
����������
�������

Citation: Xu, B.; Hu, Y.; Hu, M.; Liu,

F.; Peng, K.; Liu, L. Iterative Dynamic

Critical Path Scheduling: An Efficient

Technique for Offloading Task Graphs

in Mobile Edge Computing. Appl. Sci.

2022, 12, 3189. https://doi.org/

10.3390/app12063189

Academic Editors: Manuel Armada

and Mahasweta Sarkar

Received: 3 February 2022

Accepted: 15 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Iterative Dynamic Critical Path Scheduling: An Efficient
Technique for Offloading Task Graphs in Mobile
Edge Computing
Bo Xu 1,2, Yi Hu 2, Menglan Hu 2, Feng Liu 2, Kai Peng 2 and Lan Liu 3,*

1 Hubei ChuTianYun Co., Ltd., Wuhan 430076, China; xubosite@hust.edu.cn
2 Hubei Key Laboratory of Smart Internet Technology, School of Electronic Information and Communications,

Huazhong University of Science and Technology, Wuhan 430074, China; m202072127@hust.edu.cn (Y.H.);
humenglan@hust.edu.cn (M.H.); liufengmics@hust.edu.cn (F.L.); pkhust@hust.edu.cn (K.P.)

3 National Engineering Research Center of Educational Big Data, Central China Normal University,
Wuhan 430079, China

* Correspondence: lanliu@mail.ccnu.edu.cn

Abstract: Recent years have witnessed a paradigm shift from centralized cloud computing to decen-
tralized edge computing. As a key enabler technique in edge computing, computation offloading
migrates computation-intensive tasks from resource-limited devices to nearby devices, optimizing
service latency and energy consumption. In this paper, we investigate the problem of offloading
task graphs in edge computing scenarios. Previous work based on list-scheduling heuristics is likely
to suffer from severe processor time wastage due to intricate task dependencies and data transfer
requirements. To this end, we propose a novel offloading algorithm, referred to as Iterative Dynamic
Critical Path Scheduling (IDCP). IDCP minimizes the makespan by iteratively migrating tasks to
keep shortening the dynamic critical path. Through IDCP, what is managed are essentially the
sequences among tasks, including task dependencies and scheduled sequences on processors. Since
we only schedule sequences here, the actual start time of each task is not fixed during the scheduling
process, which effectively helps to avoid unfavorable schedules. Such flexibilities also offer us much
space for continuous scheduling optimizations. Our experimental results show that our algorithm
significantly outperforms existing list-scheduling heuristics in various scenarios, which demonstrates
the effectiveness and competitiveness of our algorithm.

Keywords: mobile edge computing; computing offloading; scheduling; dependent tasks

1. Introduction

Driven by the needs of Internet of Things (IoT), recent years have witnessed a paradigm
shift from centralized cloud computing to decentralized mobile edge computing (MEC). As
a key enabler technique in edge computing, computation offloading migrates computation-
intensive tasks from resource-limited devices to nearby resource-abundant devices on
the edge of networks, thereby optimizing various performance metrics such as resource
utilization and service latency. In MEC, computation offloading is exploited in various
applications and services such as virtual reality (VR) [1], industrial process control [2],
forest-fire management [3], UAV surveillance [4,5], health monitoring [6], and intelligent
agriculture [7].

In this paper, we consider the offloading of dependent tasks in a generic edge com-
puting platform consisting of a network of heterogeneous edge devices and servers. The
offloading problem in edge scenarios has wide applicability in reality. Many practical
applications are composed of multiple procedures/components (e.g., the computation
components in an AR application, as shown in Figure 1), making it possible to implement
fine-grained (partial) computation offloading. Specifically, the program can be partitioned

Appl. Sci. 2022, 12, 3189. https://doi.org/10.3390/app12063189 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063189
https://doi.org/10.3390/app12063189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12063189
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063189?type=check_update&version=1

Appl. Sci. 2022, 12, 3189 2 of 17

into two parts with one executed at the mobile device and the other offloaded to the edge for
execution. In the partitioning, the dependencies among different procedures/components
in many applications cannot be ignored as it significantly affects the procedure of execution
and computation offloading. Accordingly, a task graph model is adopted to capture the
interdependency among different computation functions and routines in an application.

