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Abstract: With the increasing complexity of aircraft development programs, the development pro-
cesses of aircraft and their subsystems are continuously becoming complicated, leading to the growing
risks of development cost across the entire life cycle. In this study, we proposed a model-based
systems engineering approach to support process modeling of aircraft development using a multi-
architecture modeling language KARMA. Simultaneously, property verification and hybrid automata
simulation were used to implement the static cost analysis of each work task and dynamic cost
analysis of the entire development process. Finally, a development process model of aircraft avion-
ics system was created using a case study, in which cost analysis is implemented by the KARMA
language. From the result, we found that the KARMA language enables the integration of the pro-
cess modeling with static and dynamic analyses of the development process in a multi-architecture
modeling tool MetaGraph 2.0.

Keywords: MBSE; cost analysis; static analysis; dynamic analysis development process; KARMA
language

1. Introduction

The continuous increase of system complexity of products, such as autonomous
vehicles and intelligent transport systems, leads to growing challenges for managing
the development processes across the entire life cycle of a system. When designing the
development processes, multiple aspects must be considered: (1) Systems engineering
life cycle and specific industrial standards are always used to define real development
processes. The real aircraft development process should be used among all stakeholders of
different domains. A unified and graphical description of the entire development process
is a basic for communications. (2) Statistic analysis for each task during the development
process is important to confirm that the cost of each task is lower than the criteria used to
control the budget. (3) The dynamic performance of the development process is required
to understand the cost and time consumption across the entire life cycle. This is useful
when project managers expect to understand how the budget and duration are arranged
for different phases.

The complex system development process involves stakeholders from different do-
mains. Moreover, these stakeholders implement co-designing and collaborative designing
across the entire life cycle from concept stage to retirement stage. Therefore, when designing
the development process, a standardized specification is used as a basic for formalizing and
tailoring the entire workflow in each domain to integrate different system interests of stake-
holders. Except for systems engineering specifications, a model-based approach is also used
to define business process, such as business process model and notation (BPMN) [1]. These
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models enable stakeholders to understand their internal business procedures in a graphical
notation and make organizations communicate these procedures in a standardized manner.

Before starting a complex system development process, cost and time consumption are
two important aspects considered by stakeholders [2]. Low budgeting control for each work
task can decrease the financial risk when the project is implemented. Moreover, the dynamic
analysis of cost and time consumption for the development process provides the project
managers better understanding of the project progress before the project implementation.
Before implementing the project based on the designed development process, the static
verification for cost and time in each work task is useful to understand if the task satisfies
the requirements on the development process. The dynamic analysis provides a guideline
for decision-makings on the development process to understand the dynamic performances
of the entire project implementation.

The aim of this study is to propose a semantic modeling and simulation approach
to support process modeling and analysis. The following contributions are introduced
as follows:

• Support the developmental process definition by semantic modeling: A semantic
modeling approach is proposed to provide a metamodel library for standardized
development process development to improve the reuse of the existing work tasks
when designing the development process. This approach provides a standardized
syntax for constructing the graphical notation representing the development processes
for all the stakeholders across the life cycle;

• Support process analysis based on the semantic modeling: Using the semantic mod-
eling approach, static verification is used for stakeholders to validate if each task
can satisfy the requirements related to cost for each work task. Moreover, for devel-
opment process, dynamic analysis is implemented based on the semantic modeling
approach to predict the dynamic performance of cost and time consumption across
the entire life cycle.

In this study, we use the KARMA language to support the development process
modeling and the static and dynamic analyses of time consumption and cost for complex
system development [3]. Moreover, within a multi-architecture modeling tool MetaGraph
2.0 (http://www.zkhoneycomb.com/; accessed on 8 February 2022 ), metamodels for the
development process are developed based on ISO/IEEE 15288 and BPMN [4]. Furthermore,
the satisfiability modulo theory (SMT) and the hybrid automata simulation (HAS) are used
to support the static analysis of cost in each work task and the dynamic cost analysis of the
entire development process.

The rest of the paper is organized as follows: Section 2 introduces the related works
and our research methodology. Our proposed semantic modeling approach is illustrated
in detail in Section 3. In Section 4, a case study is used to represent how the approach
supports the process modeling and the analysis for an aircraft avionics development
process. Section 5 presents the evaluation of the case study. Finally, this study is concluded
in Section 6.

2. Related Work

The existing research has covered various aspects of semantic modeling for develop-
ment process and process analysis based on model-based approaches.

