
����������
�������

Citation: Tang, J.; Cao, Z.; Shen, J.;

Dong, X. LPCP: An efficient

Privacy-Preserving Protocol for

Polynomial Calculation Based on

CRT. Appl. Sci. 2022, 12, 3117.

https://doi.org/10.3390/

app12063117

Academic Editors: Konstantinos

Demertzis, Konstantinos Rantos and

George Drosatos

Received: 25 January 2022

Accepted: 16 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

LPCP: An efficient Privacy-Preserving Protocol for Polynomial
Calculation Based on CRT
Jiajian Tang , Zhenfu Cao, Jiachen Shen * and Xiaolei Dong

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
51194501014@stu.ecnu.edu.cn (J.T.); zfcao@sei.ecnu.edu.cn (Z.C.); dongxiaolei@sei.ecnu.edu.cn (X.D.)
* Correspondence: jcshen@sei.ecnu.edu.cn

Abstract: With the development of privacy-preserving techniques, the increasing demand for secure
multiparty computation (MPC) of mobile devices has become a significant challenge. Unfortunately,
it is inapplicable for mobile devices to implement the existing secure multiparty computation schemes
that rely on costly computation and communication overhead. To solve this problem, we propose an
efficient two-party computation protocol secure against semi-honest adversary based on the Chinese
remainder theorem (CRT). Our protocol utilizes CRT-based encryption and re-encryption techniques
to realize additional and multiplicative homomorphic encryption, which can be transformed into
a two-party secure computation scheme. Then, we extend our two-party LPCP protocol into a
multiparty LPCP protocol, which is much faster and more space saving than the previous works. For
practical purpose, we describe a distance measurement application for mobile devices based on LPCP.
In the end, we implement LPCP codes and compare the experimental results to the state-of-the-art
two-party and multiparty computation protocols. The experimental result shows that the high
computation and communication efficiency of LPCP makes it possible for low computing-power
mobile devices to implement multiparty secure computation protocols in reality.

Keywords: secure multiparty computation; semi-honest adversary; Chinese remainder theorem

1. Introduction

Multiparty computation (MPC) [1] allows a group of parties to compute a pre-defined
function jointly without revealing their input information. MPC was initially introduced by
Yao [2] in the 1980s. After decades of development, MPC has overcome many theoretical
bottlenecks [3] and come into use in many areas, such as privacy-preserving machine
learning [4,5] and cloud data storage [6]. In particular, two-party computation (2PC) plays
a fundamental but indispensable role in the development of MPC because many 2PC
schemes can be easily transformed into MPC schemes [7]. So we mainly focus on 2PC in
this paper. The traditional 2PC schemes strongly rely on advanced computing power and
large storage space machines. In the latest 2PC work by Lindell [8], their 2PC experiments
are executed on two Amazon AWS instances: one is c4.8xlarge with 36 virtual 2.9 GHz
CPUs and 64 GB RAM, and the other is c4.2xlarge with 8 virtual 2.9 GHz CPUs and 15 GB
RAM, which is inapplicable for mobile devices. Although many optimization methods,
such as amortization, pre-processing and round optimization, have been employed to
decrease the computational and communication complexity in recent works [9–11], these
improved MPC schemes are still far from daily application on mobile devices. Therefore, it
is necessary to introduce a computing-efficient and communication-efficient MPC scheme
for mobile devices with low computing ability.

In this paper, we propose an efficient MPC scheme called the lightning polynomial
computation protocol (LPCP), which solves the problems mentioned above. Our starting
point is a fully homomorphic encryption (FHE) [12], as two-party secure computation
schemes can be constructed from a FHE scheme. However, the existing FHE-based 2PC

Appl. Sci. 2022, 12, 3117. https://doi.org/10.3390/app12063117 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063117
https://doi.org/10.3390/app12063117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0801-9852
https://orcid.org/0000-0003-2376-5068
https://doi.org/10.3390/app12063117
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063117?type=check_update&version=1

Appl. Sci. 2022, 12, 3117 2 of 20

schemes, such as threshold FHE [13,14] and multi-key FHE [15,16], do not meet our com-
putational and communication efficiency demand. Inspired by Zhou’s [17] outsourced
secure computation scheme LPPA, we find a delicate way to boost the execution process of
MPC. In the LPPA paper, Zhou employed the Chinese remainder theorem (CRT) to con-
struct an online computation scheme that allows additive homomorphic and multiplicative
homomorphic operations with the help of a trusted third party and a double server. The
advantage of LPPA is that the low computational and space requirement can be easily met
by mobile devices, while the disadvantage is that all the computation tasks are assigned
to a trusted third party and a double server, which are not allowed to exist in MPC cases.
To construct a secure MPC scheme, we aim to remove the trusted third party and the double
server. Therefore, we reassign the tasks of the trusted third party and double server directly
to the two participant parties. The tasks of the double server are separated apart so that the
original re-encryption task is assigned to the first party, and the original evaluation task
is assigned to the second party. In the meanwhile, our modifications do not increase the
computational and communication complexity. As a result, a 2PC protocol is accomplished
without the double server and a trusted third party. Furthermore, we can transform our
2PC protocol into a MPC protocol in a recursive way.

1.1. Our Contributions

In this paper, we propose an efficient CRT-based MPC scheme for polynomial computa-
tions, which is secure against a semi-honest adversary. As far as we know, our LPCP scheme
is the first protocol that introduces the Chinese remainder theorem encryption [18] and the
re-encryption techniques into an MPC scheme. The computational complexity of LPCP is re-
duced toO(1) · Ttrapdoor +O(max(logp+q

2 , termF)) · Tmultiplication +O(1) · Thash, where (p, q)
is the big prime parameters, termF is the polynomial term number, Ttrapdoor is the time of
executing a trapdoor permutation encryption, Tmultiplication is the time of executing multipli-
cation arithmetic operations, and Thash is the time of executing a hash function. The commu-
nication complexity of LPCP is reduced to O(1) · Ltrapdoor +O(1) · Lciphertext +O(1) · Lhash,
where Ltrapdooris the length of the trapdoor permutation ciphertext, Lciphertext is the length
of the ciphertext, and Lhash is the length of the hash value. For two-party secure com-
putation, compared to the latest two-party secure computation protocol Emp-sh2pc [19],
our experimental result is more than 100 times faster than Emp-sh2pc in 128-bit and 256-
bit additive and multiplicative tests, and more than 100,000 times faster in the 1024-bit
modular exponential tests. For multiparty secure computation, our experimental result
is much more scalable than those semi-honest protocols from MP-SPDZ [20]. Both the
computational and communication overhead of LPCP is affordable for mobile devices with
low computation power. As a result, it is feasible for privacy-preserving mobile devices to
implement two-party secure computation with our protocol LPCP.

1.2. Related Works

In 1978, Rivest, Adleman and Dertouzos [21] first introduced privacy homomorphism
that allows computation on encrypted data without decryption, and they give a CRT-based
example. In 2009, Gentry [22] proposed the first concrete fully homomorphic encryp-
tion scheme based on ideal lattices. Based on the learning-with-error (LWE) assumption,
Cheon [23] proposed a widely used FHE scheme called CKKS, which has been realized in
many cryptography libraries. As the fully homomorphic encryption scheme can directly
perform the computations on the ciphertexts without decryption, it brings many MPC
ideas into being. López-Alt [14] proposed a new MPC scheme based on FHE. In the CRT
fields, Kim [18] introduced a CRT-based fully homomorphic encryption scheme over the
integers, which is secure against the chosen plaintext attacks under the decisional approxi-
mate greatest common divisor (AGCD) assumption and the sparse subset sum assumption.
Zhou [17] proposed a CRT-based secure outsourced computation scheme that realizes fully
the homomorphic property in a re-encryption way.

Appl. Sci. 2022, 12, 3117 3 of 20

1.3. Orgnization

The paper is arranged as follows. Firstly, we introduce the preliminaries in Section 2.
Then, the framework for two-party LPCP is described in Section 3. In Section 4, we give
the flow chart of LPCP and present the concrete construction of LPCP for a two-party
computation situation. In Section 5, we prove the correctness of LPCP and the privacy
security of LPCP in the hybrid simulation. In Section 6, the original two-party construction
of LPCP is extended into three or more party secure computation schemes. In Section 7, we
describe a mobile device application scene based on our LPCP scheme. In Section 8, we
evaluate the performance of our protocol in the aspects of running time and communication
overhead. Then, we compare the result of our experiment to the latest works. Finally, we
make a conclusion of the advantages and disadvantages of LPCP in Section 9.

