by international standards and well established in
describing such systems. To check system properties abstracted model of the system is prepared in
selected modeling language. We use Spin (Simple Promela Interpreter) model checker that is one of
the leading tools for verification of complex concurrent and reactive systems. This paper focuses on
modeling the SDL timer construct. It is one of the SDL constructs that is not easily modeled with
Promela, but is present in many SDL systems. After an overview of the related work we propose
a new Discrete Time Model for Promela (DTMP) that is seamlessly integrated in our framework
for modeling SDL systems and can be used with the mainstream version of the Spin tool. To the
best of our knowledge, this is not possible with the existing solutions. We describe how DTMP can
be used to model SDL systems that use timers. Experimental results demonstrate its applicability
to non-SDL systems with Fischer’s mutual exclusion protocol and the Parallel Acknowledgment
with Retransmission that were used in prior studies. We compare state-space requirements with
one of the existing solutions DT Promela and DT Spin. With that, virtues and shortcomings of this
high-level solution are exposed. We have shown that DTMP is effective when an extensive range of
timer expiration values are used, which is usually the case in real-life SDL systems.

Keywords: formal specifications; formal languages; discrete time; model checking; automated
extraction; SDL; Promela; Spin; Sdl2pml; SpinRCP

1. Introduction

Telecommunication systems consist of heterogeneous nodes. They are controlled
by different microcomputer systems running programs that were developed in various
programming languages. Due to many concurrent activities, they usually describe complex
behaviors. Checking of the correctness properties of such systems is not a trivial task.
Therefore, use of formally-defined languages is recommended for specification of such
systems. Specification and Description Language (SDL) is one of the leading domain specific
languages [1] that is defined formally by international Standards [2–6] and well-established
in industries like telecommunications, medical, automotive, military, avionics, aerospace,
internet of things, system engineering [7], and others [8,9]. Versions SDL’88 and SDL’92
are used by our industry partner Iskratel d.o.o. for formal specification of concurrent,
reactive, and distributed systems, e.g., MG6114AX (Media Gateway), IC1020AX (IMS Core),
CS6116AX (Call Server, Unified Communications), IE1020AX (IMS Edge), IA1020AX (IMS
AS), and CE6111AX (Compact Call Server).

The SDL system specifications describe the implementation details and are used to
build the production systems. Such specifications contain SDL constructs and additional
extensions that enable developers to include operators that are implemented in other
programming languages. The C programming language is used for low-level or processor

Appl. Sci. 2022, 12, 2990. https://doi.org/10.3390/app12062990 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12062990
https://doi.org/10.3390/app12062990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8401-1465
https://orcid.org/0000-0002-0233-8545
https://doi.org/10.3390/app12062990
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12062990?type=check_update&version=3

Appl. Sci. 2022, 12, 2990 2 of 21

intensive operations. We work mostly on semi-formal specifications of telecommunication
systems, since parts of the system consist of Abstract Data Type (ADT) operators written in
C. Formal verification with the model checking technique can help improve the reliability
of such systems. It can check automatically if the model of the system is in accordance with
the system’s requirements.

Formal verification can be performed by many software tools. We selected a Spin
(Simple Promela Interpreter) tool [10]. It is a software package for verification of complex
concurrent and reactive systems. The model of the system is described in a high-level
language, named Promela (Process Meta Language). Like SDL, Promela adopts the strong
formal basis established in ECFSM (Extended Communication Finite State Machine). Such
systems consist of a finite number of separate components, which act independently one
from another, and interact through the exchange of messages over message channels, or
by memory sharing, via global variables. Message passing can be buffered or unbuffered
(rendezvous channel). Concurrency is asynchronous and modeled by interleaving. There
are no assumptions made on the relative speed of the process executions [11,12]. Properties
can be checked with assertions, accept label, progress label, or LTL (Linear Temporal Logic)
formula that is translated automatically to never-claim. The never-claim process is Büchi
Automata, and can express ω-regular properties. If a system violates a property, Spin
provides a counterexample, i.e., an execution path that violates the property.

Model checking of a complex SDL system is comprised of many steps. First, a model
of the system must be prepared. It could be constructed manually or extracted with some
(semi)automated process. The latter requires less-knowledgeable verification engineers
and is much faster, especially for comprehensive SDL specifications. Research is motivated
by the need of the industry for the formal verification of the SDL systems that are in
production but are still actively developed or fine-tuned to the various local requirements
of the telecommunication markets. The goal is to automate model extraction of real-life
complex SDL specifications that include many timers with a great range of values without
the need of manual abstraction of the timers. Our research focuses on a semi-automated
approach. Before the automated extraction of the model is used, environment of the SDL
system should be modeled to provide the behavior that is required to check the requirement
specification successfully [13]. Automated extraction is based on the formal description
and is methodologically sound [14]. For that, we have prepared a Promela framework for
the abstract SDL machine. It supports predefined and user-defined sorts, a communica-
tion subsystem, multiple process instances, many of the SDL constructs, including SAVE
construct, priority input, and others. Additionally, it includes unique variables—probes.
During the simulation and formal verification, probes monitor if rules of the abstract SDL
machine are broken. To ease editing, examination, syntax and redundancy check, simula-
tion, verification, and to transform a Spin simulation trail into standard Message Sequence
Chart (MSC), our research group is developing the Eclipse Rich Client Platform Integrated
Development Environment for the Spin Model Checker (SpinRCP) [15–17].

In Promela, we do not know the exact time interval that elapses between two events.
Therefore, we can not model systems where correct execution depends on the timing
parameters. This motivated us to check available solutions and try to apply them to our
framework for modeling SDL Systems in Promela, e.g., DT Promela and DT Spin [11,18].
Based on previous experiences with Spin model checker extensions that were not able
to keep up with the mainstream version of Spin, we have formed the following research
question: Can a high-level Discrete Time Model be used with standard Promela to model
a real-life SDL system with timers? Due to various shortcomings of existing solutions,
we have decided to propose a new Discrete Time Model for Promela (DTMP) that could
be added seamlessly to our framework. We have demonstrated use of the DTMP with
the 6.4.6 version of the Spin tool. The research results that are presented in this paper are
implemented in the sdl2pml tool and were verified with an industry-size SDL description of
the complex system [13]. An additional overview of our framework is available in [14,19].

Appl. Sci. 2022, 12, 2990 3 of 21

This paper is organized as follows. Section 2 presents an overview of related work
which includes various extensions of the Spin tool to support modeling of discrete and
dense time. Section 3 gives a detailed description of the proposed DTMP that can be
used with the mainstream version of the Spin tool. Experimental results are presented
and discussed in Section 4. We use models of Fischer’s Mutual Exclusion Protocol and
Parallel Acknowledgment with Retransmission protocol to demonstrate the use of DTMP
and compare the verification results with the DT Promela models from [20]. We conclude
with discussion and directions for further research work.

2. Related Work

G. J. Holzmann, author of the Spin tool, presented an experiment of validating SDL
specifications with Supertrace, the predecessor of the Spin tool [21]. It provided an auto-
matically generated model of an SDL specification. Timers were modeled with Promela
processes that took only subclass of timer behaviors into account. Timeout was considered
as a possibility that is either present or absent without relative timings in the system. Later,
Supertrace was integrated into the tool Sdlvalid [22].

In [11] S. Tripakis and C. Courcoubetis provide formal semantics for untimed Spin
and introduce formal semantics for Real-time Promela (RT Promela). An example of a
quantitative property, that can be checked independently of a specific time unit (dense
time), is: “between event A and event B at least 5 time units should pass” [23]. Their
verification method consists of considering the emptiness of a Büchi automaton that is
extended with a finite number of clocks. RT Promela introduces globally declared clock
variables that could be scalars or arrays. Each statement can be expanded with an optional
time part that acts as a guard. A detailed description is out of the scope of this article, but
it should be noted that this method was implemented as an extension to the Spin tool,
with additional object files which implement the symbolic operations on difference bound
matrices representing real-time information. Fischer’s mutual exclusion protocol was used
as one of the examples to demonstrate the use of RT Promela [11]. As was pointed out
in [24], RT-Spin is not compatible with the partial order reduction algorithm. The tool is not
available for Spin versions later than 2.0. Therefore, we did not investigate its applicability
to the models of the SDL systems.

B. Knaack presented his ongoing research on Real-time model checking based on
timed graphs that would support verification of quantitative aspects of real-time systems
at Spin Workshop [25], but we are not aware of any available Spin extensions that would
implement this research.