2.1. Process Modeling Using MBSE

The development process plan and design are challenging because of the increasing
complexity of the system development and the development process involves multiple
stakeholders from different domains across the organizations [5,6]. Currently, model-based
systems engineering (MBSE) was proposed by INCOSE as “MBSE is the formalized application
of modeling to support system requirements, design, analysis, and V&V activities beginning in the
conceptual design phase and continuing throughout development and later life cycle phases” [7].
Therefore, development process is one of the important perspectives of MBSE to manage
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the complexity of the development processes. For example, business process model and
notation [8], object-process methodology notations [9], and activity diagram in SysML and
UML [10] are widely used to define and model the development process for supporting
process design and analysis.

Several existing studies were proposed to bridge the MBSE with project management
and development process management. A PRINCE2 framework was used to support
project management using business process diagrams [11]. Using this framework, process
models formalize the development process across the entire project. For the production
service system, UML and BPMN were used to define the workflow of data analysis [12].
BPMN was used to support the decision-making for managing the automated production
systems across organizations [1]. The BPMN models provide cues for decision-makings
for supporting the organizational management. Except for graphical notations, semantic
modeling is also widely used for development process formalism and analysis.

2.2. Semantic Modeling for Development Process

Currently, semantic modeling and ontology are widely used to support process mod-
eling to address different domain specific challenges [13,14]. Compared with traditional
MBSE approaches, the semantic modeling approach provides a formal semantic specifi-
cation to support data interoperability across different stakeholders. Semantic modeling
was used to develop process models and provide decision-makings in acute ischemic
stroke treatment process using reasoning [15]. Using semantic techniques, process models
decrease errors during the treatment of patients through the recommendations provided
for the users. Semantic integration was implemented to support the manufacturing process
integration across the organization [16]. Service discovery was implemented to support
the manufacturing process automation by using semantic modeling techniques. Process
modeling using semantic techniques is widely used for knowledge management [17].

One of the important features to semantic modeling is to integrate development pro-
cess models with other domain specific information. For example, ontology was used to
integrate business process models and other domain specific knowledge [18]. Semantic
modeling was used for process identification using natural language processing. Ontology
was designed to identify the development process from natural language [19]. Semantic
techniques were used to integrate heterogeneous business process models using a uni-
fied ontology [20]. Therefore, a semantic approach, which integrates different language
specifications for development process formalism, is important to the process integration
of complex system development because of heterogeneous business process features and
language specifications.

2.3. Process Analysis Based on Model-Based Approaches

Several existing analysis techniques are used for static and dynamic analyses of process
features based on development process models. SysML and BPMN support development
process formalism, which generate OWL models for reasoning, to provide decision-makings
for project analysis [21]. NuSMV language is used to verify the process features based on
LTL reasoning, which is generated from BPMN models [22]. Another semantic verification
technique based on the Maude checker was used to support formal analysis of business
process collaborations [23].

Except for the static verification, dynamic analysis of development process was imple-
mented based on petri-net simulation that was used to support flexibility and performance
analysis of development processes based on the BPMN models [24]. A colored petri-
net approach was used to identify the business process with the time constraint [25]. A
semantic language Promela was used to implement petri-net simulation that generated
from BPMN models to verify the project performance of business process [26]. Although
static and dynamic analyses are implemented based on graphical notation and semantic
approaches separately, there is no integrated approach that combined the development
process formalism and both the statistic and dynamic analyses.
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2.4. Summary

Based on the literature review, we find that semantic modeling supports the devel-
opment process formalism and modeling. Moreover, it can integrate the domain specific
knowledge and development process to help the project managers to identify the process
information and system architecture. With analysis and reasoning, semantic develop-
ment process models can provide decision-makings for process developers. Therefore, we
identified several objectives in this study.

• A semantic modeling approach is proposed to support development process modeling,
which can support different language specifications, such as activity diagram in SysML,
UML, and BPMN;

• Syntax is extended in this semantic modeling approach to support static and dynamic
verifications to evaluate process features and implement performance analysis.

3. Semantic Modeling Approach for Process Modeling and Analysis

We proposed a semantic modeling approach based on KARMA language to support
process formalism and analysis and realize the research objectives. In this section, we
introduce our entire approach, the relative KARMA formalism for development process,
and the implementation of statistic and dynamic analyses.

3.1. Overview of the Semantic Approach

The GOPPRR method proposed by Wang et al. is used to model reasoning through
ontology, but the method lacks support for simulation analysis [27], so, based on their
contribution, a semantic modeling language KARMA is developed based on the GOPPRRE
approach, as shown in Figure 1. Using KARMA, metamodels are developed based on
different process modeling specifications, such as BPMN or ISO/IEEE 15288 standards [4].
For the representation of the development process of complex systems, business process
diagram (BPD) models are developed based on metamodels. The KARMA language
formalizes the metamodels and models based on a unified specification. Moreover, through
the KARMA language, property values are captured to define formal constraints of the
BPD models based on SMT. Then, the SMT solver implements the static verification of
development processes based on KARMA language. Furthermore, continuous system
features for each task and discrete event system features are defined in each object instance
and relationship instance, respectively, using KARMA language based on hybrid automata
simulation (HAS). Finally, for dynamic analysis of development processes, simulation of
process modeling is implemented by an HAS solver to provide results.