2. Preliminaries
2.1. One-Way Trapdoor Permutation

One-way trapdoor permutation is a triple of function { f , f−1, t}, where f is a one-way
function and t is secret information generated by security parameter λ. Furthermore,
function f : f (x)→ x is also a permutation, where x ∈ D(1λ). There exists a polynomial
algorithm that correctly computes function f−1 with the trapdoor t. For all probabilistic
polynomial algorithms without the trapdoor t, there exists

Pr[A(1λ, f (x)) = f−1(f (x))] ≤ ε(λ) (1)

where x ∈ D(1λ) and ε(λ) are negligible in λ.

2.2. Euler’S Theorem

Let n and a be coprime positive integers, that is, gcd(n, a) = 1, then

aϕ(n) ≡ 1 mod n (2)

where ϕ is Euler’s totient function.

2.3. Chinese Remainder Theorem (CRT)

The Chinese remainder theorem asserts that if positive integers m1, m2, . . . , mk are
pairwise coprime, gcd(mi, mj) = 1 for i 6= j and every integer a1, a2, . . . , an satisfies
0 ≤ ai < mi, there exists one and only one solution x such that 0 ≤ x < m to the fol-
lowing congruence.

x ≡ a1 mod m1,

x ≡ a2 mod m2,
...

x ≡ ak mod mk

(3)

with m = ∏k
i=1 mi, m = mi Mi and Mi M′i ≡ 1 mod mi, the solution x = M′1M1b1 +

M′2M2b2 + · · ·+ M′k Mkbk mod m.

2.4. Hash Function

Hash functionH is a function which maps data of arbitrary size to fixed-size values
{0, 1}λ → {0, 1}λ. A good hash function should be collision resistant such that for all
probabilistic polynomial-time adversaries A, A cannot find a collision x 6= x′ such that
H(x) = H(x′) with non-negligible probability.

3. Framework for Two-Party LPCP

In this section, we introduce the framework for our semi-honest two-party secure
computation protocol LPCP.

Appl. Sci. 2022, 12, 3117 4 of 20

First of all, we define the security model of our two-party LPCP scheme. Considering
the following situation, two semi-honest parties P1 and P2 intend to calculate a polynomial
function F(m1, m2) with inputs m1 and m2, respectively. For convenience, we use S to
denote sender P1 and R to denote receiver P2 in this section. At the beginning of the
protocol execution, one party is statically corrupted by the adversary. The corrupted party
is allowed to learn as much information as possible, but cannot violate the protocol rules,
which meets the definition of a semi-honest adversary.

To reduce the time and communication complexity, we abandon those widely used
techniques, such as garbled circuits, oblivious transfer and secret sharing. Instead, LPCP
implements the Chinese remainder theorem and re-encryption technique to realize additive
and multiplicative homomorphism. The main idea of LPCP is that two parties encrypt their
plaintexts with different secret keys, initially. Then, one party re-encrypts the other party’s
ciphertext, transforming both parties’ ciphertext under the same secret key, where the
computation process can be executed quickly. Finally, both parties decrypt the computed
ciphertext to obtain the resulting answer. For concrete proof of the homomorphism, see
Proof 4. LPCP consists of five ideal functionalities—the setup functionality FSetup, the key
generation functionalityFKeyGen, the encryption functionality FEnc, the re-encryption func-
tionality FRe−Enc, the evaluation functionality FEval , and the decryption functionality FDec.

In FSetup, two parties jointly decide the security parameter λ and the polynomial

function F(m1, m2). The polynomial function F(m1, m2) = ∑i aim
bi
1 mci

2 takes in m1 and m2,
and is expected to output the correct result. All the coefficients ai and degrees bi, ci of
polynomial terms are decided by S andR in advance.

Ideal Functionality FSetup

1. S andR run para← Setup(1λ).

2. S andR decide the polynomial function F = ∑n
i=1 aim

bi
1 mci

2 .

Once the initial parameter para and the polynomial function are decided, both S
and R begin to generate their private keys according to the parameter para given in the
functionality FKeyGen. It is important to remember that our protocol implements symmetric
encryption instead of asymmetric encryption. Therefore, the private key generated should
be kept secret by each party respectively. Additionally, the randomness parameter should
not be leaked as well.

Ideal Functionality FKeyGen

1. S and R call the parameter para to generate their secret keys sk and randomness
parameters r by running {sk, r} ← KeyGen(para).

In the encryption phase, S encrypts its message m1 with its private key sk1 and a
random element r generated in FKeyGen. ReceiverR encrypts its message in the same way
as sender S , except thatR does not multiply a random element with its ciphertext.

Ideal Functionality FEnc

1. S andR encrypt their messages respectively by running C ← Encsk(m, r).
2. S sends its ciphertext toR.

As mentioned above, sender S and receiverR encrypt their messages with different
private keys and different randomness tuples, which results in their ciphertexts being in two
distinct ciphertext spaces. Direct addition and multiplication on such two ciphertexts result
in a wrong answer. That is why we introduce the re-encryption functionality FRe−Encryption.
The re-encryption functionality aims to make sure that mathcalS’s ciphertext is correctly
calculated with receiverR’s ciphertext without leaking secret information.

Ideal Functionality FRe−Enc

1. ReceiverR receives the original ciphertext C from sender S .
2. Receiver R partially decrypts the ciphertext C in order to obtain the intermediate

ciphertext Cintermediate.

Appl. Sci. 2022, 12, 3117 5 of 20

3. ReceiverR re-encrypts the intermediate ciphertext Cintermediate to obtain the sender S ’s
ciphertext under the receiverR’s secret key by running C′ ← Re− Encsk(Cintermediate).

4. ReceiverR sends back the re-encryption result C′ to sender S .

The evaluation functionality is the key step where sender S finishes the calculation.
The ciphertexts are transformed into the same ciphertext space; however, with different
polynomial degrees. It is necessary for sender S to unify the degree of every term in
the polynomial before the evaluation. After that, sender S calculates the sum of every
polynomial term, finishing the evaluation step.

Ideal Functionality FEval

1. Sender S receivesR’s ciphertext C together with the re-encryption ciphertext C′ and
reduces the initial randomness r from its re-encryption ciphertext.

2. Sender S carries out the computation function CF ← Eval(C, C′).
3. Sender S transfers CF to receiverR.

In the end, we reach the final step—the decryption functionality. Receiver R, who
owns the private key sk2, implements the decryption and sends the output back to S .

Ideal Functionality FDec

1. ReceiverR runs the decryption functionality to obtain Output← Decsk,r(CF).
2. ReceiverR shares the Output to S .

In a nutshell, sender S appends a random integer r to its message m1 and encrypts
them with S ’s private key. ReceiverR encrypts its message m2 withR’s private key. Up
to now, the two ciphertexts from S and R lie in the different ciphertext space. Then, S
sends its ciphertext to R. R re-encrypts S ’s ciphertext with R’s private key so that both
S ’s ciphertext andR’s ciphertext lie in the same ciphertext space, where the addition and
multiplication operations can be performed directly. After that,R sends the re-encrypted
ciphertexts to S . It is S ’s turn to eliminate the random integer r introduced by itself and
carry out the polynomial calculation. At last, S sends the calculation result back to R,
which can only be decrypted byR’s private key. OnceR finishes the decryption, it shares
the output with S . Throughout the process, the privacy of the inputs and intermediate
results are kept secret, which fulfills the goal of 2PC.

4. Concrete Construction for Two-Party LPCP

In this section, we give a detailed description of our two-party secure computation
protocol LPCP. For three-party and more parties MPC cases, see Section 6.