H. Tuominen presented modeling of Nokia Telecommunications SDL (NTSDL), which
is a dialect of the SDL [26]. Timers are modeled by the process that receives all requests for
the SET statements. Upon the reception of the request, it sends a timer expiration message
back immediately to the activating process. RESET statement is a procedure that removes
the message associated with the timer expiration from the buffer of the timer process and
the activating process.

D. Bošnački and D. Dams integrated support for Discrete Time Promela into prototype
version of Spin [18,24]. The DT Spin tool is intended for verification of concurrent systems
that depend on timing parameters. It allows quantification of the time elapse between
events, by specifying the time slice in which they occur. In DT Promela, statements of a
process are divided into time slices by putting set and expire at the beginning and the
end of the time slice. The application of DT Promela and DT Spin to model checking SDL
systems is presented in [12]. It is a two-step process. First, the SDL system is translated to
Intermediate Format (IF) with the tool sdl2if that was part of the commercial ObjectGEODE
tool which became unavailable [27,28]. Some SDL constructs, e.g., enabling condition and
continuous signals, are transformed to more primitive constructs. Furthermore, it does
not support dynamically created processes and ADT. All mentioned shortcomings are
overcome in our Promela framework for SDL systems. In the second step the if2pml tool is
used to perform the translation to DT Promela.

Appl. Sci. 2022, 12, 2990 4 of 21

In DT Spin, time is divided into slices of equal length and indexed by natural numbers.
The elapsed time is measured in ticks of a global digital clock that is increased only when
all processes have finished execution of their actions for the current time slice [24]. That
is accomplished with the use of predefined Promela statement timeout that becomes true
when no other statement within the system is executable. Each timer is represented with a
variable of the short data type. Value of the variable defines the number of ticks before
the timer expires at value zero. Expired timer becomes inactive with the variable set to −1.
Extension introduces six macros, that can be used to manipulate the timers (Listing 1):

1. set(tmr,value) is used to activate a timer with the number of ticks set by the value,
2. expire(tmr) evaluates if the timer has expired,
3. reset(tmr) deactivates the selected timer,
4. delay(tmr,value) activates the timer and blocks execution of the process until its

expiration,
5. udelay(tmr) non-deterministically delays execution for an unbounded number of

ticks or continues with execution without delay,
6. bdelay(tmr,val,auxtmr) implements bounded delay with the use of two timer vari-

ables.

Listing 1. DT Spin macros.

1 #define OFF (-1)
2 #define TOVAL (0)
3
4 typedef timer
5 {
6 short val=OFF;
7 }
8
9 #define set(tmr ,value) tmr.val=value

10 #define expire(tmr) (tmr.val==TOVAL)
11 #define reset(tmr) tmr.val=OFF
12
13 #define delay(tmr ,value) set(tmr ,value); expire(tmr)
14 #define udelay(tmr) do :: delay(tmr ,1); ::break; od
15
16 #define bdelay(tmr ,val ,auxtmr) \
17 set(tmr ,val);\
18 do \
19 :: expire(tmr) -> break \
20 :: else -> if :: break; :: delay(auxtmr ,1); fi\
21 od
22
23 active proctype __Timers ()
24 {
25 end__Timers: do :: timeout od;
26 }

Timers of a simple SDL system could be modeled in DT Promela only with the macros
set, reset, and expire. In SDL, expired timer appears as a signal in the input port of the
process instance. In [12] the authors describe how to use DT Promela timers (variables) to
model timers in SDL (signals). For each timer, expiration is modeled with an additional
guard for the timer expiration at choice statements that correspond to the states with no
outgoing transitions. If the timer should be discarded, transition is made to the same
state, otherwise, transition is taken upon timer expiration. In SDL, time advances only
when there is no possible transition, therefore this presents an equivalent model. However,
to implement support for timer parameters, save construct, asterisk state, asterisk input,
implicit transition, and enabling condition fully, our framework models timers as signals. A
timer can be associated with parameters that are defined with expressions at the Set-node.
The value of evaluated expression is received as a signal parameter at the expiration of
the timer.

The latest update of DT Spin at our disposal is an extension of the Spin tool version
4.1.1 that was kindly provided by the authors during the initial development of our Promela
framework for SDL systems. DT Promela is supported by the sdl2pml tool, but the expiration

Appl. Sci. 2022, 12, 2990 5 of 21

of a timer is modeled with signals, e.g., ::expire(tmr) -> process_input_queue!tmr(
_pid, parameter1, parameter2, ...).

To the best of our abilities, we did not find research papers that would include real-life
SDL systems. Most of the research is based on simplified SDL models.

3. Discrete Time Model for Promela

An SDL specification is comprised of different types of constructs which should all
be supported by the selected formal verification environment. This article focuses on
modeling the SDL timer construct. It is one of the SDL constructs that is not modeled easily
with Promela, but is present in many SDL systems [29–32]. A timer is an item owned by
an process that causes a timer expiration signal to occur at a specified time at the input
queue of the process [3]. In SDL TIME and DURATION are predefined data sorts with real
values. In SDL real values can be presented by one integer divided by another, i.e., rational
numbers. The origin of time is system dependent. TIME values are used to set the expiry
time of timers. DURATION is used for the values to be added to timers and as the result of
the difference between TIME values [2,3].

Real numbers are abstracted with integers in the Promela model of the SDL system.
Therefore, only the integer readings of the actual times with respect to a digital clock are
recorded in the trace. DTMP implements a fictitious-clock where multiple ticks can be
inserted between the events. It records the same order of the real-time events, but there are
no silent events inserted between the events in the trace as they are in DT Promela [18,33].

DTMP was inspired with the SDL notion of time, definition of timers, and its commu-
nication model. A timer in SDL is owned by a process instance and can be active or inactive.
An active timer returns a timer expiration message to the owning process instance at a
specified time. Each process can have multiple timers and process instances. In DTMP, each
timer is assigned a unique Timer Identification Number (TID). Our framework supports
dynamic creation of process instances. If a maximum number of instances is not defined
in an SDL specification, we set it to 1 [34]. We acknowledge that this is not in accordance
with [2], where the maximum number, if not defined, should be unbounded. Therefore, we
encourage that the expected number of allowed instances are defined explicitly in the SDL
description of the system.

Figure 1 illustrates the basic idea of the DTMP. We have introduced a static Monitor
process that manages all timers. A timer is declared as a signal with the unique TID that
is defined globally with #define directive. Each process can include multiple definitions
of timers. When a process activates a timer, it sends a message with TID and the value
of the timer to the predefined rendezvous channel chan__timeout. This message can be
extended with the optional timer parameters. The timer can be reset in a similar manner.

Process 3

Process 2

Process 1

Process 1 input queue

Process 2

Process 3

channel

TIMEOUT

SET, RESET

Monitor

Monitor

Figure 1. Basic idea of Discrete Time Model for Promela.

Appl. Sci. 2022, 12, 2990 6 of 21

Time advances when no other statement within the system is executable. When the
predefined Promela timeout event occurs the Monitor process sends messages to the input
queues of all processes with expired timers. The input queue of the process instance is
modeled with an associated Promela message channel. At each timeout event more than
one timer can expire. This is in accordance with the SDL interpretation of timers and input
queue management. DTMP extends an untimed Promela model with:

1. some temporary variables,
2. the synchronous communication channel chan__timeout,
3. timer manipulation inline functions set and reset,
4. the Monitor process,
5. timer expiration inline function send_to_channel.

Simple models can be prepared manually. Most of the DTMP functionality can be
included with the dtmp.pml right before the proctype definitions. Only some macros and
inline function send_to_channel has to be modified exclusively for each model of the SDL
system. Contents of the dtmp.pml are shown in Listings 2 and 3.

The TIMER_NUM__DATA_TYPE limits the number of available timers in the model to the
range of the byte data type. This can be increased, if needed, but is best kept to a minimum
range. It defines the size of the array of timers that is stored by the Monitor process.

A timer is active if its value is greater than zero. The TIMER_VAL__DATA_TYPE is
synonym for the short data type and defines the domain of timer values. If necessary,
this can be changed to int which is the largest data type supported by Promela within the
channel initializer [10]. Next, globally defined temporary variables are defined that are used
by the Monitor process. They are excluded from the state descriptor during verification
with the keyword hidden (lines 3–8).