GOPPRRE
formalisms

KARMA HAS features for dynamic 
analysis based on HAS

KARMA constraint for static  
analysis based on SMT

Static analysis for BPD 
models based on KARMA

HAS implementation for BPD 
models based on KARMA

MBSE models for development 
process

Meta-models supporting MBSE approach 
for development process formalism

Semantic modeling approach based 
on KARMA language

MBSE formalisms

Figure 1. Overview.
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3.2. KARMA Formalisms for Process Modeling
3.2.1. GOPPRRE Formalism Supporting Metamodeling Development

As shown in Figure 2, the core of KARMA formalism is a GOPPRRE formalism for
developing MBSE models, which is designed based on a M0-M3 modeling framework
that supports metamodel and model development. Four layers are used to represent the
development process using the semantic KARMA language to formalize the development
processes using KARMA formalism.

KARMA model

Figure 2. KARMA formalism and analysis for the development process modeling.

• M3 refers to meta-metamodels, including the basic elements for developing metamod-
els based on the core GOPPRRE concepts: (1) Graph; (2) Object; (3) Point; (4) Property;
(5) Role; (6) Relationship ; and (7) Extension;

• M2 refers to metamodels used for constructing models. In this study, metamodels
are used for constructing the BPD models, whose syntax and semantics are defined
based on the graphical notation specification BPMN and industrial standards such as
ISO/IEEE 15288, respectively;

• M1 refers to BPD models which describe the development process using graphical
notations;

• M0 refers to the real development process of the aircraft avionics system.

Based on the GOPPRRE formalism, the syntax of KARMA languages, which is one of
the most powerful approaches to describe domain specific metamodels of products [28],
is used to describe metamodels and models. The detailed key concepts are introduced
as follows:

• Graph refers to a collection of Object, and Relationship is represented as one window
referring to a BPD model with graphical notations. To represent the hierarchy between
different development processes, one Object should be decomposed into another BPD
diagram graph model;

• Object refers to one entity in Graphs (one work task in a BPD model);
• Point refers to a port in each Object;
• Relationship refers to one connection between the two Points of Objects or Objects in

a Graph;
• Role refers to each end of Relationship used to define the connection rules for the

relevant Relationship. For example, one Relationship has two Roles. Each is defined
to connect one Point in Objects or one Object with Relationship. Then, the connector
between Relationship and the Points or Objects is created as a constraint to implement
connections among different Objects;

• Property refers to one attribute in the other five non-property metamodels.
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To formalize the BPD models for development process, a definition is proposed
as follows:

The ::= () refers to a collection. Grapha
bpd is defined as a BPD model a based on the

metamodel of Graph bpd. In Grapha
bpd, Objectb

obj refers to the object instance b based on
a metamodel of Object Obj, such as work task b. Relationshipc

Rel refers to a relationship
instance c based on the metamodel of Relationship Rel, such as sequence from one work
task to another. Roled

Rol(x) refers to a role instance d based on a metamodel of Role Rol
in a relationship instance x, which is developed based on metamodel Relationship Rel;
Propertyf

Proi(z) refers to the property instance f based on the metamodel of Property Proi in
the model instance z, whose metamodel is nonprop (nonprop ⊆ {Gi, Obji, Rei, Roi}). The
formalism of a whole BPD model is shown in Equation (1).

Grapha
bpd ::= (∑ Objectb

Obj, ∑ Relationshipc
Rel ,

∑ Roled
Rol(x, Rel), ∑ Property f

Proi(z, nonprop))
(1)

One relationship instance c is defined as connector_Instance(a) pointing to (⇒)
connector_Instance(b). The connector_Instance(a) refers to a collection of an Object in-
stance (work task) and a Role instance as the start point of c. The connector_Instance(b)
refers to a collection of an object instance and a role instance, which is the end of c. Thus,
the formalism of a connection in an BPD model is shown in Equation (2).