In the setting of two-party LPCP, there are two semi-honest parties P1 and P2, with
inputs m1 and m2, respectively. Both parties intend to compute a polynomial function
F(m1, m2) = ∑n

i=1 aim
bi
1 mci

2 without leaking any information of their input. Here, we
assume the communication channel and both parties’ identifications are authenticated, so
they do not need additional negotiations. For convenience, we use S to denote sender P1
andR to denote receiver P2. As Section 3 shows, our protocol consists of six phases—the
Setup phase, KeyGen phase, Enc phase, Re-Enc phase, Eval phase, and Dec phase in four
communication rounds. Figure 1 shows the sketch map of our protocol.

Setup: At the beginning of the protocol, P1 and P2 decide the security parameter 1λ. If
party Pi has not generated the one-way trapdoor permutation function, Pi runs the one-way
trapdoor permutation generation algorithm to obtain a one-way trapdoor permutation
function pair (f , f−1) on {0, 1}2λ. We denote the one-way trapdoor permutation function
key pair of sender S as (skSen, pkSen) and the key pair of receiverR as (skRec, pkRec). If both
parties have generated their one-way trapdoor permutation function, they can skip the
above generation process.

Appl. Sci. 2022, 12, 3117 6 of 20

P1 P2

CRec
'

C1
Re-enc
C2

CSen
C1

CF

Output

Encryption
CSen = Ftrapdoor(N1, r)

C1 = Encsk1(m1, r1)

Encryption & Re-encryption
CRec = Ftrapdoor(T2)

C2 = Encsk2(m2)
C1

Re-enc = Re-Enc(C1)

Evaluation
CF = Eval(C1

Re-enc, C2)

Decryption
Output = Dec(CF)

Figure 1. The interaction flow chart of LPCP’s framework. The process of P1 is on the left side and
the process of P2 is on the right side.

Once the security parameter length λ is decided, all the parameters can be generated
without this communication. For this reason, we can pre-process the setup phase as follows.
Both parties pre-process the generation of parameters while they are free. In this way,
we can reduce one communication round to optimize the setup phase. As a result, when
the request arrives, both parties choose the corresponding security parameters from the
parameter library and run the protocol as soon as possible.

KeyGen: In the key generation phase, both parties initialize an integer N0 ∈ {0, 1}2λ.
The message spaceM is set to be Z∗N′0 where N′0 = {0, 1}λ−1.

For each party Pi where i = 0 or i = 1, three primes pi, qi, si are randomly and
independently chosen such that |pi| = |qi| = |si| = λ. Pi computes Ni = piqi satisfying
Ni ≥ N0 and Ti = piqisi. p−1

i is the multiplicative inverse element of pi modulo qi such that
p−1

i pi ≡ 1 mod qi and q−1
i is the multiplicative inverse element of qi modulo pi such that

q−1
i qi ≡ 1 mod pi. Each party holds (pi, qi, si, Ni, Ti), where pi, qi, Ni, si remain secret, while

Ti is public. As LPCP only involves symmetric encryption, there is no public key. This
generation of big primes pi, qi, si and the multiplicative inverse elements p−1

i , q−1
i can be

pre-processed before the protocol when the parties are free. When the secure computation
request comes, the parties can quickly choose a tuple of pre-generated parameters and
consume it in the following execution. It must be ensured that every secure computation
consumes a differently new tuple of (pi, qi, si).

Enc: In the encryption phase, sender S randomly chooses r1 ∈ {0, 1}λ and
r′1, r ∈ {0, 1}2λ, then computes

CSen = fpkRec(N1||T1||r)
m1,p1 = m1 mod p1

m1,q1 = m1 mod q1

C1,CRT = p−1
1 p1mq1

1,q1
+ q−1

1 q1mp1
1,p1

C1 =< r1, r′1 > · < C1,CRT , N1 > modT1

= (r1(p−1
1 p1mq1

1,q1
+ q−1

1 q1mp1
1,p1

) + r′1N1) mod T1

hash1 = H(CSen||C1)

(4)

S encrypts his secret modulus N1 and a random element r with the public key of R’s
trapdoor permutation. Then S implements the Chinese remainder theorem and the Euler’s
theorem to construct C1,CRT . Here, the purpose of introducing Euler’s theorem is to mess

Appl. Sci. 2022, 12, 3117 7 of 20

up the plaintext information. The ciphertext C1 equals the inner product of randomness
tuple < r1, r′1 > and secret tuple < C1,CRT , N1 > modulo T1. In the first communication
round, S sends C = (C1, CSen) together with the hash value hash1 toR.

On the other hand, receiverR randomly chooses r2 ∈ {0, 1}λ and computes

CRec = fpkSen(T2)

m2,p2 = m2 mod p2

m2,q2 = m2 mod q2

C2,CRT = p−1
2 p2mq2

2,q2
+ q−1

2 q2mp2
2,p2

C2 =< 1, r2 > · < C2,CRT , N2 > modT2

= (p−1
2 p2mq2

2,q2
+ q−1

2 q2mp2
2,p2

+ r2N2) mod T2

(5)

The encryption process of receiverR slightly differs from S , as the first component
of ciphertext C2,CRT is multiplied by the constant 1 instead of a random element. For S ,
the existence of the random element r1 is to mask the message for the subsequent process
and expand the ciphertext space into ZT2 . As there is no need for C2 to be masked and
re-encrypted,Rmultiplies C2,CRT by the constant 1. To reduce the communication round,
receiverR does not send out the ciphertext immediately. Instead, receiverR delays sending
the ciphertext to the re-encryption phase.

Re-Enc: After receiving the ciphertext,R checks whetherH(C1||CSen) equals the hash
value hash1. If verified,R continues the re-encryption process. Otherwise,R outputs ⊥ to
abort the execution. ThenR decrypts CSen to obtain the modulus N1 and randomly chooses
r′2 ∈R {0, 1}2λ. R re-encrypts S ’s ciphertext C1 as follows.

N1||r = fskRec(CSen)

C′1 = C1 mod N1

C1,q2 = C′1 mod q2

C1,p2 = C′1 mod p2

Cre−enc
1 = (p−1

2 p2Cq2
1,q2

+ q−1
2 q2Cp2

1,p2
+ r′2N2) mod T2

hash2 = H(CRec||C2||Cre−enc
1)

(6)

As a result, the ciphertext C′1 is equivalent to r1m1 mod N1 according to the Chinese
remainder theorem and Euler’s theorem. The re-encryption operation transforms S ’s
ciphertext space intoR’s ciphertext space T2, which lays a foundation for the next evalua-
tion phase. In the second communication round, receiverR sends ciphertext (Cre−enc

1 , C2)
with the hash signature hash2 back to S . Here, the security problem comes if R knows
the ciphertext C1 and the modulus N1, does it reveal any information about the input of
sender S .

Theorem 1. Assuming the secret parameter r′ is randomly chosen from {0, 1}2λ and the modulus
T are known to the adversary. The encryption scheme of receiverR

C = ((p−1 pmq
q + q−1qmp

p) + r′N) mod T

is semantically secure in the presence of an eavesdropper.

Proof. First, our protocol is under the private key encryption scheme. We define the
experiment PrivKeva

A,Π as follows.

1. The adversary A outputs a pair of messages |m0| = |m1| where m0, m1 ∈ {0, 1}λ.
2. Two big primes p and q are generated using KeyGen, and a uniform bit b ∈ {0, 1} is

chosen. Ciphertext C ← Encsk(p,q)(mb) is computed and given to A.
3. A outputs a bit b′.

Appl. Sci. 2022, 12, 3117 8 of 20

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. We
write PrivKeva

A,Π = 1 if the output of the experiment is 1 and in this case we say that
A succeeds.

We construct an adversary A′ so that it emulates the eavesdropping experiment for A.
We define the experiment FactorA′(T) as follows.

1. Take as input the product of three primes T ∈ {0, 1}3λ.
2. Generate the ciphertext C as in Enc.
3. Give C to A and obtain output N. Output 1 if T = Ns, and output 0 otherwise.

If A can break the ciphertext C to obtain the plaintext mb, then A can calculate
C − mb mod T. As (C − mb) ≡ 0 mod N, A can obtain the modulus N by calculating
the greatest common divisor gcd(C − mb, T). A returns the modulus N to A′. A′ can
factor the product of big primes T = Ns, which breaks the factor assumption. That is,
if A can break the ciphertext with a non-negligible advantage, A′ can break the factor
assumption. Therefore, the encryption scheme is semantically secure in the presence of an
eavesdropper.