When a timer is set or reset, processes communicate with the Monitor over the pre-
defined synchronous channel CHAN_TIMEOUT_PROC, which is a synonym for the channel
definition chan__timeout (Listing 2, lines 10–11). The number of the timers supported
by the channel is limited by the TIMER_NUM__DATA_TYPE. Processes activate the selected
timer with an inline function set. The body of the inline function is inserted directly into
the body of the process as a replacement text for a symbolic name with parameters. It
sends the TID (tmr) and its value (value) to the CHAN_TIMEOUT_PROC channel. Next, the
Monitor returns the execution to the sending process with the return of the same signal.
This prevents interleaving of processes during this statement. The timer can be reset with
the reset inline function that sets timer value to 0. Additionally, the model of the SDL
framework has to ensure that all pending timer expiration messages are removed from the
input queue of the owning process instance.

Listing 2. dtmp.pml, part 1: Macros, variables, channel, inline send, and inline reset.

1 #define TIMER_NUM__DATA_TYPE byte
2 #define TIMER_VAL__DATA_TYPE short
3 hidden TIMER_VAL__DATA_TYPE unimportant_val;
4 hidden TIMER_NUM__DATA_TYPE tmp_timer_id;
5 hidden TIMER_NUM__DATA_TYPE tmp_counter;
6 hidden TIMER_NUM__DATA_TYPE min_val_index;
7 hidden TIMER_VAL__DATA_TYPE tmp_timer_id_val;
8 hidden TIMER_NUM__DATA_TYPE tmp_channel_offset;
9

10 chan chan__timeout =[0] of {TIMER_NUM__DATA_TYPE ,TIMER_VAL__DATA_TYPE };
11 #define CHAN_TIMEOUT_PROC chan__timeout
12
13 inline set(tmr ,value) { CHAN_TIMEOUT_PROC!tmr(value);
14 CHAN_TIMEOUT_PROC?tmr(unimportant_val); }
15 inline reset(tmr) { CHAN_TIMEOUT_PROC!tmr (0);
16 CHAN_TIMEOUT_PROC?tmr(unimportant_val); }
17
18 show bool pv__proc_full_queue_error = false;
19 show bool pv__runtime_error = false;
20 show bool pv__timeout_send_error = false;

Appl. Sci. 2022, 12, 2990 7 of 21

Listing 3. dtmp.pml, part 2: Definition of process Monitor.

1 active proctype Monitor (){
2 TIMER_VAL__DATA_TYPE timers_val[NUMBER_OF_TIMERS];
3 do
4 :: atomic { CHAN_TIMEOUT_PROC?tmp_timer_id(tmp_timer_id_val);
5 timers_val[tmp_timer_id] = tmp_timer_id_val;
6 CHAN_TIMEOUT_PROC!tmp_timer_id(tmp_timer_id_val);}
7 }
8 :: atomic { timeout -> printf("MSC:␣TO\n");
9 atomic {

10 tmp_counter = 0;
11 min_val_index = 0;
12 do
13 :: tmp_counter < NUMBER_OF_TIMERS ->
14 if
15 :: timers_val[min_val_index] == 0 -> min_val_index ++; tmp_counter ++
16 :: (timers_val[tmp_counter] < timers_val[min_val_index] && \
17 timers_val[tmp_counter]!= 0) ->
18 min_val_index = tmp_counter;
19 tmp_counter ++;
20 :: else -> tmp_counter ++;
21 fi;
22 :: else -> break;
23 od;
24 }
25 tmp_counter = 0;
26 if
27 :: min_val_index == NUMBER_OF_TIMERS -> skip;
28 :: else ->
29 do
30 :: ((tmp_counter < NUMBER_OF_TIMERS) && (timers_val[tmp_counter] == \
31 timers_val[min_val_index])) ->
32 if
33 :: (timers_val[tmp_counter] != 0) ->
34 send_to_channel(tmp_counter);
35 if
36 :: tmp_counter == min_val_index -> skip; tmp_counter ++;
37 :: else -> timers_val[tmp_counter] = 0; tmp_counter ++;
38 fi;
39 :: else -> tmp_counter ++;
40 fi;
41 :: tmp_counter == NUMBER_OF_TIMERS -> break;
42 :: else -> tmp_counter ++;
43 od;
44 tmp_counter = 0;
45 do
46 :: tmp_counter < NUMBER_OF_TIMERS ->
47 if
48 :: ((timers_val[tmp_counter] != 0) && (tmp_counter != min_val_index)) ->
49 timers_val[tmp_counter] = timers_val[tmp_counter] - timers_val[min_val_index];
50 :: else -> skip;
51 fi; tmp_counter ++;
52 :: tmp_counter >= NUMBER_OF_TIMERS -> break;
53 od;
54 timers_val[min_val_index] = 0;
55 fi;
56 tmp_counter = 0;
57 min_val_index = 0
58 }
59 :: pv__proc_full_queue_error == true -> assert(false);
60 :: pv__runtime_error == true -> assert(false);
61 :: pv__timeout_send_error == true -> assert(false);
62 od;
63 }

The Monitor process executes in a loop (Listing 3). It includes five option statements
(guards). Executed statements are selected non-deterministically between the executable
guards. The first option statement (lines 4–7) checks if a signal with two parameters can be
received at the CHAN_TIMEOUT_PROC channel. This happens when some process changes the
value of one of its timers. Timer identification number and value of the timer are stored in
temporary variables tmp_timer_id and tmp_timer_id_val, respectively. Next, the value
of the timer is stored in the timers_val array where TID is used as an index. Finally, the
execution is transferred back to the sender. The whole option has to be executed as an
atomic sequence.

Appl. Sci. 2022, 12, 2990 8 of 21

The second option statement is executed when all processes are blocked and a prede-
fined Promela timeout event occurs. Then, timers that should expire are found. Figure 2
presents the expiration of timers in DTMP graphically. In this example, four timers (t1, t2,
t3, t4) are active. Their values are 4, 6, 10 and 6. A timer is inactive when its value is equal to
0. At each timeout event, timers that hold the minimum value are found. In the presented
example, the timer t1 expires at the first timeout event. To ensure correct expiration order,
the value of t1 is subtracted from the remaining active timers. Next, timers t2 and t4 should
expire, but timers t1 and t4 are set to 8 and 5, respectively, before the next timeout event.
Therefore, timer t3 expires the next timeout event. The values of the remaining active
timers (t1, t4) are decreased by 4.

10

6

6

4 0

2

6

2

8

0

4

5

timeout

Figure 2. Expiration of timers.

Process Monitor finds the minimal expiration value of active timers by exploring the
array of timers timers_val with the help of temporary index tmp_counter (Listing 3, lines
12–23). The first option statement of the if selection construct skips deactivated timers.
The second option statement is executable if the active timer at the current temporary
index has a new minimal expiration value. Then, variable min_val_index is updated with
the TID. When NUMBER_OF_TIMERS is reached, the search is completed. Next, the inline
send_to_channel is used to send a timer expiration messages (lines 29–43). The inline
send_to_channel is adapted to the input queue of every process. Finally, values of all
active timers are decreased (lines 45–53).

The maximum possible number of timers (NUMBER_OF_TIMERS) is acquired with the
static analysis of the SDL specification. It is computed as follows:

proct

∑
n=1

num_tmr_procn ∗max_instn, (1)

where

• proct—is the number of process definitions in a model that include timers,
• num_tmr_procn—is the number of timer definitions in the n-th process, and
• max_instn—is the maximum number of instances of the n-th process.

The Monitor process also reports unexpected values of the automatically inserted
probes that monitor execution of the Promela framework for the abstract SDL machine as
defined in [14] (lines 59–61). If the input queue of the process is full, probe pv__proc_full_
queue is activated. Probe pv__runtime_error detects errors in the Promela model of the
SDL system. Probe pv__timeout_send_error detects addressing errors.

During the static analysis of the SDL specification all signals are enumerated. The
timer expiration signals are identified in the Promela model with the use of TID. The range
of TIDs is defined by the subset of the enumerated SDL signals:

• TMR_BEGIN_INDEX—TID of the first timer,
• TMR_END_INDEX—next free signal number in the model.

For each process we define similar macros where a unique prefix defines the location
of the process within the SDL structure:

• prefix__TMR_START_INDEX—TID of the first timer used by the process,

Appl. Sci. 2022, 12, 2990 9 of 21

• prefix__TMR_END_INDEX—value of the next free TID, and
• prefix__TMR_NUMBER—number of the timers in the process.

For example, the number of timers in the process P that is part of the block B would be
defined in B__P__TMR__NUMBER. We have automated static analysis of the SDL specification
and the definition of macros with the sdl2pml tool [19].