Relationshipc
Rel ::= (connector_Instance(a)⇒ connector_Instance(b)). (2)

3.2.2. Metamodels Supporting Process Modeling

The ISO/IEEE 15288 standard provides a common process framework covering the life
cycle of complex systems. It is necessary to standardize the work task nodes as metamodel
objects to realize the construction of aircraft process models and satisfy the development
process of the aircraft avionics system. Through iterative modeling and analysis, a solution
that balances key performance indicators, such as cost and time, is ultimately created.
BPMN provides a standard notation that is easy to understand for all business stakeholders,
including basic elements such as flow objects, connecting objects, artifacts, and swim
lanes, and support for technical and business personnel to engage in business process
management. Based on the GOPPRRE formalism, a BPD graph is created with references
to 15,288 and the BPMN notation specification to support process modeling of the aircraft
avionics system.

As shown in the Table 1, it contains metamodels of the life cycle technology manage-
ment process and the technology process of the system life cycle. The main purpose of
the life cycle technology management process is to build a technical baseline management
process for implementing the decision gates at each stage, including nine review processes,
such as preliminary design review, system function review, and system verification review.
The technical process includes the development process stages of aircraft avionics system:
concept stage, development stage, and production stage. In the concept stage, there are
eight work tasks, including system engineering program, joint conceptual design, system
requirements analysis, and architecture design, and subsystem requirements definition, to
support the generation of system architecture solutions. In the production stage, there are
11 work tasks, including subsystem development, system integration, system verification,
and system security assessment, to produce, integrate, test, and deliver the system. There-
fore, considering each work task as a BPD object, a total of 33 BPD objects are created to
support the instantiation of the corresponding work tasks. Simultaneously, five objects,
including tasks, activities, processes, data objects, and text annotations, are created as
general modeling elements to deal with work tasks involved in the avionics system work
task modeling. Two objects, the start event and the end event, are created to show the start
and end nodes of process modeling. Therefore, 40 object elements are constructed totally
to fully describe the aircraft avionics system life cycle development process. Similarly,
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according to the BPMN specification, six relationships are created, including connection
annotation, association, data input association, data output association, information flow,
and sequence flow, to express the object connection relation of BPD. In addition, 12 corre-
sponding roles are also created. According to the constraints of objects and relationships,
427 connectors are constructed to indicate each binding. Due to the reusability of the
property meta-model, only six basic property metamodels need to be constructed, namely
name, purpose, description, start date, the estimated number of days, and daily cost, which
can satisfy the addition of each object metamodel. The detailed object metamodels are
shown in Table 2.

3.3. Process Analysis Based on KARMA Formalism

Based on the semantic modeling approach, static analysis was used to verify that the
parameter values of the work tasks in the process model can satisfy the specified value
constraints, and dynamic analysis was executed to predict the dynamic performance of
cost and time consumption across the entire life cycle.

3.3.1. Static Analysis for Process Models

Based on the GOPPRRE modeling method, the model elements were formalized by
the multi-architecture language KARMA. With the KARMA features, satisfiability modulo
theories (SMT) were used to support the static analysis of process models, which refers to a
checking process where the satisfiability of logical formulas over one or more theories in the
models combines the problem of Boolean satisfiability with some of the most fundamental
fields in computer science. In addition, it draws on the most prolific problems in the past of
symbolic logic: the decision problem, completeness and incompleteness of logical theories,
and complexity theory [29]. The GOPPRRE method extended with SMT is used to realize
the verification of constraint attributes in the process model and to test whether the logical
constraints based on a situation of one or more mathematical theories are satisfied. Based
on the corresponding solver of SMT, the property instances are formalized as constraints
for first-order logical expression and evaluation.

Based on the basic MBSE formalism in KARMA, static cost analysis is implemented for
each work task based on SMT solver in MetaGraph 2.0 [30]. As shown in Figure 3 , Meta-
Graph supports metamodel development and modeling based on the GOPPRRE modeling
method, where various work tasks based on the design requirements of the development
process are constructed using the BPD metamodel for verification implementation. Then,
KARMA language is used to formally describe the constraints of property instances to
verify based on the defined constraints according to design requirements related to develop-
ment process. Finally, the KARMA language is compiled by constructing and traversing the
abstract syntax tree, which is used to verify if the constraints are satisfied by executing the
SMT solver. The static analysis results, whether the constraints are satisfied, are transmitted
to the result perspective in MetaGraph and demonstrated to the stakeholders.

The data structure tree of the extended KARMA language for static analysis is shown
in Figure 4. The propertyInstance node is under the object class in the model layer, and is an
instantiation of the property metamodel. In addition, the extended classes SMTAnalysis and
PropertyState are shown in Table 3. Using such syntax, constraints for static analysis of the
process model are defined and evaluated.
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Table 1. Object metamodels for process modeling.