Theorem 2. Assume that the secret parameter r is randomly chosen from {0, 1}λ and the moduli
N and T are known to the adversary A. The encryption scheme of the sender

C = (r(p−1 pmq
q + q−1qmp

p) + r′N) mod T

is semantically secure in the presence of an eavesdropper.

Proof. First, our protocol is under the private key encryption scheme. We define the
experiment PrivKeva

A,Π as follows.

1. The adversary A outputs a pair of messages |m0| = |m1| where m0, m1 ∈ {0, 1}λ.
2. Two big primes p and q are generated using KeyGen, and a uniform bit b ∈ {0, 1} is

chosen. Ciphertext C ← Encsk(p,q)(mb) is computed and given to A.
3. A outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. We

write PrivKeva
A,Π = 1 if the output of the experiment is 1 and in this case, we say that

A succeeds.

We construct an adversary A′ so that it emulates the eavesdropping experiment for A.
We define the experiment FactorA′(N) as follows.

1. Take as input the product of two primes N ∈ {0, 1}2λ.
2. Generate the ciphertext C as in Enc.
3. Give C to A and obtain output p, q. Output 1 if N = pq, and output 0 otherwise.

If A can break the ciphertext C to obtain the plaintext mb, then A can obtain the
randomness r by multiplying m−1, the inverse element of m, with the result of C mod N.
According to the Euler theorem, mq−1

q ≡ 1 mod q and mp−1
p ≡ 1 mod p. We can obtain

mq
q ≡ mq mod q and mp

p ≡ mp mod p. According to the Chinese theorem, the adversary A
can obtain mp and mq. Thus, A obtains the prime p by calculating the greatest common
divisor gcd(N, m−mp) and obtains the prime q by calculating the greatest common divisor
gcd(N, m−mq).

Now the adversary A′ takes N as input. A′ constructs the ciphertext C and gives
(C, N) to A as input. As A can break the ciphertext and return the big primes p, q to
A′, A′ can return N = pq and achieve the prime decomposition, which breaks the factor
assumption. A′ can factor the product of big primes N = pq, which breaks the factor
assumption. That is, if A can break the ciphertext with a non-negligible advantage, A′ can
break the factor assumption. Therefore, the encryption scheme is semantically secure in the
presence of an eavesdropper.

Appl. Sci. 2022, 12, 3117 9 of 20

Now the focus of our work is the presentation of the LPCP protocol and a more formal
security analysis is required in future work.

Eval: Before introducing the evaluation phase, we prove the additive and multi-
plicative homomorphism of our CRT-based encryption scheme. The purpose of the re-
encryption phase is to unify ciphertexts of P1 and P2 into the same ring space ZT2 . After
the re-encryption, ciphertexts Cre−enc

1 and C2 are encrypted by the same private key of
P2 in the same ring space ZT2 , where the additional and multiplicative operations can be
performed directly on the ciphertexts. Below, we prove the homomorphism property that
the decryption result of Cre−enc

1 + C2 ≡ r1m1 + m2 mod N2 and the decryption result of
Cre−enc

1 ∗ C2 ≡ r1m1 ∗m2 mod N2.

Proof.

Enc(r1m1) + Enc(m2) = Cre−enc
1 + C2

≡ p−1
2 p2(C

q2
1,q2

+ Cq2
2,q2

) + q−1
2 q2(C

p2
1,p2

+ Cp2
2,p2

) + RN2

mod T2

Enc(r1m1) ∗ Enc(m2) = Cre−enc
1 ∗ C2

≡ (p−1
2 p2)

2
(C1,q2 C2,q2)

q2 + (q−1
2 q2)

2
(C1,p2 C2,p2)

p2 + R′N2

mod T2

Dec(Cre−enc
1 + C2) ≡ (m1 + m2) mod N2

Dec(Cre−enc
1 ∗ C2) ≡ (m1 ∗m2) mod N2

After receiving the message (Cre−enc
1 , C2, CRec, hash2), sender S checks whether

H(Cre−enc
1 ||C2||CRec) equals the hash value hash2. If verified, S continues the evaluation

process. Otherwise, S outputs ⊥ to abort the execution. Then S decrypts CRec to obtain
T2 and partially decrypts Cre−enc

1 while keeping C2 unchanged. The multiplicative inverse
of r1 satisfies r1r−1

1 = 1 mod T2. As parameter N2 is known toR, it is easy forR to obtain
the inverse element r−1

1 in the decryption phase. Degree degF is the maximum degree of
polynomial F(x1, x2), and degi is the degree of the ith term of the polynomial. There are
two reasons why the random element r is introduced into the ciphertext. One reason is to
preventR from deducing the plaintext m1, reversely referring to CF. The other reason is to
unify the degree of the polynomial terms to perform the additive operations. In the third
communication round, S sends the final ciphertext CF and hash signature hash3 toR.

T2 = fskSen(CRec),

C1,eval = rr−1
1 Cre−enc

1 mod T2

C2,eval = rC2 mod T2

Ctermi = air(degF−degi)Cbi
1,evalC

ci
2,eval mod T2

degF = max
i

(degi)

degi = bi + ci

CF =
n

∑
i=1

Ctermi

hash3 = H(CF)

(7)

Dec: In the decryption phase, after receiving the message (CF, hash3), receiver R
checks whetherH(CF) equals the hash value hash3. If verified,R continues the decryption

Appl. Sci. 2022, 12, 3117 10 of 20

process. Otherwise,R outputs ⊥ to abort the execution. R obtains the random element r
from the trapdoor permutation and computes the multiplicative inverse of r that satisfies
rr−1 = 1 mod N2. In the last communication round,R shares the result Output with S .

r = fskRec(CSen)

Output = r−degF CF mod N2
(8)

At the end, S and R obtain the result of polynomial function F(m1, m2) without
revealing their inputs m1 and m2, which achieves the goal of secure two-party computation.

5. Security Proof

In this section, we give the security proof of LPCP.

5.1. Correctness

Before the security proof, we present the correctness of LPCP.

r−degF CF mod N2

= r−degF
n

∑
i=1

kir(degF−degi)C
deg1

i
1,evalC

deg2
i

2,eval mod N2

=
n

∑
i=1

ki(r−1
1 C

′′
1)

deg1
i C2

deg2
i mod N2

=
n

∑
i=1

ki(r−1
1 C

′′
1 mod N)

deg1
i (C2 mod N)deg2

i mod N2

=
n

∑
i=1

ki(r−1
1 r1m1)

deg1
i (m2)

deg2
i mod N2

=
n

∑
i=1

kim
deg1

i
1 m

deg2
i

2 mod N2

(9)

5.2. Privacy

We give the privacy proof of the 2PC LPCP protocol by simulation.
First, we consider the case of sender S being corrupted by the semi-honest adversary

A1. The adversaryA1 obtains access to all the input and output of S , including S ’s security
parameter 1λ, the input message m1, the prime tuple (p1, q1, s1), the randomness tuple, the
polynomial function F(m1, m2) and the ciphertexts received. ReceiverR sends the cipher-
texts to the adversary A1 in the second communication round and fourth communication
round. The input ciphertexts are simulated as follows:

1. In the second round simulation, S receives the ciphertext (Cre−enc
1 , C2).

2. In the fourth round simulation, S receives the plaintext Output.

Below, we prove that the honest sender S cannot distinguish its simulated view with
its real execution view.

1. H′real : This hybrid is the same as the real-world execution.
2. H′1: This hybrid is the same as H′real , except we change the output from Output to

OutputSim. R randomly chooses OutputSim ∈ {0, 1}2λ. According to Theorem 2 and
the reason that S does not know the modulus N2 for decryption, S cannot distinguish
the real output Output from the simulated output OutputSim.

3. H′2: This hybrid is the same asH′1, except we change the ciphertext from (Cre−enc
1 , C2)

to (Cre−enc
1

Sim, CSim
2). R randomly chooses the ciphertext Cre−enc

1
Sim ≤ T and CSim

2 ≤
T. As S has no information aboutR’s value m2, N2, r2, S cannot distinguish the real
ciphertext C2 from the simulated ciphertext CSim

2 . According to Theorem 1, S cannot
distinguish the real re-encryption ciphertext Cre−enc

1 from the simulated re-encryption

ciphertext Cre−enc
1

Sim.