The Promela channel that models the SDL input queue of the specific SDL process
should support reception of all possible SDL signals with parameters, including timer
expiration signals. Therefore, the channel definition that models the input queue of a
specific SDL process can be unique. If the process can have more than one instance, an
array of channels is defined. Consequently, the definition of the inline send_to_channel
has to be adapted for each system. It sends timer expiration messages to all process
instances that include timers.

Listing 4 presents part of the inline that was generated by the sdl2pml tool for the
real-world SDL system described in [13]. It includes only a small part of the inline definition
that is dedicated to the process L3netA in the block L3. It demonstrates how macros are
used to send a timer expiration message to the right process instance.

Let us assume that this particular system includes 49 SDL signals that are not associated
with timers. Additionally, the specification permits five instances of the SDL process L3netA
that utilizes four timers T1-T4. Imagine that process L3netA is the second process that
is assigned TIDs and that the first analyzed process has only one instance that utilizes
10 timers. The following macros would be defined:

• #define TMR_BEGIN_INDEX 50—number of the signal that represents first TID,
• #define L3__L3netA__TMR_START_INDEX 60—number of the signal that represents

the first timer used by the process L3netA,
• #define L3__L3netA__TMR_END_INDEX 80,
• #define L3__L3netA__TMR_NUMBER 4—number of utilized timers by each process

instance,
• chan__L3__L3netA 2—the channel that models the input queue of the SDL process.

The first guard in the inline send_to_channel (Listing 4 checks if an expired timer
is associated with the process L3netA. This is done by checking if the TID is within the
expected range of values for all process instances (3–4). If this is not the case, probe
pv__timeout_send_error is set to true, which triggers error at the Monitor process.

Listing 4. Definition of inline send_to_channel.

1 inline send_to_channel(tmr_id) {
2 if
3 ::(((tmr_id >= (L3__L3netA__TMR_START_INDEX - TMR_BEGIN_INDEX)) && \
4 (tmr_id < (L3__L3netA__TMR_END_INDEX - TMR_BEGIN_INDEX)))) ->
5 tmp_channel_offset = tmr_id - (L3__L3netA__TMR_START_INDEX - TMR_BEGIN_INDEX);
6 if
7 :: tmp_channel_offset != 0 ->
8 tmp_channel_offset = (tmp_channel_offset / L3__L3netA__TMR_NUMBER);
9 :: tmp_channel_offset == 0 -> skip;

10 fi;
11 tmp_timer_id = TMR_BEGIN_INDEX + (tmr_id - tmp_channel_offset*L3__L3netA__TMR_NUMBER);
12 if
13 :: table_channum_ptr[chan__L3__L3netA[tmp_channel_offset]] == cv__buff ->\
14 pv__proc_full_queue = true;
15 ::else ->
16 chan__L3__L3netA[tmp_channel_offset]! tmp_timer_id(_pid ,undefined__T_DChnlData ,\
17 undefined__T_N_ISDNFrame ,undefined__T_N_ISDNHead ,pcv__null ,pcv__null);
18 table_channum_nsp[chan__L3__L3netA[tmp_channel_offset]].\
19 data[table_channum_ptr[chan__L3__L3netA[tmp_channel_offset]]]. name = tmp_timer_id;
20 table_channum_ptr[chan__L3__L3netA[tmp_channel_offset]]++;
21 fi;
22 ::else -> pv__timeout_send_error = true; /* error - channel not found */
23 fi
24 }

Appl. Sci. 2022, 12, 2990 10 of 21

Next, the channel offset has to be calculated for the process instance that owns the
expired timer. Channel offset for the first instance of the process is equal to zero and
increases by one for each new process instance. If the TID of the expired timer is 25,
variable tmp_channel_offset is assigned the number of the timer within the model of the
process, 25− (60− 50) = 15. This represents timer T4 in the fourth instance of the process.
Channel offset is obtained by dividing this number with the number of utilized timers by
each process instance, b15/4c = 3 (line 8). In our example, calculated offset is associated
with the fourth instance, as expected. Now, the number of the timer expiration message
is calculated. Each timer is assigned only one unique timer expiration message number
that is used by all process instances, 50 + (25− 3 ∗ 4) = 63 (line 11). Message numbers
50–9 are assigned to the first analyzed process. For the timers utilized by process L3netA
the following numbers are used: T1↔ 60, T2↔ 61, T3↔ 62, T4↔ 63. This confirms that
timer T4 expired.

Constant value cv_buff defines the capacity of the message channel that models the
SDL input queue of the process. To optimize the state-space of the model it should be kept
to the minimum. By default the sdl2pml tool sets it to 4. However, if this limit is reached
during the run of the system, execution of the model is not sound. If the input queue of
the process is full, probe pv__proc_full_queue is activated and the process Monitor stops
the evaluation of the model, due to the false assertion (line 14), and the buffer should be
increased before the next run. If everything is in order, a timer expiration message is sent to
the associated message channel chan__L3__L3netA with the calculated channel offset. The
associated message channel should be able to receive data types from all signals used by
the process, not just timers. During the analysis of the SDL system the sdl2pml tool obtains
all SDL sorts used by the signals associated with the process and defines messages with a
minimal number of fields, such that appropriate Promela data types for all used messages
are included. Promela channel chan__L3__L3netA supports seven fields. Since the process
does not use timers with parameters, most of the fields are not used and are just substituted
with dummy values. After the message is delivered, the tables table_channum_nsp and
table_channum_ptr are updated, which are part of the framework for modeling INPUT and
SAVE SDL constructs.

We acknowledge that a manual construction of Promela model for larger SDL systems
would be time consuming and error-prone. Therefore, the use of automated tools is
recommended, such as sdl2pml [19]. During the static analysis of the SDL-specification
all indexes for timers are calculated and analysis of process input queues is performed.
It is followed by the extraction of the Promela model from the SDL system. DT Promela
and DTMP are supported within our framework. Input to the sdl2pml consists of an SDL-
specification file, command-line options, and a configuration file sdl2pml.conf. The latter
can redefine values for some build-in parameters. Command-line options include support
for predefined and user-defined probes as described in [34]. Additionally, a user can change
many parameters of the automated generation of a model, e.g., default size of the channel
buffer. All algorithms are implemented in C++ programming language and are based
on their formal specifications in [34,35]. Now, simulation and verification can be run as
described in [13].

This concludes the description of proposed DTMP. In the next section we demonstrate
how DTMP can be simplified when the system under study is not complex.

4. Experimental Results

We have decided to check the time-space complexity of the formal verification with
models of the Fischer’s Mutual Exclusion Protocol (FMEP) and the Parallel Acknowledg-
ment with Retransmission (PAR) that were used in prior studies [11,24,36]. Modification
of existing models will demonstrate the applicability of DTMP for non-SDL systems and
expose some of its virtues and shortcomings compared to the DT Promela.

Appl. Sci. 2022, 12, 2990 11 of 21

4.1. Fischer’S Mutual Exclusion Protocol

Pseudo code for the well-known Fischer’s Mutual Exclusion Protocol is shown in
Listing 5 [37]. Atomic operations are written between “<” and “>”. The critical section
and the code that is not part of the mutual exclusion protocol must not modify any variable
used by the algorithm. The await <x == 0> should be interpreted as while ¬ <x ==
0> do skip. The algorithm is executed by a process with the unique identifier n. The
delay operation must be long enough that process m, which evaluated its await statement
before n executes x = n, can complete statement x = m. In this case, process n will not
enter the critical section and will wait for the next opportunity.

Listing 5. Pseudo code of the Fischer’s protocol.

1 repeat
2 <not critical section >
3 repeat
4 await <x == 0>
5 <x = n >
6 <delay >
7 until <x == n >
8 <critical section >
9 until false

Listing 6 shows the DT Promela model for FMEP that is based on the model available
at [20]. Processes are created within initial process init (lines 21–26). The presented model
has five process instances: P(0), P(1), P(2), P(3), and P(4) that execute concurrently.
At the beginning, the value of the shared variable x is zero. After unbounded delay, the
executing process instance checks if the value of the x variable is zero. If this is the case, it
assigns x its identification value of id + 1. Next, the process waits for deltaC ticks to enable
competing process instance to enter the critical section (line 14). Before it enters into the
critical section, it checks if it is still available—the value of the shared variable x still holds
its identification value. If that is the case, the process enters the critical section. It stays in
the critical section for an unbounded delay. Before it leaves the critical section, it sets the
shared variable x to zero.

Listing 6. DT Promela model of the Fischer’s Mutual Exclusion Protocol.