Phase Subphase Process Mate Objects Quantity

Technical
management

process

Technical
baseline

management

System requirements review, preliminary
design review, system function review

9
Critical design reviews,

production readiness reviews

System validation review,
validation readiness review,
system qualification review

Technical
process

Concept

System requirements capture, requirements
of system integration verification and

experimental environment,
subsystem requirements definition

8
Joint conceptual design phase,
system requirements analysis

and architecture design

Requirements management,
systems engineering management,

systems engineering plan

Development

Function analysis and allocation,
system design analysis,

subsystem design 5
System validation plan and validation

procedure, system core integration
and validation plan

Production

Subsystem validation,
Subsystem manufacturing,

Subsystem certification

11

System integration, system verification,
system safety assessment, system

certification plan formulation,
system integration verification
test environment development

System FHA and preliminary PSSA,
system security plan and

preliminary FHA, system assessments
of reliability,

maintainability and availability

General Tasks, activities, process, data object,
text annotation 5

Others Start event, end event 2

Total 40

Table 2. Metamodel elements included in a BPD.

Graph Object Relationship Point Role Property Extension (Connector)

1 40 6 0 12 6 427
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MetaGraph
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e

support

Figure 3. Implementation of static analysis for the process model.

Figure 4. Data structure tree of the extended KARMA language for static analysis.
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Table 3. Syntax of KARMA Language for static analysis.

Class Description Syntax

SMTAnalysis Declare the module of analysis
for property verification.

SMTAnalysis <Name>
...
end <Name>

PropertyState Capture the value of property
instance.

languageID. modelID.
ObjectID.
Property[PropertyID]

VariableDeclare Declare the variables.

Int a;
Int b = valueOf();
Boolean x;
Boolean y = true;
Matrix m = IntegerMatrex;
Matrix n = [1,1;2,2];
...

SolveDeclare
Declare that the property verification
type is to evaluate the
satisfiablity of constraints.

Solve <Name>
...
end <Name>

OptimizeDeclare
Declare that the property verification
type is to optimize the variable
value of property instances.

Optimize <Name>
...
end <Name>

solveStatement Indicate the statements of how to
evaluate the constraints.

<Name>.add(a&&(∼b,...))
<Name>.push;
//construct a temporary
stack;
<Name>.check;

optimizeStatement Indicate the statements of how to
optimize the constraints.

<Name>.push;
<Name>.pop;
<Name>.Max(a+b);
<Name>.solution;

3.3.2. Dynamic Analysis for Process Model

Hybrid automaton refers to a finite state machine with continuously evolving variables
and discrete jump transitions to describe the dynamic behavior of a system. Ding et al.
attempted to describe the hybrid automation using KARMA language in the method level
to support dynamic analysis [31]. On the basis of their method, we use it in the practice of
process modeling. In our research, the continuous system state and discrete event system
features in the process model for verification are defined. The continuous system state
describes the variables of the parameter state in the system evolution with time and events,
for example, vehicle speed and mileage are physical quantities that change continuously
with time [32]. The discrete event system refers to a dynamic system that is driven by
events and changes the state of the system by leaps and bounds [33]. The behavior of
discrete systems is generally described by formal models such as logic and algebra.

The hybrid automaton is a generalized finite-state automaton that is furnished with
continuous variables. The syntax of hybrid automata is expressed as [34]

H =< Loc, Edg, Σ, X, Init, Inv, Flow, Jump >

• Loc is a finite set {l1, l2, ...ln} of system discrete states;
• Σ is a finite set of event names;
• Edge ⊆ Loc× Σ× Loc is a finite set of labeled edges which represent discrete changes;
• X is a finite set {x1, x2, ..xm} of real-valued variables;
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• Init, Inv, Flow are functions that assign three predicates to each location. Init and
Inv define sets of initial states and invariants that set value constraints for each state,
respectively. Flow is a set of predicates that defines the continuous evolution of the
hybrid system in one state;

• Jump is a function assigning to each labeled edge a predicate that provides discrete
events when a hybrid automaton moves from one state to another.

In the KAMRA language, the mapping expression of the hybrid automaton H is
realized, in which Loc, Init, X and Inv are mapped to the object metamodels, and Edg,
Flow, Jump, and Σ are mapped to the relationship metamodels.

The process model with various state valuables and discrete event features are con-
structed according to the design requirements in MetaGraph based on the metamodel of
BPD to perform hybrid automata simulation, as shown in Figure 5. Based on the hybrid
automata theory, the functions and variable declarations supporting hybrid automata sim-
ulation are also defined with property values representing the state within the BPM models
simultaneously. Then, the BPM models with hybrid automata syntax are interpreted as
the formal abstract syntax tree from KARMA language. Subsequently, the BPM models
based on KARMA language is compiled to generate CIF specifications to execute the hy-
brid automata simulation by a CIF solver [35]. Finally, after hybrid automata simulation
is executed, simulation results are generated to verify the dynamic performances of the
development process.