Appl. Sci. 2022, 12, 3117 11 of 20

The hybrid model H′real is statistically indistinguishable from the hybrid model H′2,
whereH′real is the real-world view of S , andH′2 is the ideal world view of S . Therefore, the
2PC LPCP protocol is secure when S is corrupted.

Secondly, we consider the case of R being corrupted by the semi-honest adversary
A2. The adversary A2 gets access to all the input and output of receiverR, includingR’s
security parameter 1λ, the input message m2, the prime tuple (p2, q2, s2), the randomness
tuple, the polynomial function F(m1, m2) and the ciphertexts received. The adversary A2
receives ciphertexts in the first and third communication round.

1. In the first round,R receives the ciphertext C1.
2. In the third round,R receives the ciphertext CF.

Below, we prove that the semi-honest senderR can not distinguish the simulated view
with the real execution view.

1. HReal : This hybrid model is the same as the real-world execution.
2. H1: This hybrid model is the same asHreal , except we change the ciphertext (Cre−enc

1 , C2)

to the randomly simulated ciphertexts (Cre−enc,Sim
1 , CSim

2). When S simulates the
ciphertext (Cre−enc

1 , C2), S chooses a random element CSim
F ∈ {0, 1}3λ and sends CSim

F
to R. As R does not know the randomness r1, the ciphertext Cre−enc

1 is multiplied
with r−1

1 , the inverse element of r1. Therefore, R cannot distinguish the randomly
forged ciphertext CSim

F from the real ciphertext CF.

The hybrid model Hreal is statistically indistinguishable from the hybrid model H1,
where Hreal is the real-world view of R and H1 is the ideal-world view of R. Therefore,
the 2PC LPCP protocol is secure whenR is corrupted.

In summary, our 2PC LPCP is secure against the semi-honest adversary and guarantees
the privacy of both parties’ input information. Now the focus of our work is the presentation
of the LPCP protocol. A more formal security analysis is required in future work.

6. Extension to Three and More Parties LPCP

In Section 4, we present a two-party secure computation construction. Furthermore,
LPCP can be extended into an MPC scheme with three and more parties utilizing the
two-party LPCP scheme. In the following part, we present a three-party MPC construction.
There are three parties P1, P2 and P3 with inputs m1, m2 and m3, respectively, who aim to
compute a polynomial function F(m1, m2, m3) = ∑i kim

ai
1 mbi

2 mci
3 .

Our main idea is that P1 and P2 perform the LPCP protocol and then perform the
other LPCP protocol with P3. Concretely speaking, we execute the two-party LPCP scheme
between P1 and P2. Then we see P1 and P2 as a whole part and execute the other two-party
LPCP scheme between this whole part and P3. To ensure the privacy security, the original
two-party LPCP scheme is modified slightly. First, P1 executes the operations as the sender,
and P2 executes the same operations as the receiver in 4, except that P1 does not send the
last ciphertext CF to P2 in the re-encryption phase. Instead, P1 encrypts the last ciphertext
with its secret keys p2, q2 and begins a new round of the two-party LPCP scheme with P3.
The true decryption phase is delayed to the end of the whole protocol, where P2 and P1
decrypt the final ciphertext to obtain the answer.

Setup: The setup phase is the same as the two-party LPCP scheme.
KeyGeneration: For i = 0, 1, 2, each party Pi randomly and independently chooses

three length-equal primes pi, qi, si which satisfy |pi| = |qi| = |si| = λ. Each party Pi
generates a trapdoor permutation key pair skPi and pkPi

. Then, Pi computes Ni = piqi and
Ti = piqisi.

Encryption: P1 randomly chooses r1 ∈ {0, 1}λ and r′1, r ∈ {0, 1}3λ. Then P1 computes
as follows and sends CP1 and C1 to P2.

Appl. Sci. 2022, 12, 3117 12 of 20

CP1 = fpkP2
(N1)

m1,p1 = m1 mod p1

m1,q1 = m1 mod q1

C1,CRT = p−1
1 p1mq1

1,q1
+ q−1

1 q1mp1
1,p1

C1 =< r1, r′1 > · < C1,CRT , N1 > modT1

= (r1(p−1
1 p1mq1

1,q1
+ q−1

1 q1mp1
1,p1

) + r′1N1) mod T1

(10)

P2 randomly chooses r2 ∈ {0, 1}3λ and computes

CP2 = fpkP1
(T2)

m2,p2 = m2 mod p2

m2,q2 = m2 mod q2

C2,CRT = p−1
2 p2mq2

2,q2
+ q−1

2 q2mp2
2,p2

C2 =< 1, r2 > · < C2,CRT , N2 > modT2

= (p−1
2 p2mq2

2,q2
+ q−1

2 q2mp2
2,p2

+ r2N2) mod T2

(11)

P3 randomly chooses r3 ∈ {0, 1}λ and r′3 ∈ {0, 1}3λ. Then, P3 computes as follows and
sends CP3 and C3 to P2.

CP3 = fpkP2
(N3)

m3,p3 = m3 mod p3

m3,q3 = m3 mod q3

C3,CRT = p−1
3 p3mq3

3,q3
+ q−1

3 q3mp3
3,p3

C3 =< r3, r′3 > · < C3,CRT , N3 > modT3

= (r3(p−1
3 p3mq3

3,q3
+ q−1

3 q3mp3
3,p3

) + r′3N3) mod T3

(12)

Re-Encryption: In the re-encryption phase, P2 receives the ciphertexts CP1 and C1
from P1 and CP3 and C3 from P3. P2 opens the trapdoor permutation with its secret key
skP2 , randomly chooses r′2 and r

′′
2 ∈ {0, 1}3λ, then re-encrypts the ciphertexts C1 and C3

as follows.
N1 = fskP2

(CP1)

N3 = fskP2
(CP3)

C′1 = C1 mod N1

C1,p2 = C′1 mod p2

C1,q2 = C′1 mod q2

Cre−enc
1 = (p−1

2 p2Cq2
1,q2

+ q−1
2 q2Cp2

1,p2
+ r′2N2) mod T2

C′3 = C3 mod N3

C3,p2 = C′3 mod p2

C3,q2 = C′3 mod q2

Cre−enc
3 = (p−1

2 p2Cq2
3,q2

+ q−1
2 q2Cp2

3,p2
+ r

′′
2 N2) mod T2

(13)

After the re-encryption, P2 sends the re-encrypted ciphertexts Cre−enc
1 and Cre−enc

3 back
to P1. P1 randomly chooses r4 ∈ {0, 1}3λ and re-encrypts Cre−enc

3 as follows.

Appl. Sci. 2022, 12, 3117 13 of 20

Cre−enc
3,p2

= Cre−enc
3 mod p1

Cre−enc
3,q2

= Cre−enc
3 mod q1

Cre−enc′
3 = (p−1

1 p1Cre−enc
3,q2

q1 + q−1
1 q1Cre−enc

3,p2

p2 + r4N1) mod T1

(14)

Evaluation Round1: In the first round of the evaluation phase, P1 encrypts the resulting
ciphertext Cround1 instead of sending it back to P2. P1 randomly chooses r5 ∈ {0, 1}λ and
r′5 ∈ {0, 1}3λ.

T2 = fskP1
(CP2),

C1,eval = r−1
1 Cre−enc

1 mod T2

C2,eval = C2 mod T2

Ctermi = kiC
ai
1,evalC

bi
2,eval mod T2

Cround1 =
n

∑
i=1

Ctermi

(15)

Then P2 computes the ciphertext C′round1 and sends it to the third participant party P3.