Figure 1. An offloading example of a task graph.

Although task graphs have wide applicability in practice, the offloading of task graphs
receives only limited attention due to the high complexity brought by task dependencies
and data transfer requirements among different task nodes of the task graph. A few
previous studies have investigated the offloading of task graphs in heterogeneous edge
platforms. Most prior work [8–11] proposed list-scheduling-based constructive heuristics
which sequentially assign all task nodes onto processors in a greedy manner, carefully
obeying task dependency rules. List-scheduling heuristics are simple and straightforward
in algorithm design and implementation. However, the performance of such heuristics may
be unsatisfactory, since task dependencies and data-transfer requirements among different
task nodes usually cause processors to retain idle and wait, wasting a large amount of time.
This is because a node has to wait until all its parent task nodes and the corresponding
required data transfer are finished before assigning a processor for it. In addition, in list-
scheduling heuristics, task nodes are sequentially assigned in a greedy manner, and once a
task has been scheduled, its start time is determined and fixed. In such situations, a task-
assignment decision initially may be optimal, but later it may become inefficient and incur
severe waiting time after a few other assignment decisions. Therefore, it is highly desirable
to design efficient dependent task-offloading approaches which can elegantly handle the
challenges brought by complicated task dependencies and data transfer requirements.

Nevertheless, designing elegant algorithms to prevent inefficient assignment decisions
and reduce processor waiting times are quite challenging. Due to complicated precedence
constraints and data-transfer requirements, it is difficult to make proper scheduling de-
cisions in single steps with global forecasts. To prevent inefficient assignment decisions
which cause long processor waiting times, idle times need to be fully utilized. This can be
enabled by proper adjustment, such as deferring some task nodes and inserting some other
task nodes to avoid making scheduling decisions too early. However, intricate precedence
constraints and data-transfer requirements severely complicate the adjustment process.
Therefore, an exquisite algorithm which can ease and simplify the adjustment process and
thereby empower global perspectives is certainly demanded.

Appl. Sci. 2022, 12, 3189 3 of 17

To this end, this paper contributes a novel heuristic for offloading task graphs in mo-
bile edge environments, referred to as Iterative Dynamic Critical Path Scheduling (IDCP).
Distinguished from the existing list-scheduling heuristics [8,9,11], IDCP is an iterative
algorithm. IDCP minimizes the makespan by iteratively migrating tasks to keep shortening
the dynamic critical path, which can dynamically vary depending on the current sequence
of the tasks. In IDCP, what is managed are essentially the sequences among tasks, including
task dependencies and scheduled sequences on processors. Since we only schedule se-
quences, the actual start time of each task is not fixed during the scheduling process, while
it can be simply calculated after the process terminates. The unfixed start time effectively
help to avoid unfavorable schedules which may cause unnecessary processor waiting time.
Such flexibilities also offer us much space for continuous scheduling optimizations. In this
case, we can easily and efficiently iterate to keep optimizing the makespan.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces system models and formulates the problem. Section 4 describe the proposed
iterative heuristic algorithm. Section 5 presents performance evaluation and Section 6
summarizes the paper.

2. Related Work

The problem of computation offloading has been studied in recent years and many
heuristic algorithms have been proposed. Several survey articles comprehensively re-
viewed this problem [2,12,13]. Fine-grain resource allocation and scheduling for multiple
tasks received much attention. Several studies [14–16] investigated the problem of binary
task offloading, where each task is executed as a whole either locally at the mobile device
or offloaded to the MEC server. Chang et al. [17] proposed a response-time-improved
offloading algorithm to make offloading decision with fewer characteristics of continuous
uncertain applications. Zhang et al. [18] presented a load-balancing approach for task
offloading in vehicular edge computing networks with fiber–wireless enhancement. Bar-
barossa et al. [15] showed how the optimal resource allocation involves a joint allocation
of radio and computation resources via a fully cross-layer approach. Zhang et al. in [14],
proposed to minimize energy consumption for executing tasks with soft deadlines. Under
the Gilbert–Elliott channel model, they presented optimal data-transmission scheduling
by dynamic programming (DP) techniques. This work is extended in [16], where both
the local computation and offloading are powered by wireless energy provisioning. An-
other work [19] formulated a non-cooperative game and presented a fairness-oriented
computation offloading algorithm for cloud-assisted edge computing.