MetaGraph

Model

Formalization and 
simulation code based on 

KARMA

Property

Su
pp

or
t

In
cl

ud
e

GOPPRRE modeling 
method

Model visualization

Hybrid Automata 
Theory

Validation results

Language visualization

Abstract

Su
pp

or
t

Abstract syntax tree of 
KARMA language

Solver based 
on Hybrid 
Automata

Executing codes and 
actuating the solver

Operation

Parse

Solve

The front-end The back-end

A
ct

ua
te

support
Simulation codes

Figure 5. Implementation of the hybrid automata simulation for the process model.

The data structure tree of the extended KARMA language for hybrid automata simu-
lation is shown in the Figure 6. The propertyInstance node is under the Object class in the
model, which is an instantiation of the property metamodel. The detailed syntax of the
KARMA extended classes StateObjectInstance and PropertyState are shown in Table 4.
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Figure 6. Data structure tree of the extended KARMA language for hybrid automata simulation.

Table 4. Syntax of KARMA language for hybrid automata simulation.

Class Description Syntax

StateObject-
Instance

Define object instances of the
State type.

State Object<ID>refer<metaID>
....
end <ID>

GroupObject-
Instance

Define object instances of the
Group type.

Grouph Object<ID>refer<metaID>
....
end <ID>

initial-
Declare

Identify the initial State
in object instances. initial;

variable-
Declare

Declare variables including
discrete, continuous, constant,
and algebraic types.

discrete Boolean a = false;
continuous Real b = 1.12;
algebraic Int c = fun(x);
constant Int d = 10;

eventDeclare Declare events. event<enentName>;

transition-
Declare

Declare the transitions of
relationship instances containing
guards, effects and new states.

transition {
[event ;]? %guard
[when();]? %guard
[do ;]? %effect
goto ; %new state };

equation-
Declare

Declare equation to describe
behaviors in Object or Graph
instances.

equation t = 2;

function-
Declare

Declare functions that can solve
complex logical and mathematical
calculations.

func<returnType><funcName>
(Int 2)
{<funcBody>}

4. Case Study
4.1. Problem Statement

The aircraft avionics system is a key system to uniformly control various avionics
components on the aircraft, transmitting relevant information between the avionics compo-
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nents through the on-board data bus. As the development process of the avionics system
becomes more and more complex, the development, installation, and commissioning of
different avionics affect the life cycle cost of the whole aircraft. Therefore, its cost and time
consumption will lead to increased risk of R&D costs throughout the life cycle. The process
control for the development process of the aircraft avionics system in the early R&D stage
has become the primary task before project implementation. The process model of the
avionics system development was built based on the KARMA language, in which both
static and dynamic analyses are based on SMT and hybrid automata simulation Here, the
static analysis analyzes whether the overall cost of the avionics system work tasks is within
the constraints of the target cost, while the dynamic analysis analyzes the dynamic changes
in the stacking of various work task nodes in terms of time and cost.

4.2. Evaluation Criteria

In the case study, the BPD Graph was used to develop the development process of
the aircraft avionics system development. A process model was developed using the BPD
metamodels, as shown in Figure 7, which includes key work tasks for the entire process,
such as start event, systems engineering plan task, system design analysis task, system
security assessment task, critical design review task, and end event task.

Figure 7. Aircraft avionics system process model.

Based on the process model and related KARMA language, the static analysis of the
cost for each work task in the process model is defined as follows:

∑(ttask × Costtask) ∈ Constraint(Static_Cost_E) (3)

where ttask refers to the days for each work task, Costtask refers to the cost for each day in
one work task (e.g., the days of system engineering program is 13 and its cost of each day
is CNY 50,000 , as shown in the Figure 8, SEP_Days = 13, SEP_Cost = 5 (CNY 10,000)).
Constraint() refers to the constraint function, Static_Cost_E refers to variables to construct
constraint functions (in this case, Static_Cost_E is the total target cost CNY 250,000,000),
and ∈ refers to the ttask ∗ Costtask, which is required to satisfy the constraint. To achieve
this, we used the KARMA code SolverA.add(25000 >= Cost).
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Figure 8. KARMA language for analyzing the static cost

The dynamic analysis of the cost in the process model is shown as follow:

Dynamic_Costprocess =
n

∑
i
(Tim × Costi) (4)

where Dynamic_Costprocess refers to the dynamic cost of the entire process model since time
is increasing, i refers to the number of the work tasks, Tim refers to the number of days to
perform the i-th work task, Costi refers to the cost of each day in the i-th work task. The cost
and state transition of system engineering program are shown in the Figure 9, Day_Cost
represents the dynamic cost of system engineering program node.