Cround1,p1 = Cround1 mod p1

Cround1,q1 = Cround1 mod q1

Cround1,CRT = p−1
1 p1Cq1

round1,q1
+ q−1

1 q1Cp1
round1,p1

C′round1 =< r5, r′5 > · < Cround1,CRT , N1 > modT1

= (r5(p−1
1 p1Cq1

round1,q1
+ q−1

1 q1Cp1
round1,p1

) + r′5N1) mod T1

(16)

Evaluation Round2 P3 receives the ciphertext C′round1 and Cre−enc′
3 , then computes

as follows.
C′round1,eval = r−1

3 C′round1 mod T1

Cre−enc′
3,eval = Cre−enc′

3 mod T1

C′termi
= C′round1,evalC

re−enc′
3,eval

ci mod T1

Cround2 =
n

∑
i=1

C′termi

(17)

After the evaluation, the ciphertext Cround2 is sent to P1 for partial decryption.
Decryption In the decryption phase, P1 performs the first decryption, then P2 performs

the second decryption.
CF = Cround2 mod N1

Output = CF mod N2

Output = F(m1, m2, m3)

(18)

The existence of two rounds of evaluation is to make sure the ciphertexts are encrypted
by the same private space and lie in the same ring space. When there are more than three
parties, we can make use of the paradigm above to modify our LPCP scheme. However,
the more parties there are, the more communication rounds there will be. When the party
number grows large, the communication overhead increases rapidly, which leads to high
latency. We will research this problem in our later work.

7. Mobile Device Distance Measurement Applications

In this section, we present a mobile device distance measurement application based
on LPCP.

Nowadays, many mobile phone applications (APP) services are built on the loca-
tion based service (LBS) [24,25]. For example, when users want to search the nearest
take-out restaurant for dinner or they want to make friends with the stranger within a

Appl. Sci. 2022, 12, 3117 14 of 20

three-kilometer range on dating software, they need to upload their location information
to APP servers. However, this uploading location information may reveal their location
or even reveal their home address. Therefore, it is necessary to introduce location pri-
vacy techniques into those LBS-based APPs. Multiparty secure computation techniques
can solve the location privacy problems above. However, it takes too much time, from
seconds to minutes, for traditional MPC protocols to be executed on mobile devices with
low computing power. Our secure computation protocol LPCP becomes of use in such
circumstances. LPCP’s advantages of fast execution and low communication overhead
make it possible for mobile devices to execute MPC protocols.

Supposing there are two users User1, User2 with mobile devices who wish to measure
the distance between each other in an APP locally. The main idea is as follows. As the local
APP service only makes sense in a limited and effective range, we divide the geographical
positions into many n×m two-dimensional planes, where n, m ≤ 2λ

δ . Here, the notation λ
is the security parameter, and δ is the amplification factor. Then, the location of each user is
mapped into the coordinate system (xi, yi) in a co-located rectangle area. Concretely, the
location of User1 is scaled up by δ and mapped into the integer coordinate system (x1, y1).
The location of User2 is also scaled up by δ and mapped into the integer coordinate system
(x2, y2) so that our LPCP can perform arithmetic operations. The problem of the privacy-
preserving distance measurement is now transformed into calculating the polynomial
(x1 − x2)

2 + (y1 − y2)
2, which can be efficiently solved by the LPCP protocol.

In the setup phase, both mobile devices obtain their geographical information from the
location service and map the geographical information into the integer coordinate system
(x1, y1) and (x2, y2). The security parameter 1λ of LPCP is assumed to be fixed to a static
value. To avoid the known-plaintext attack, each mobile device adds a relatively small
noise (ei, e′i), where ei, e′i ≤ 2λ/δ to its location (xi, yi) to conceal its real position. After
the pre-processing, the coordinate of User1 becomes (x1 + e1, y1 + e′1), and the coordinate
of User2 becomes (x2 + e2, y2 + e′2) where the introduced small noise e1, e′1, e2, e′2 does not
cause a distance result error.

In the key generation phase, both mobile devices implement the KeyGen algorithm to
generate the prime tuple and the randomness as Section 4.

In the encryption phase, User1 plays the role as sender and User2 plays the role
as receiver. User1 executes the sender’s encryption scheme to encrypt messages x1 + e1
and y1 + e′1, respectively. User2 executes the receiver’s encryption scheme to encrypt
messages x2 + e2 and y2 + e′2, respectively. User1 and User2 deal with the x-coordinate and
y-coordinate calculations separately.

The remaining re-encryption phase, evaluation phase, and decryption phase are the
same as Section 4. In the re-encryption phase, User2 executes the Re-Enc algorithm. In
the evaluation phase, User1 executes the Eval algorithm. In the decryption phase, User2
executes the Dec algorithm.

In the end, both mobile devices obtain the approximate distance between each other
while keeping their exact position unexposed.

8. Performance and Evaluation

In this section, we evaluate the theoretical computation and communication complex-
ity of LPCP and evaluate the performance of LPCP.

8.1. Theoretical Analysis

For the computation aspects, the computation overhead comprises three parts—the
one-way trapdoor permutation, arithmetic ring operations and hash operations. Both the
one-way trapdoor permutation encryption and the one-way trapdoor permutation decryp-
tion are implemented twice. The main overhead of the arithmetic ring operations lies in the
re-encryption phase. The hash operations is implemented six times. Therefore, the com-
putational complexity of LPCP is O(1) · Ttrapdoor +O(max(logp+q

2 , termF)) · Tmultiplication +
O(1) · Thash, where (p, q) is the big prime parameters, termF is the polynomial term number,

Appl. Sci. 2022, 12, 3117 15 of 20

Ttrapdoor is the time of executing a trapdoor permutation encryption, Tmultiplication is the time
of executing the multiplication arithmetic operations, and Thash is the time of executing a
hash function.

For the communication aspects, the communication packages contain two trapdoor
permutation ciphertexts, five 3λ-long ciphertexts and three hash signature messages. To
sum up, the communication complexity of LPCP is reduced to O(1) · Ltrapdoor +O(1) ·
Lciphertext +O(1) · Lhash, where Ltrapdooris the length of the trapdoor permutation ciphertext,
Lciphertext is the length of the ciphertext and Lhash is the length of the hash signature.

8.2. Practical Performance

Firstly, we run the LPCP code on a Raspberry Pi to show the compatibility of our
scheme with the ARM architecture. The concrete configuration of our ARM environment is
shown in Table 1.

Table 1. Configurations of experiment on ARM architecture.

CPU Quad core Cortex-A72 (ARM v8) 64-bit @ 1.5
GHz

RAM 1GB LPDDR4

OS Ubuntu 20.04

Programming language c++11

Compiler gcc version 9.3.0

Libraries openssl-3.0.1, gmp-6.2.1

Secondly, we run the LPCP code on the Intel X86 architecture computer in order to
compare the experimental results with other secure computation protocol implementations
which are only supported in the X86 instruction set. The concrete configuration of our X86
environment is shown in Table 2.

Table 2. Configurations of experiment on X86 architecture.

CPU i5-8259U

RAM 8GB DDR4

OS Ubuntu 20.04.3 LTS

Programming language c++11

Compiler gcc version 9.3.0

Libraries openssl-3.0.1, gmp-6.2.1

All the experiments are run on the two virtual machines on the same localhost, where
the bandwidth bound is 100 Mbps and the latency can be ignored. Given the input mi,
the addition operation expression is ∑n

i=1 mi and the multiplication operation expression
is ∏n

i=1 mi.
Figure 2 shows the LPCP running time comparison of different arithmetic operation

types both on ARM architecture and X86 architecture. When the security parameter length
is 32 bits, 64 bits and 128 bits, the running time of LPCP on the ARM architecture is
approximately 10 times slower than the running time of LPCP on the X86 architecture.
When the security parameter length grows to 256 bits and 1024 bits, the running time
of LPCP on the ARM architecture is approximately four times slower than the running
time of LPCP on the X86 architecture. It turns out that LPCP protocol can be effectively
implemented on the mobile devices based on ARM architecture.

Appl. Sci. 2022, 12, 3117 16 of 20

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

Length of security parameter λ (bit)

R
u
n
n
in

g
 t
im

e
(m

s)

Add(X86)

Mul(X86)

Exp(X86)

Add(ARM)

Mul(ARM)

Exp(ARM)

Figure 2. The running time comparison of additive, multiplicative and exponential arithmetic
operations of LPCP on ARM and X86 architecture.