1 #include "dtime.h"
2
3 #define N 5
4 #define deltaB 1
5 #define deltaC 2
6
7 byte x, in_crit;
8
9 proctype P(byte id){

10 timer y, y1;
11 do
12 :: udelay(y);
13 x == 0 -> atomic{delay(y1 ,deltaB) -> x = id+1;}
14 atomic{ delay(y, deltaC); } ->
15 atomic{ x == id+1; in_crit ++; } ->
16 udelay(y1);
17 atomic{ x = 0; in_crit -- }
18 od
19 }
20
21 init
22 {
23 atomic {
24 run P(0); run P(1); run P(2); run P(3); run P(4);
25 }
26 }
27
28 never {
29 do
30 :: in_crit > 1 -> break;
31 :: skip
32 od
33 }

Appl. Sci. 2022, 12, 2990 12 of 21

We have verified the model with the declaration of a temporal claim. The never-claim
is used most commonly to specify behavior that should never happen. Only statements that
can have a side effect on the system state are not allowed. If claim is present in the model
of the system, each step along the execution path consists of a pair of transitions. First, the
claim automaton is executed. The second transition is from one of the active processes. If
the claim automaton does not have any executable transitions, the search along this path is
stopped. The search then backtracks and explores other executions. The claim is defined as
a series of propositions, or boolean expressions, on the system state that must become true
for the behavior of interest to be matched. A never claim can be used to match either finite
or infinite behaviors. Finite behavior is matched if the claim can reach its final state. In our
case, this happens if the variable in_crit is greater than 1 which indicates that more than
one process has entered the critical section (lines 28–33).

Listing 7 shows the DTMP of FMEP, without never claim and init process, which are
the same as in the DT Promela model of the protocol. The expiration of a timer is modeled in
DTMP with a message. Here we follow rules that are explained in Section 3. Because there
are no other signals, PROC_P__TIMER_START_IND starts at 0. The PROC_P__TIMER_END_IND
is set at the maximum number of timers. We have decided that each process will use
two timers and PROC_P__TIMER_NUM is set accordingly. Input queues for the process in-
stances are modeled with the array of channels chan__P. It suffices that associated channels
chan__P[id] store only one message of the type TIMER_NUM__DATA_TYPE. The size of the
array is the same as the number of process instances. In an attempt to prepare as similar a
model to the DT Promela version as possible, we have modeled expire, delay, and udelay
statements (lines 8–10).

Construction of the inline send_to_channel might have seemed complicated when
the SDL framework was used (Listing 4), but here it is shown that its preparation can be
straightforward for simpler models (lines 12–28). Timer identification number is used to
find the process that owns the timer. First guard checks if TID is within defined limits (line
14). If this is the case, temporary variable tmp_channel_offset is assigned the index of
the timer in the array of timers. This has to be divided by the number of timers used by
each process. TID 0 and 1 are assigned to the process with ID 0, TID 2 and 3 are assigned to
process with ID 1, etc. Next, the buffer of associated process is checked to see if it is within
expected limits, and a timer expiration signal is sent to the selected channel. The model of
the process P is very similar to the DT Promela model. Timers y and y1 are assigned TID
at the start of the process. Now, a mainstream version of Spin can be used to verify the
protocol formally.

To demonstrate the use of the Spin 6.4.6 and the SpinRCP 3.1.0 we have set deltaB to
the value of 2 in the model with three active processes. Figure 3 shows the beginning of the
MSC diagram for the guided simulation of the execution trail that violated the condition
that only one process can enter the critical section. Process P[2] sets TID 4 to the value
of 1 (deltaB). Process Monitor updates the timers_val table and returns the execution to
the process. Next, timers with TID 2 and 0 are set to the same value. After the Promela
timeout statement, process Monitor checks which timers are about to expire. Since all of
the timers have expiration value 1, they all expire, and owning processes are sent the timer
expiration message. The execution of the guided simulation was interrupted during the
update of the array of timers, right before the update of the timers_val[0] which still
holds the value of the expired timer. The timer expiration messages are not displayed in
the MSC diagram because they have not been received by the processes thus far. They are
still in the associated channels that hold the TID of the expired timers (Figure 3).

Appl. Sci. 2022, 12, 2990 13 of 21

Listing 7. DTMP of the Fischer’s Mutual Exclusion Protocol.

1 #define PROC_P__TIMER_START_IND 0
2 #define PROC_P__TIMER_END_IND 10
3 #define PROC_P__TIMER_NUM 2
4 #define cv_buff 2
5 #define NUMBER_OF_TIMERS 10
6 chan chan__P [5] = [1] of {byte};
7
8 inline expire(tmr) { chan__P[id]?<eval(tmr)> -> chan__P[id]?tmr}
9 inline delay(tmr ,value) { set(tmr ,value); expire(tmr); }

10 inline udelay(tmr) { atomic{ do :: delay(tmr ,1); ::break; od } }
11
12 inline send_to_channel(tmr_id){
13 if
14 :: ((tmr_id >= PROC_P__TIMER_START_IND) && (tmr_id <= PROC_P__TIMER_END_IND)) ->
15 tmp_channel_offset = (tmr_id - PROC_P__TIMER_START_IND);
16 if
17 :: tmp_channel_offset != 0 ->
18 tmp_channel_offset = (tmp_channel_offset / PROC_P__TIMER_NUM);
19 :: tmp_channel_offset == 0 -> skip;
20 fi;
21 if
22 :: len(chan__P[tmp_channel_offset]) == cv_buff -> pv__proc_full_queue_error = true;
23 :: else -> chan__P[tmp_channel_offset]! tmr_id;
24 fi
25 :: else -> pv__runtime_error = true;
26 fi;
27 tmp_channel_offset = 0;
28 }
29
30 #include "dtmp.pml"
31
32 #define N 5
33 #define deltaB 1
34 #define deltaC 2
35 byte x, in_crit;
36
37 proctype P(byte id){
38 TIMER_NUM__DATA_TYPE y, y1;
39 atomic{
40 y = (id * PROC_P__TIMER_NUM) + 0;
41 y1 = (id * PROC_P__TIMER_NUM) + 1;
42 }
43 do
44 :: udelay(y); x == 0 -> atomic{delay(y, deltaB); x = id + 1;}
45 atomic { delay(y, deltaC); } ->
46 atomic {x == id + 1 -> in_crit ++;} ->
47 udelay(y);
48 atomic{ x = 0; in_crit --; }
49 od;
50 }
51
52 never{
53 do
54 :: in_crit > 1 -> break;
55 :: skip
56 od
57 }
58
59 init {
60 atomic {
61 run P(0); run P(1); run P(2); run P(3); run P(4);
62 }
63 }

Appl. Sci. 2022, 12, 2990 14 of 21

Figure 3. Formal verification with Spin and SpinRCP.

A detailed analysis revealed that process P[1] and P[2] entered the critical section
concurrently. As shown, SpinRCP can display global and local variables and the contents
of channel queues. Additionally, the display of the MSC can be optimized with the virtual
processes, selected channels can be ignored or followed explicitly [16].

We have performed exhaustive exploration with Partial Order Reduction (POR) of
both models. We have used DT Spin 4.1.1, Spin 4.1.1, and Spin 6.4.6, all with hash-table
size of 218, so that memory usage can be compared. We have performed eight verification
runs with each tool. Valid execution of the protocol depends on the value of the timers.
The value of deltaC must be greater than the value of deltaB. Verification confirmed than
only one process can enter into the critical section concurrently. Verification results of the
DTMP model with both versions of Spin were very similar. Table 1 summarizes results for
the DT and mainstream version of Spin 4.1.1. It presents the number of states, number of
transitions, state-vector size, memory usage, and time required for formal verification of
models. The parameter N presents the number of concurrent processes. Additionally, to
check the effect of higher timer values, we have increased the value of deltaC from 2 to 16.
The deltaB variable was always equal to the default value of 1.

When deltaC was increased to 16, the fictitious clock of DTMP has generated a
noticeably lower number of states. Additional communication and execution of the Monitor
process generated more transitions. As expected, for this type of protocol, DT Spin’s low-
level implementation of discrete time outperforms the high-level approach of the DTMP.

Appl. Sci. 2022, 12, 2990 15 of 21

However, DTMP is part of the SDL framework for the semi-automated model extraction
from the SDL system.

Table 1. Results for Fischer’s Mutual Exclusion Protocol for DP Promela and DTMP.