Figure 9. KARMA language for analyzing the dynamic cost.

Based on the process model, both the static and dynamic analyses of the process
model were implemented. Figure 10 presents the results, which help systems engineers
and project managers in managing their projects and the development process before the
implementation of these projects.

A: Process model based on BPMN and ISO 15288 B: KARMA language for the 
process model

C: Static analysis of development 
process

D: Dynamic analysis of development process

Analysis result Analysis result

Figure 10. KARMA language supporting the process model development and cost analysis.

The cost for each work task in the process model is demonstrated in Table 5. An
example of static analysis of the task cost was presented. Based on the results, we find
that the cost in the mission analysis task satisfies the constraint in Figure 10C. On the other
hand, from the result of dynamic analysis, we find the dynamics for the whole process
model in Figure 10D.
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Table 5. Properties for each work task in the KARMA model.

Dynamic Analysis

Work Task
Work Task Cost

for Each Day
(CNY 10,000)

Planning Time
for Each Work Task

Process Cost
(CNY 10,000)

Cost for the
Entire Process Model

(CNY 10,000)

Joint concept design 4 40 160

245Systems engineering program 5 13 65

System certification plan formulation 4 5 20

System requirements review 10 13 130

465
System security plan and preliminary FHA 6 5 30

System FHA and preliminary PSSA 8 5 40

System requirements review 4 5 20

System requirements analysis
and architecture design 5 45 225

842
System integration verification
and test environment demand 6 12 72

System core integration and validation plan 8 10 80

Function analysis and allocation 10 50 500

12,627

System function review 15 10 150

System design analysis 23 60 1380

Subsystem requirements definition 18 10 180

System validation plan and validation procedure 16 15 240

System integration verification test
environment development 15 30 450

Preliminary design review 20 7 140

Subsystem design 35 243 8505

Critical design reviews 12 20 240

Production readiness reviews 15 10 150

21,952
Subsystem certification 55 145 7975

Subsystem validation 30 30 900

Subsystem certification 20 15 300

System integration 15 80 1200 23,152
Validation readiness review 8 10 80

24,456

Flight readiness review 10 10 100

System verification 15 50 750

System safety assessment 10 7 70

System assessments of reliability, maintainability,
and availability 8 8 64

System validation review 12 20 240

System certification 4 20 80 24,536

Static analysis

Verification item Cost for all work tasks
(CNY 10,000)

Constraint
(CNY 10,000) Result

Cost of business or mission analysis work tasks 24,536 <25,000 The property
satisfies the constraint

5. Discussion
5.1. Quantitative Analysis

In the case study, the semantic approach was used to define the development process
of the aircraft avionics system. The formalism of the graphic models constraints and
calculations of static analysis were defined to verify if the cost in each work task satisfies
the constraints based on KARMA language. Based on the KARMA model, SMT execution
was performed to obtain an acceptable task cost based on the design requirement. In
addition, the state, group, and event and transition for dynamic analysis are added to the
KARMA model to simulate the dynamic changes in costs.

In Table 6, we presentsthe quantitative analysis for the KARMA model, including
the numbers of KARMA elements in models and KARMA language lines. The BPD
model, named The overall development process model of aircraft avionics system, was used
to define the development process, which includes 2 event nodes, 8 review nodes, and
23 development nodes. There are 1875 lines of KARMA language describing the process
model. The 23 development process objectives have the properties of days and costs.
Finally, for performing static analysis, 104 lines of KARMA language were used to describe
the constraints and objectives of the development process. In addition, 138 lines of KARMA
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language were used to describe the continuous variables and algebraic variables and events
to support dynamic analysis.

Table 6. Quantitative analysis of the case.

Quantitative Analysis of Models

GOPPRRE Instances Quantity

Graph The overall development process model of the aircraft avionics
system. 1

Object Start event, systems engineering plan, etc. 33

Relationship Sequence flow_1, sequence flow_2, etc. 36

Point none 0

Role FlowInput_1,FlowOutput_1, etc. 72

Property Estimated days, daily cost, etc. 115

Extension
(connector)

connector
(Avionics_System_object_System_certificate_review_d1a3,
Sequence_Flow_2be8.Sequence_Flow_Incoming_f50f),etc.