Table 3 shows the practical performance of the two-party LPCP protocol on additive
and multiplicative arithmetic operations in both the ARM architecture and the X86 architec-
ture environment. In Table 3, the first column is the arithmetic operation type; the second
column is the running time of LPCP execution in ARM architecture environment; the third
column is the running time of LPCP execution in X86 architecture environment; and the
last column is the communication overhead of ciphertexts transferred between two parties.

For comparison with other works, we choose one fully homomorphic encryption
open-source library and two secure computation open-source libraries. The homomor-
phic encryption library is HElib, which realizes a leveled fully homomorphic encryption
BGV [26] and CKKS [23]. As for the MPC libraries, one is the EMP toolkit [19], which
realizes a 2PC protocol Emp-sh2pc secure against a semi-honest adversary. The other is
the MP-SPDZ library [20], which benchmarks various secure multi-party computation
(MPC) protocols, such as SPDZ [27], SPDZ2k, MASCOT [28], Overdrive [29], BMR garbled
circuits [30], Yao’s garbled circuits, and MPC based on Shamir’s secret sharing.

For the FHE comparison, we choose the BGV implementation of arithmetic operations
in the HElib library and compare the experimental results to our LPCP data. The experiment
divides the running time into encryption time, arithmetic operation time and decryption
time. Table 4 respectively shows the encryption time, arithmetic operation time, decryption
time and total running time of 64-bit and 1024-bit arithmetic operations. In the additive
arithmetic operations, the running time of 64-bit and 1024-bit HElib addition is much faster
than LPCP. However, the encryption and decryption times of HElib lag behind, which
results in the total running time of HElib being slower than LPCP. In the multiplicative
arithmetic operations, the running time of both 64-bit and 1024-bit Helib multiplication is
slower than LPCP.

Next, we analyze the two-party secure computation experimental results comparison
between LPCP and Emp-sh2pc. Figure 3 shows the running time comparison of different
arithmetic operations, and Figure 4 shows the communication overhead comparison. We
can see that LPCP comes in the lead in both the running time and communication over-
head. The running time of our protocol is more than 100 times faster than Emp-sh2pc in
128-bit and 256-bit additive and multiplicative tests. In particular, in the 1024-bit modular
exponential operation test, the running time of LPCP is more than 100,000 times faster
than Emp-sh2pc. Although the running time of LPCP’s additive computation becomes
almost as costly as Emp-sh2pc when the bit length of the security parameter comes to
1024 bits. According to the analytic computational and space complexity, the running
time of our protocol grows linearly with the largest exponent of the polynomial, which
means the multiplicative computation of LPCP takes almost the same amount of time as the
additive computation. For this reason, the running time of LPCP’s multiplicative computa-
tion is exponentially faster than Emp-sh2pc. As the communication latency increases, the
additional one communication round of LPCP results in more communication time than
the other 2PC protocols. In the communication space comparison, the total communication
space is more than 10,000 times smaller than the result of Emp-sh2pc in 128-bit and 256-bit
additive and multiplicative tests.

Appl. Sci. 2022, 12, 3117 17 of 20

Table 3. Performance of LPCP on additive, multiplicative and exponential operations.

Arithmetic
Operation Type

Running Time of
ARM Architecture

Running Time of
X86 Architecture

Total
Communication

32-bit add 1.219 ms 0.1779 ms 89B
32-bit mul 1.268 ms 0.1931 ms 89B
32-bit exp 1.279 ms 0.2098 ms 89B
64-bit add 1.395 ms 0.2387 ms 111B
64-bit mul 1.54 ms 0.2366 ms 111B
64-bit exp 1.651 ms 0.2969 ms 111B
128-bit add 2.189 ms 0.484 ms 155B
128-bit mul 2.171 ms 0.4693 ms 155B
128-bit exp 2.346 ms 0.5529 ms 155B
256-bit add 5.716 ms 2.0154 ms 243B
256-bit mul 5.845 ms 2.0358 ms 243B
256-bit exp 6.79 ms 2.3488 ms 243B
1024-bit add 213.43 ms 85.376 ms 771B
1024-bit mul 221.993 ms 86.446 ms 771B
1024-bit exp 238.629 ms 86.21 ms 771B

Table 4. Performance of BGV implemented in HElib library on additive and multiplicative operations.

Arithmetic
Operation Type

Encryption
Time

Arithmetic
Operation Time

Decryption
Time

Total Running
Time

64-bit add 0.643 ms 0.000000011 ms 2.010 ms 2.653 ms
64-bit mul 0.643 ms 6.972 ms 2.010 ms 9.625 ms
1024-bit add 935.44 ms 0.000126427 ms 589.312 ms 1524.752 ms
1024-bit mul 935.44 ms 3843.84 ms 589.312 ms 5368.592 ms

When it comes to three-party and four-party secure computation, we compare our
LPCP experimental result with MP-SPDZ. To ensure fairness, we choose two kinds of
MPC protocols, Semi and Hemi, which are both secure against the semi-honest adversary
from the MP-SPDZ library. The difference of the chosen MPC protocol lies in that Semi is
built based on oblivious transfer (OT) [31] and Hemi is built based on semi-homomorphic
encryption [27]. Figure 5 shows the running time of Semi, Hemi and LPCP in the two-party,
three-party and four-party experiments. Figure 6 shows the total communication overhead
of Semi, Hemi and LPCP in the two-party, three-party and four-party experiments. The
advantage of the fast execution and low communication cost of LPCP becomes much more
clear as the number of parties grows because the time complexity and communication
complexity grow approximately linearly to the party numbers. From the figures above, we
can see that LPCP has better scalability than other traditional MPC protocols in the same
condition. It is especially suitable for those mobile devices with low computing power and
small storage space to execute LPCP for data privacy.

0 200 400 600 800 1000 1200
0

0.02

0.04

0.06

0.08

Length of security parameter λ (bit)

R
u
n
n
in

g
 t
im

e
(s

)

Emp-sh2pc

LPLP

Figure 3. The running time comparison of additive operation between LPCP and Emp-sh2pc.

Appl. Sci. 2022, 12, 3117 18 of 20

0 200 400 600 800 1000 1200
0

5000

10000

15000

20000

R
u
n
n
in

g
 t
im

e
(s

)

Length of security parameter λ (bit)

Emp-sh2pc

LPLP

Figure 4. The running time comparison of multiplicative operation between LPCP and Emp-sh2pc.

2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

Number of parties

R
u
n
n
in

g
 t
im

e
(s

)

Semi

Hemi

LPCP

Figure 5. Running time of Semi, Hemi and LPCP in different party numbers conditions.

2 2.5 3 3.5 4
0

10

20

30

40

50

Number of parties

C
o
m

m
u
n
ic

a
tio

n
 o

ve
rh

e
a
d
(M

B
)

Semi

Hemi

LPCP

Figure 6. Total communication overhead of Semi, Hemi and LPCP in different party numbers conditions.

9. Conclusions

In this paper, an efficient CRT-based secure computation protocol LPCP for polyno-
mial calculation is proposed. Based on LPCP, we propose a privacy-preserving distance
measurement computation protocol that is affordable for mobile devices.

In the end, we implement LPCP in the ARM architecture environment to show its
compatibility with mobile devices. We also implement LPCP in the X86 architecture
environment and compare the experimental results with fully homomorphic encryption
schemes and different kinds of MPC schemes. In both 2PC and MPC comparisons, our
LPCP scheme has a great advantage of both running time and communication overhead,
which makes it possible to implement secure computation on mobile devices. For future
works, we aim to perform a formal security analysis of LPCP protocol and strengthen the
security model against the malicious adversary.

Author Contributions: Conceptualization and methodology, J.T., Z.C. and J.S.; writing—original
draft, formal analysis, software and visualization, J.T.; writing—review and editing, Z.C., J.S., X.D.;
project administration, funding acquisition, Z.C., J.S. All authors have read and agreed to the pub-
lished version of the manuscript.

Funding: This work was supported in part by the National Key Research and Development Program
of China (Grant No. 2020YFA0712300), in part by the National Natural Science Foundation of China
(Grant No. 62132005, 61632012, 62172162).