Tool
Options and Parameters Formal Verification Results

deltaC N Option States Transitions State-Vector [B] Memory [MB] Time [s]

DT Spin 4.1.1
(DT Promela)

2

2 POR 212 275 36 1.253 0.000

3 POR 1880 2579 44 1.253 0.004

4 POR 15,502 23,141 52 1.970 0.012

5 POR 123,076 201,961 60 8.114 0.132

16

2 POR 436 527 36 1.253 0.000

3 POR 4316 5477 44 1.356 0.004

4 POR 37,790 50,525 52 2.994 0.036

5 POR 307,736 433,591 60 18.457 0.352

Spin 4.1.1
(DTMP)

2

2 POR 184 308 64 1.253 0.000

3 POR 1751 3751 84 1.484 0.008

4 POR 16,094 42,110 100 2.578 0.072

5 POR 147,753 456,389 116 14.546 0.776

16

2 POR 268 420 64 1.356 0.000

3 POR 2885 5431 84 1.676 0.012

4 POR 26,678 59,694 100 3.839 0.156

5 POR 232,803 615,429 116 22.725 1.540

4.2. Positive Acknowledgment with Retransmission Protocol

The PAR protocol was described in [38]. It is a one-way data-link protocol used over
unreliable transmission channels StoR and RtoS that connect the sender and the receiver.
When a message is sent to the channel, three things can happen [36]:

1. the message is transfered correctly,
2. the message is corrupted in transit,
3. the message is lost.

Each time the message is sent to the StoR channel, the sender starts a timer. The
sender waits for an acknowledgment before the new message is sent. Protocol uses only a
positive type of acknowledgment. The message is re-transmitted at period of To until the
receiving host acknowledges reception of the message. Premature expiration of the timer
can disturb the functioning of the protocol, since duplicates of the message would be sent
before positive acknowledgement managed to reach the sender. Consequently, there can be
multiple acknowledgments in the channel RtoS. If the next message is lost in the channel
StoR, the sender will mistakenly interpret the received acknowledgment as a confirmation
of the successful transfer of the lost message. Therefore, the re-transmission period should
be greater than the delays in both channels and the message processing time at the receiver.

The DT Promela model of the PAR protocol is shown in Listing 8 [20]. It consists of
two process definitions, Sender and Receiver. Process instances are created during system
initialization. Delay of the StoR channel is defined by the dK variable, while variable
dL defines the delay of the RtoS channel. The value of the variable dR defines message
processing time at the Receiver. The sum of both channel delays and the Receiver’s mes-
sage processing time defines the minimum period of re-transmission, To > (dK + dL + dR).
Message values are calculated as modulo of number 8, which is defined by the MAX.

Appl. Sci. 2022, 12, 2990 16 of 21

Listing 8. DT Promela model of PAR protocol.

1 #include "dtime.h" /* timed features */
2
3 #define ACK 1
4 #define dK 3
5 #define dL 3
6 #define dR 1
7 #define To 8
8 #define MAX 8 /* max number of different messages */
9

10 chan StoR = [1] of {byte , bit} /* channels */
11 chan RtoS = [1] of {bit}
12
13 proctype Sender(chan in , out)
14 {
15 timer sc;
16 byte mt; /* message data */
17 bit sn=0; /* sequence number */
18
19 R_h: udelay(sc); /* unbounded start delay */
20 mt = (mt+1)% MAX; /* input from the upper layer */
21
22 S_f: delay(sc,dK);
23 out!mt,sn; /* send and delay in channel StoR */
24 set(sc,To -dK);
25
26 W_s: do
27 :: in?_ ->
28 if
29 :: atomic{skip; delay(sc , 1);
30 sn=1-sn; goto R_h;}; /* ack is OK */
31 :: atomic{printf("MSC:␣ACKerr\n");
32 goto S_f};
33 fi;
34 :: expire(sc) -> goto S_f; /* timeout */
35 od;
36 }
37
38 proctype Receiver(chan in, out)
39 {
40 timer rc;
41 show byte mr; /* received message */
42 show byte me=1; /* expected message */
43 bit rsn , esn=0; /* received and expected sequence number */
44
45 W_f: in?mr,rsn;
46 if
47 :: rsn == esn -> goto S_h; /* correct message and seq. num */
48 :: rsn == 1-esn -> goto S_a; /* correct message , wrong seq. num */
49 :: atomic{printf("MSC:␣MSGerr\n"); goto W_f;};
50 fi;
51
52 S_h:
53 assert(mr == me); /* expected message received */
54 delay(rc ,dR); /* message processing delay */
55 atomic{esn = 1-esn; me = (me+1)% MAX};
56
57 S_a: atomic{delay(rc , dL); out!ACK}; /* send and delay in channel RtoS */
58 atomic{delay(rc , 1); goto W_f;};
59 }
60
61 init
62 {
63 atomic{
64 run Sender(RtoS , StoR);
65 run Receiver(StoR , RtoS);
66 }
67 }

Processes exchange messages using channels. The Receiver process accepts messages
from the Server process through the StoR channel that can store one message with two
fields, one for the value (byte) and one for the sequence number (bit). Sequence number is
used as the positive acknowledgement that the Server process receives from the Receiver
process over the RtoS channel.

After unbounded delay the Sender generates next message (line 19). Before message
value mt and sequence number sn is sent to the StoR channel, the delay in the channel is

Appl. Sci. 2022, 12, 2990 17 of 21

modeled with delay of the dK ticks (line 22). Next, timer sc is set to expire at retransmission
period To. Sender now waits for the reception of acknowledgment (line 27–33) or expiration
of the retransmission period.

If any signal is received before timer sc expires, it is decided non-deterministically
if positive acknowledgment is received or an error is reported and retransmission of the
message and the sequence number is started at the label S_f. If acknowledge is accepted,
execution is delayed for one tick and a new sequence number is calculated. Execution
continues at the label R_h with the calculation of the new message value. If no signal has
been received until retransmission period To (timer sc has expired), the execution continues
at label S_f with the retransmission of the signal.

At the Receiver process, the received sequence number rsn is compared to the ex-
pected sequence number esn (lines 45–50). If they match, received message value rm is
compared to the expected message value em. For this, an assert statement is used (line 53).
Violation of this safety property would be reported during the verification and simulation
run. Next, execution is delayed for message execution processing delay dR. It is followed
with the calculation of the next expected sequence number and message value. After the
delay of dL ticks in the channel RtoS, acknowledgment is sent to the Sender. Now, the
Receiver process is ready to receive the next signal after the delay of one tick. Notice
how statements in DT Promela are divided into time slices by putting set and expire at the
beginning and the end of the time slice.

DTMP of the PAR protocol is shown in Listing 9. The system uses only two timers,
one for each process. At initialization, each process is assigned identification number,
defined as sender and receiver. These numbers are also used as timer identification
numbers. Signal ACK is assigned the next free signal identification number. The StoR
channel can hold one message with three fields reserved for the data (byte), sequence
number (bit), and TID (TIMER_NUM__DATA_TYPE). Channel RtoS can hold one message
with TIMER_NUM__DATA_TYPE field. Compared to the DT Promela model, which uses data
type bit, in the DTMP model this field is shared by the ACK and the TID. Specification of the
Sender and Receiver processes is the same as in the DT Promela model.

When Promela timeout occurs, the Monitor process finds timers with the lowest
expiration numbers and sends timer expiration messages to the associated processes. If only
one timer is used by the process specification, inline send_to_channel can be simplified
greatly, as is shown in Listing 9 (lines 10–16). An expiration message is sent to the process
which has the same ID as the TID. Inline expire has to take into account that processes
use channels with different numbers of fields (lines 17–22). Guards evaluates which timer
has expired and executes the correct receive statement. Inlines delay and udelay and are
modeled in the same way as in the DT Promela model.

To check the influence of timer values on the time-space of the formal verification, we
have increased the values of the delays tenfold for each additional verification run. We
have tracked the number of verification states, transitions, size of the state-vector, required
memory, and execution time. The results presented in Table 2 show that the required
resources for formal verification with DT Spin increase when values of timers are increased,
while the size of the timers does not influence the DTMP. This is especially noticeable in
the last verification run where values that exceed the range of short data type were used.
Before the verification, we have replaced the lines 4–7 in the dtime.h with typedef timer
int val=OFF;. Similarly, we extended the range in DTMP with the changed definition
#define TIMER_VAL__DATA_TYPE int.

Appl. Sci. 2022, 12, 2990 18 of 21

Listing 9. DTMP of PAR protocol.