72

Quantitative analysis of the KARMA script

Formalized models in KARMA 1875 lines

Porperty verification in KARMA 104 lines

Hybrid automata simulation in KARMA 138 lines

5.2. Qualitative Analysis

From a qualitative perspective, compared with the traditional avionics system develop-
ment process planning using documents, the given approach can describe the development
process of the avionics system and provide decision-making options for project managers
by implementing the static and dynamic analyses. The KARMA language is a textual and
semantic modeling language with meta-metamodeling capability developed based on the
GOPPRRE meta-metamodels. It supports the construction of metamodels for development
process from different domains and process modeling specifications with strong model
description capability and expansibility. In this study, we built a BPD model that supports
the process description of the aircraft avionics system, satisfying the product life cycle
design process of the 15,288 specifications, such as tasks of system design and system re-
quirements definition. However, it describes symbols in the BPMN standard, such as nodes
of start event and end event, providing a consistent model building and communication
environment for avionics developers.

The constraints defined based on SMT were formalized involving complex mathe-
matical theories, providing results in Boolean as returning. These results can help project
managers to understand if each work task can satisfy the constraints defined based on the
given requirements. Using the KARMA syntax, the process model was built first. Then,
costs and days related to cost analysis were defined in a unified formalism. The verification
of the satisfaction related to the cost of the avionics system development process was
implemented automatically using the SMT solver by defining the cost constraints using
the KARMA code. This approach helps stakeholders gain a unified understanding and
representation of the process using the graphical notations and enables stakeholders to
monitor the satisfaction of plans and objectives when defining processes.

A hybrid automaton is a finite state machine with discrete jump transitions and
continuous variables. The dynamics of the entire development process can be calculated by
using the finite state machine that represents a finite number of states and a mathematical
model of behavior, such as transitions and actions between those states [36]. In this study,
KARMA language was realized to express the group, equation, transition, and other state
attributes based on the hybrid automata theory. We defined the cost equations and variable
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values in the object nodes. In addition, transitions were defined in the relationships, such
as day stacking and cost accumulation. Finally, cif solver was used for the simulation.
From the simulation results, stakeholders can adjust the task process through the dynamic
quantitative data of cost and predict the dynamic performance of cost and time consumption
throughout the life cycle.

5.3. Summary

The KARMA language based on the GOPPRRE metamodeling method was proposed
to describe the development process of aircraft avionics systems. In the early stage of
designing the development process, static analysis was used to analyze whether the R&D
cost of the avionics system meets the requirements to help the stakeholders of the system
development quickly realize the requirement verification. On the other hand, through
dynamic analysis, the cost curve of the avionics system R&D process was analyzed to help
stakeholders optimize the defined plan. The specific features of the proposed modeling
approach are summarized as follows:

• The KARMA language is a semantic modeling language with GOPPRRE concepts,
which is designed based on a M3-M0 modeling framework supporting metamodels
and model development. To formalize the development of the R&D process, we
develop a metamodel Graph called BPD in consideration of the BPMN modeling
specifications and the ISO/IEEE 15288 life cycle R&D process standards for the process
development of aircraft avionics system based on the KARMA language;

• The static analysis method based on the KARMA language was implemented based
on a unified formal expression of the satisfaction modulo theory. The method supports
the construction of first-order logic constraints according to requirements and realizes
the satisfaction verification of target cost using cost analysis;

• The dynamic analysis based on the KARMA language was implemented based on
a unified formal expression of hybrid automata theory, which represents continu-
ous dynamic systems by adding a set of differential equations to the state of the
automaton [37]. Dynamic analysis supports the representation of the dynamic fea-
tures of the development process through simulation.

6. Conclusions

This study proposed an MBSE approach for process modeling and cost analysis using
KARMA language. First, KARMA language was introduced to support process modeling
using a GOPPRRE approach. Second, based on KARMA language, static and dynamic
analyses of development processes of aircrafts were implemented by using property ver-
ification and hybrid automata simulation. Finally, using the case study, we found that
the KARMA models describe a process model of the aircraft development processes and
support cost analysis not only from the static perspective but also from the dynamic per-
spective. Using this approach, the development processes can be analyzed during project
planning, enabling the decrease of the risks of project failures because of cost overrun. The
contributions are summarized as follows:

• A semantic KARMA language supports development process modeling based on
the ISO/IEEE 15,288, BPMN, and other specific development process features, which
improves the consistency of the process model in the aircraft system development;

• Syntax is extended in KARMA language enables to support static verification and
dynamic simulation using SMT and hybrid automata simulation to evaluate pro-
cess features and implement performance analysis of development process, thereby
improving the accuracy of the models of the system R&D early stages;

• A case study regarding the entire life cycle modeling and verification was implemented
based on the proposed approach. From the case study, the work task was formalized
using the semantic approach and its static features and dynamic performances were
evaluated by the solvers.
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For future work, it would be very interesting to develop more metamodels of other
process modeling specifications based on the KARMA language to define more complex
system development processes.
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