Appl. Sci. 2022, 12, 3117 19 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2PC Two-party computation
MPC Multiparty computation
CRT Chinese remainder theorem
LPCP Lightning polynomial computation protocol
FHE Fully homomorphic encryption
KeyGen Key generation
Enc Encryption
Re-Enc Re-encryption
Dec Decryption
S Sender
R Receiver
λ Security parameter

References
1. Lindell, Y. Secure Multiparty Computation (MPC). IACR Cryptol. ePrint Arch. 2020, 2020, 300.
2. Yao, A.C. Protocols for Secure Computations (Extended Abstract). In Proceedings of the 23rd Annual Symposium on Foundations

of Computer Science, Chicago, IL, USA, 3–5 November 1982; IEEE Computer Society: Washington, DC, USA, 1982; pp. 160–164.
3. Mouchet, C.; Troncoso-Pastoriza, J.R.; Hubaux, J. Multiparty Homomorphic Encryption: From Theory to Practice. IACR Cryptol.

ePrint Arch. 2020, 2020, 304.
4. Patra, A.; Suresh, A. BLAZE: Blazing Fast Privacy-Preserving Machine Learning. In Proceedings of the 27th Annual Network and

Distributed System Security Symposium, NDSS 2020, San Diego, CA, USA, 23–26 February 2020; The Internet Society: Reston,
VA, USA, 2020.

5. Byali, M.; Chaudhari, H.; Patra, A.; Suresh, A. FLASH: Fast and Robust Framework for Privacy-preserving Machine Learning.
Proc. Priv. Enhancing Technol. 2020, 2020, 459–480. [CrossRef]

6. Rezaeipour, D. Secure Computation for Cloud data Storage. IACR Cryptol. ePrint Arch. 2019, 2019, 709.
7. Demmler, D.; Schneider, T.; Zohner, M. ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party Computation.

In Proceedings of the 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, USA, 8–11
February 2015; The Internet Society: Reston, VA, USA, 2015.

8. Lindell, Y.; Riva, B. Blazing Fast 2PC in the Offline/Online Setting with Security for Malicious Adversaries. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; Ray, I.,
Li, N., Kruegel, C., Eds.; ACM: New York, NY, USA, 2015; pp. 579–590.

9. Rindal, P.; Rosulek, M. Faster Malicious 2-Party Secure Computation with Online/Offline Dual Execution. In Proceedings of the
25th USENIX Security Symposium, USENIX Security 16, 10–12 August 2016; Holz, T., Savage, S., Eds.; USENIX Association:
Austin, TX, USA, 2016; pp. 297–314.

10. Smart, N.P.; Tanguy, T. TaaS: Commodity MPC via Triples-as-a-Service. In Proceedings of the 2019 ACM SIGSAC Conference
on Cloud Computing Security Workshop, CCSW@CCS 2019, London, UK, 11 November 2019; Sion, R., Papamanthou, C., Eds.;
ACM: New York, NY, USA, 2019; pp. 105–116.

11. Ciampi, M.; Ostrovsky, R.; Waldner, H.; Zikas, V. Round-Optimal and Communication-Efficient Multiparty Computation. IACR
Cryptol. ePrint Arch. 2020, 2020, 1437.

12. Brakerski, Z.; Vaikuntanathan, V. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages.
In Proceedings of the Advances in Cryptology-CRYPTO 2011—31st Annual Cryptology Conference, Santa Barbara, CA, USA,
14–18 August 2011; Proceedings; Rogaway, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6841, pp. 505–524.

13. Asharov, G.; Jain, A.; López-Alt, A.; Tromer, E.; Vaikuntanathan, V.; Wichs, D. Multiparty Computation with Low Communication,
Computation and Interaction via Threshold FHE. In Proceedings of the Advances in Cryptology—EUROCRYPT 2012—31st
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 15–19 April
2012; Proceedings; Pointcheval, D., Johansson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7237, pp. 483–501.

14. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-Fly Multiparty Computation on the Cloud via Multikey Fully Homomorphic
Encryption. IACR Cryptol. ePrint Arch. 2013, 2013, 94.

http://doi.org/10.2478/popets-2020-0036

Appl. Sci. 2022, 12, 3117 20 of 20

15. Mukherjee, P.; Wichs, D. Two Round Multiparty Computation via Multi-key FHE. In Proceedings of the Advances in Cryptology—
EUROCRYPT 2016—35th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, 8–12 May 2016; Part II; Fischlin, M., Coron, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9666,
pp. 735–763.

16. Li, Z.; Ma, C.; Zhou, H. Multi-key FHE for multi-bit messages. Sci. China Inf. Sci. 2018, 61, 029101:1–029101:3. [CrossRef]
17. Zhou, J.; Cao, Z.; Qin, Z.; Dong, X.; Ren, K. LPPA: Lightweight Privacy-Preserving Authentication From Efficient Multi-Key

Secure Outsourced Computation for Location-Based Services in VANETs. IEEE Trans. Inf. Forensics Secur. 2020, 15, 420–434.
[CrossRef]

18. Kim, J.; Lee, M.S.; Yun, A.; Cheon, J.H. CRT-based Fully Homomorphic Encryption over the Integers. IACR Cryptol. ePrint Arch.
2013, 2013, 57.

19. Wang, X.; Malozemoff, A.J.; Katz, J. Faster Secure Two-Party Computation in the Single-Execution Setting. In Proceedings of
the Advances in Cryptology—EUROCRYPT 2017—36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, 30 April–4 May 2017; Part III; Coron, J., Nielsen, J.B., Eds.; Volume 10212, pp. 399–424.

20. Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party Computation. IACR Cryptol. ePrint Arch. 2020, 2020, 521.
21. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
22. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of

Computing, STOC 2009, Bethesda, MD, USA, 31 May—2 June 2009; Mitzenmacher, M., Ed.; ACM: New York, NY, USA, 2009;
pp. 169–178.

23. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y.S. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings of
the Advances in Cryptology—ASIACRYPT 2017—23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, 3–7 December 2017; Proceedings, Part I; Takagi, T., Peyrin, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2017; Volume 10624, pp. 409–437.

24. Zhou, J.; Dong, X.; Cao, Z.; Vasilakos, A.V. Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Trans.
Inf. Forensics Secur. 2015, 10, 1299–1314. [CrossRef]

25. Ren, W.; Tong, X.; Du, J.; Wang, N.; Li, S.; Min, G.; Zhao, Z.; Bashir, A.K. Privacy-preserving using homomorphic encryption in
Mobile IoT systems. Comput. Commun. 2021, 165, 105–111. [CrossRef]

26. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory (TOCT) 2014, 6, 1–36. [CrossRef]

27. Damgård, I.; Pastro, V.; Smart, N.P.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption. In Pro-
ceedings of the Advances in Cryptology—CRYPTO 2012—32nd Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23
August 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7417, pp. 643–662.

28. Keller, M.; Orsini, E.; Scholl, P. MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., Eds.; ACM: New York, NY, USA, 2016; pp. 830–842.

29. Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ Great Again. In Proceedings of the Advances in Cryptology—
EUROCRYPT 2018—37th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, 29 April–3 May 2018; Part III; Nielsen, J.B., Rijmen, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 10822, pp. 158–189.

30. Beaver, D.; Micali, S.; Rogaway, P. The Round Complexity of Secure Protocols (Extended Abstract). In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 13–17 May 1990; Ortiz, H., Ed.; ACM: New York, NY,
USA, 1990; pp. 503–513.

31. Tzeng, W. Efficient oblivious transfer schemes. IACR Cryptol. ePrint Arch. 2001, 2001, 73.

http://dx.doi.org/10.1007/s11432-017-9206-y
http://dx.doi.org/10.1109/TIFS.2019.2923156
http://dx.doi.org/10.1109/TIFS.2015.2407326
http://dx.doi.org/10.1016/j.comcom.2020.10.022
http://dx.doi.org/10.1145/2633600

	Introduction
	Our Contributions
	Related Works
	Orgnization

	Preliminaries
	One-Way Trapdoor Permutation
	Euler'S Theorem
	Chinese Remainder Theorem (CRT)
	Hash Function

	Framework for Two-Party LPCP
	Concrete Construction for Two-Party LPCP
	Security Proof
	Correctness
	Privacy

	Extension to Three and More Parties LPCP
	Mobile Device Distance Measurement Applications
	Performance and Evaluation
	Theoretical Analysis
	Practical Performance

	Conclusions
	References