1 #define TIMER_NUM__DATA_TYPE byte
2 #define NUMBER_OF_TIMERS 2
3 #define pcv__null 0
4 #define sender 0
5 #define receiver 1
6 #define ACK 2
7
8 chan StoR = [1] of {byte , bit , TIMER_NUM__DATA_TYPE}
9 chan RtoS = [1] of {TIMER_NUM__DATA_TYPE}

10 inline send_to_channel(tmr_id){
11 if
12 :: tmr_id == sender -> RtoS!tmr_id;
13 :: tmr_id == receiver -> StoR!pcv__null(pcv__null ,tmr_id);
14 :: else -> pv__timeout_send_error = true;
15 fi
16 }
17 inline expire(tmr_id) {
18 if
19 :: tmr_id == receiver -> in?eval(pcv__null),eval(pcv__null),eval(tmr_id);
20 :: tmr_id == sender -> in?eval(tmr_id);
21 fi
22 }
23 inline delay(tmr ,value) {set(tmr ,value); expire(tmr);}
24 inline udelay(tmr) {do :: atomic{set(tmr ,1); expire(tmr);} ::break; od}
25
26 #include "dtmp.pml"
27 #define dK 3
28 #define dL 3
29 #define dR 1
30 #define To 8
31 #define MAX 8
32
33 proctype Sender(byte id; chan in, out) {
34 byte mt;
35 bit sn=0;
36 byte tmp_sig;
37 R_h: udelay(id);
38 mt = (mt+1)% MAX; /* Input from the upper layer */
39 S_f: delay(id,dK);
40 out!mt,sn ,pcv__null; /*send and delay in channel K*/
41 set(id,To -dK);
42 W_s: do
43 :: in?tmp_sig ->
44 if
45 :: tmp_sig == id -> goto S_f;
46 :: else ->
47 if
48 :: atomic{skip; delay(id , 1); sn=1-sn; goto R_h;};
49 :: atomic{printf("MSC:␣ACKerr\n"); goto S_f};
50 fi;
51 fi;
52 od;
53 }
54
55 proctype Receiver(byte id; chan in , out) {
56 show byte mr;
57 show byte me=1;
58 bit rsn , esn=0;
59 W_f: in?mr,rsn ,pcv__null;
60 if
61 :: rsn == esn -> goto S_h; /* correct message and seq. num */
62 :: rsn == 1-esn -> goto S_a; /* correct message , wrong seq. num */
63 :: atomic{printf("MSC:␣MSGerr\n"); goto W_f;};
64 fi;
65
66 S_h: assert(mr == me);
67 delay(id ,dR);
68 atomic{esn = 1-esn; me = (me+1)% MAX};
69
70 S_a: atomic{delay(id , dL); out!ACK};
71 atomic{delay(id , 1); goto W_f;};
72 }
73
74 init {
75 atomic{ run Sender(sender , RtoS , StoR); run Receiver(receiver , StoR , RtoS); }
76 }

Appl. Sci. 2022, 12, 2990 19 of 21

Table 2. Results for the Parallel Acknowledgment with Retransmission for DT Promela and DTMP.

Tool
Options and Parameters Formal Verification Results

Multiplier Option States Transitions State-Vector [B] Memory [MB] Time [s]

DT Spin 4.1.1
(DT Promela)

1 POR 632 690 48 1.253 0.000

10 POR 2612 2670 48 1.356 0.004

100 POR 22,412 22,470 48 2.911 0.016

1000 POR 220,412 220,470 48 18.341 0.176

10,000 POR, INT 2.2 × 106 2.2× 106 52 183.602 2.692

Spin 4.1.1
(DTMP)

1 POR 1005 1282 60 1.356 0.000

10 POR 1005 1282 60 1.356 0.000

100 POR 1005 1282 60 1.356 0.000

1000 POR 1005 1282 60 1.356 0.000

10,000 POR 1005 1282 60 1.356 0.000

100,000 POR, INT 1005 1282 68 1.356 0.004

5. Discussion and Conclusions

A new approach for modeling discrete time in Promela is presented. The previously
known solution required a special version of Spin that do not include features from the
recent versions of Spin, e.g., the inclusion of embedded C code for the ADT operators.

We have compared DTMP to the DT Promela and DT Spin. Modeling of discrete time
with the DT Spin is clear and simple. A timer is declared locally in a process. It is shown
that complexity of formal verification with DT Spin is influenced directly by number of
timers and their values. For qualitative properties, where correct ordering of events suffices,
this can be optimized with the proposed fictitious-clock model of discrete time without
silent events [33].

During the development of DTMP we were focused on modeling real-life SDL systems.
DTMP is high-level Promela model for the SDL timer construct that is seamlessly integrated
in our framework for modeling SDL systems and can be used with the mainstream version
of the Spin tool. Therefore, its implementation is influenced by the rest of the Promela
framework for modeling the abstract SDL machine. To the best of our knowledge, this
is the only framework that supports a full SDL system structure, predefined and user-
defined data types, dynamic process creation and termination, multiple process instances,
timers with parameters, save construct, asterisk state, asterisk input, priority input, im-
plicit transition, SAVE construct, rational numbers, enabling condition, direct and indirect
addressing, path limitations, procedures and some other less frequently used SDL concepts.
We stress that all of the listed constructs must be supported to model SDL specifications
with implementation details.

We have verified DTMP with complex SDL specification of an ISDN IUA protocol
in [13], but further studies are necessary to check possible optimizations that would reduce
the added complexity of this high-level solution. Our goal is to automate model extraction
of real-life complex SDL specifications that include many timers with a great range of
values without the need of manual abstraction of the timers. We have shown that DTMP
is well suited for such systems, but we recognize that current research limitations include
a low number of real-life specifications and lack of studies on large SDL systems (1 mio.
lines of SDL code). Further research is necessary to explore the possible limitations of the
method related to state space of the system and time needed for the formal verification of
the model.

The new activities within SDL standardization bodies and industry is motivating.
Algorithms that are implemented in sdl2pml do not support [3] specifics. We are planning

Appl. Sci. 2022, 12, 2990 20 of 21

to prepare new algorithms and extend the framework with support for new features, e.g.,
activation-delay for the output construct, priority order, and other. We see a potential to
get fully Standards-compliant SDL descriptions of SDL systems extracted mechanically
and verified formally by the mainstream version of the Spin tool. Additionally, possible
support for the SDL-RT should be investigated [7,39].

Author Contributions: Conceptualization, B.V. and A.V.; methodology, B.V. and A.V.; software, A.V.;
validation, B.V. and A.V.; formal analysis, B.V. and A.V.; investigation, B.V. and A.V.; resources,
B.V. and A.V.; data curation, B.V. and A.V.; writing—original draft preparation, B.V. and A.V.;
writing—review and editing, B.V.; visualization, B.V. and A.V.; supervision, B.V. and A.V.; project
administration, B.V. and A.V.; funding acquisition, B.V. and A.V. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded partly by the European Regional Development Fund and Slove-
nian Ministry of Higher Education, Science and Technology under the R&D project Correctness
Verification of Communication System Functioning in the framework of the Centre of Excellence for
Information and Communication Technologies, Iskratel d.o.o, and 4S d.o.o. The authors acknowledge
the financial support from the Slovenian Research Agency (research core funding No. P2-0069) by the
research program Advanced methods of interaction in telecommunication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rosique, F.; Losilla, F.; Pastor, J.Á. A Domain Specific Language for Smart Cities. Proceedings 2018, 2, 148. doi: 10.3390/

ecsa-4-04926. [CrossRef]
2. ITU-T Recommendation Z.100. CCITT Specification and Description Language (SDL), 1993. Series Z: Programming Languages.

Available online: https://www.itu.int/rec/T-REC-Z.100-199303-S/en (accessed on 7 September 2021).
3. International Telecommunication Union. Z.100: Specification and Description Language—Overview of SDL-2010, 2021. Series Z:

Programming Languages. Available online: https://www.itu.int/rec/T-REC-Z.100-202106-I/en (accessed on 7 September 2021).
4. Iternational Telecommunication Union. Z.101: Specification and Description Language—Basic SDL–2010, 2021. Series Z:

Programming Languages. Available online: https://www.itu.int/rec/T-REC-Z.101-202106-I/en (accessed on 7 September 2021).
5. International Telecommunication Union. Z.102: Specification and Description Language—Comprehensive SDL-2010, 2021.

Series Z: Programming Languages. Available online: https://www.itu.int/rec/T-REC-Z.102-202106-I/en (accessed on 7
September 2021).

6. International Telecommunication Union. Z.104: Specification and Description Language—Data and action language in SDL-2010,
2021. Series Z: Programming Languages. Available online: https://www.itu.int/rec/T-REC-Z.104-202106-I/en (accessed on 7
September 2021).

7. Pragmadev. Applications in Telecom, Military, Aeronautic, Space, Internet of Things, and System Engineering, 2022. Available
online: https://www.pragmadev.com/telecom.html (accessed on 7 September 2021).

8. Fonseca i Casas, P.; Fonseca i Casas, A. Using Specification and Description Language for Life Cycle Assesment in Buildings.
Sustainability 2017, 9, 1004. [CrossRef]

9. Zahid, S.; En-Nouaary, A.; Bah, S. Practical Model Checking of a Home Area Network System: Case Study. J. Comput. Inf. Technol.
2019, 27, 1–16.

10. Holzmann, G.J. The SPIN Model Checker: Primer and Reference Manual; Addison Wesley: Boston, MA, USA, 2003.
11. Tripakis, S.; Courcoubetis, C. Extending Promela and Spin for Real Time. Tool and algorithms for the construction and analysis

of systems. In Proceedings of the 2nd International Workshop, TACAS’96, Lecture Notes in Computer Science, Passau, Germany,
27–29 March 1996; Springer: Berlin/Heidelberg, Germany, 1996; pp. 329–348.

12. Bošnački, D.; Dams, D.; Holenderski, L.; Sidorova, N. Model Checking SDL with Spin. In Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 363–377.

13. Vlaovič, B.; Vreže, A.; Brezočnik, Z. Applying Automated Model Extraction for Simulation and Verification of Real-Life SDL
Specification with Spin. IEEE Access 2017, 5, 5046–5058. [CrossRef]

14. Vlaovič, B.; Vreže, A.; Brezočnik, Z.; Kapus, T. Automated Generation of Promela Model from SDL Specification. Comput. Stand.
Interfaces 2006, 29, 449–461. [CrossRef]

15. Brezočnik, Z.; Vlaovič, B.; Vreže, A. Model Checking using Spin and SpinRCP. Inf. MIDEM J. Microelectron. Electron. Compon.
Mater. 2013, 43, 235–250.

http://doi.org/10.3390/ ecsa-4-04926
https://www.itu.int/rec/T-REC-Z.100-199303-S/en
https://www.itu.int/rec/T-REC-Z.100-202106-I/en
https://www.itu.int/rec/T-REC-Z.101-202106-I/en
https://www.itu.int/rec/T-REC-Z.102-202106-I/en
https://www.itu.int/rec/T-REC-Z.104-202106-I/en
https://www.pragmadev.com/telecom.html
http://dx.doi.org/10.3390/su9061004
http://dx.doi.org/10.1109/ACCESS.2017.2685238
http://dx.doi.org/10.1016/j.csi.2006.10.001

Appl. Sci. 2022, 12, 2990 21 of 21

16. Brezočnik, Z.; Vlaovič, B.; Vreže, A. SpinRCP: The Eclipse Rich Client Platform Integrated Development Environment for the
Spin Model Checker. In Proceedings of the 2014 International SPIN Symposium on Model Checking of Software, SPIN 2014,
San Jose, CA, USA, 21–23 July 2014; ACM: New York, NY, USA, 2014; pp. 125–128. [CrossRef]

17. Brezočnik, Z.; Kovše, T. SpinRCP. Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia. 2020.
Available online: http://lms.uni-mb.si/spinrcp/ (accessed on 12 December 2021).

18. Bošnački, D.; Dams, D. Discrete Time Promela and Spin. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1998; pp. 307–310.

19. Vreže, A.; Vlaovič, B.; Brezočnik, Z. Sdl2pml-Tool for Automated Generation of Promela Model from SDL Specification. Comput.
Stand. Interfaces 2009, 31, 779–786. [CrossRef]

20. Bošnački, D. DTSpin. Available online: http://www.win.tue.nl/dragan/DTSpin.html (accessed on 19 November 2021).
21. Holzmann, G.; Patti, J. Validating SDL Specifications: An Experiment. In Proceedings of the IFIP WG6.1 Ninth International

Symposium on Protocol Specification, Testing and Verification, Enschede, The Netherlands, 6–9 June 1989; Vissers, C., Brinksma,
E., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989 ; pp. 317–326.

22. Holzmann, G. Practical methods for the formal validation of SDL specifications. Comput. Commun. 1992, 15, 129–134. [CrossRef]
23. Tripakis, S. Real-Time Spin (RT-Spin); Verimag: Saint-Martin-d’Hères, France, 1996.
24. Bošnački, D.; Dams, D. Integrating Real Time into Spin: A Prototype Implementation. In Proceedings of the FORTE XI/PSTV

XVIII’98 IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques for Distributed Systems and Commu-
nication Protocols (FORTE XI) and Protocol Specification, Testing and Verification (PSTV XVIII), Paris, France, 3–6 November
1998; Springer: Boston, MA, USA, 1998; pp. 423–439.

25. Knaack, B. Towards Real-time modelchecking using SPIN. In Proceedings of the 1997 International SPIN Symposium on Model
Checking of Software, SPIN 1997, Enschede, The Netherlands, 5 April 1997.

26. Tuominen, H. Embedding a Dialect of SDL in PROMELA. In Lecture Notes in Computer Science, Proceedings of the 6th International
SPIN Workshop on Model Checking of Software, Trento, Italy, 5 July 1999; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1680,
pp. 245–260.

27. Baeten, J. Esprit Project 23498—VIRES (Verifying Industrial Reactive Systems). Available online: https://cordis.europa.eu/
project/id/23498 (accessed on 18 January 2022).

28. Verilog. ObjectGEODE—Method Guidelines, Version 1.0; Verilog SA: Toulouse, France, 1997.
29. Mejdi, H.; Jedli, B.; Hasnaoui, S. Designing a FlexRay controller—From SDL to StateFlow and Simulink blocks: Generation and

verification. In Proceedings of the 2017 8th International Conference on Information and Communication Systems (ICICS), Irbid,
Jordan, 4–6 April 2017; pp. 29–33. [CrossRef]

30. Soufiane, Z.; Abdeslam, E.N.; Slimane, B. An SDL to Discrete-Time PROMELA Transformation of Home Area Network Model.
In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, SITA’18, Rabat, Morocco,
24–25 October 2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef]

31. Mazzanti, F.; Ferrari, A. Ten Diverse Formal Models for a CBTC Automatic Train Supervision System. Electron. Proc. Theor.
Comput. Sci. 2018, 268, 104–149. doi: [CrossRef]

32. Asma, E.H.; Bensaid, H.; En-nouaary, A. Model Checking of WebRTC Peer to Peer System. Comput. Inf. Sci. 2019, 12, 56–71.
[CrossRef]

33. Alur, R.; Dill, D.L. A Theory of Timed Automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
34. Vlaovič, B. Automatic Generation of Models with Probes from the SDL System Specification. Ph.D. Thesis, Faculty of Electrical

Engineering and Computer Science, University of Maribor, Maribor, Slovenia, 2004.
35. Vreže, A. Extending Automatic Modeling of SDL Specifications in Promela with Embedded C Code and a New Model of Discrete

Time. Ph.D. Thesis, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia, 2006.
36. Vaandrager, F.W. Two Simple Protocols. Appl. Process Algebra 1990, 17, 23–44.
37. Lamport, L. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 1987, 5, 1–11. [CrossRef]
38. Tanenbaum, A. Computer Networks; Prentice-Hall Software Series; Prentice-Hall: Upper Saddle River, NJ, USA, 1981.
39. SDL-RT. 2021. Available online: http://www.sdl-rt.org/ (accessed on 10 January 2022).

http://dx.doi.org/10.1145/2632362.2632380
http://lms.uni-mb.si/spinrcp/
http://dx.doi.org/10.1016/j.csi.2008.09.005
http://www.win.tue.nl/dragan/DTSpin.html
http://dx.doi.org/10.1016/0140-3664(92)90132-X
https://cordis.europa.eu/project/id/23498
https://cordis.europa.eu/project/id/23498
http://dx.doi.org/10.1109/IACS.2017.7921941
http://dx.doi.org/10.1145/3289402.3289514
http://dx.doi.org/10.4204/EPTCS.268.4
http://dx.doi.org/10.5539/cis.v12n4p56
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/7351.7352
http://www.sdl-rt.org/

	Introduction
	Related Work
	Discrete Time Model for Promela
	Experimental Results
	Fischer'S Mutual Exclusion Protocol
	Positive Acknowledgment with Retransmission Protocol

	Discussion and Conclusions
	References