In practice, many mobile applications are composed of multiple procedures/components,
making it possible to implement fine-grained (partial) computation offloading. Accord-
ingly, partial offloading schemes have been proposed to further optimize MEC perfor-
mance [8–11,20]. Geng et al. [8] investigated an energy-efficient task-graph-offloading
problem for multicore mobile devices. They designed a critical-path-based heuristic which
recursively checks the tasks and moves tasks to the correct CPU cores to save energy.
Sundar et al. [9] proposed an heuristic algorithm to minimize the overall application execu-
tion cost under task deadlines. Nevertheless, these studies involve list-scheduling-based
constructive heuristics, thereby suffering from poor performance due to unfavorable sched-
ules which may cause unnecessary processor waiting times. Further, Kao et al. [10]
proposed a polynomial time-approximation algorithm to optimize the makespan under
energy budgets for offloading (tree-shape) task graphs on edge devices. However, Ref. [10]
relies on an unrealistic assumption that the mobile devices are assumed to possess in-
finite capacity, i.e., the devices can simultaneously process an infinite number of tasks
without reduction in the processing speed for each task. Another work [20] formulated
the task-graph-offloading problem via integer linear programming, but no novel solution
was presented.

Both the binary offloading and partial offloading strategies investigate resource al-
location for a given set of tasks submitted by a single user. For multiuser systems, a

Appl. Sci. 2022, 12, 3189 4 of 17

number of studies on joint radio- and computational-resource allocation has also been
proposed [21–27]. Chen et al. presented an opportunistic task-scheduling algorithm over
co-located clouds in mobile multiuser environments. In [23], the authors considered
the multiuser video compression offloading in MEC and minimized the latency in lo-
cal compression, edge cloud compression and partial compression offloading scenarios.
Hong et al. [26] studied a device-to-device (D2D)-enabled multiuser MEC system, in which
a local user offloads their computation tasks to multiple helpers for cooperative computa-
tion. Zhan et al. [27] proposed a mobility-aware offloading algorithm for multiuser mobile
edge computing. These papers studied the assignment of finite radio-and-computational
resources on a server among multiple mobile users to achieve system-lever objectives.
You et al. [16] studied resource allocation for a multiuser MEC system based on time-
division multiple access and orthogonal frequency-division access. Moreover, multiuser
cooperative computing [28,29] is also envisioned as a promising technique to improve the
MEC performance by offering two key advantages, including short-range transmission via
D2D techniques and computation resource sharing. Ref. [30] proposed a method to jointly
optimize the transmit power, the number of bits per symbol and the CPU cycles assigned
to each user in order to minimize the power consumption at the mobile side. The optimal
solution shows that there exists an optimal one-to-one mapping between the transmission
power and the number of allocated CPU cycles for each mobile device.

In addition to task offloading, the problem of dependent tasks scheduling on multi-
processor systems has been widely studied [31–36]. Kwok et al. [31] proposed an efficient
list-scheduling algorithm, called Dynamic Critical-Path scheduling algorithm (DCP), for
allocating dependent tasks to homogeneous multiprocessors to minimize the makespan.
One valuable feature of DCP is that the start times of the scheduled nodes are unfixed
until all nodes have been scheduled. Our IDCP also applies this feature. The differences
between DCP and IDCP are that DCP is a constructive heuristic and can only be used
for homogeneous multiprocessor scheduling, while IDCP is an iterative heuristic which
addresses the offloading problem as task migrations among heterogenous MEC platforms.
Moreover, DCP assumed infinite computation capacity while IDCP relaxes this unrealistic
assumption for MEC scenarios. In addition, Hu et al. [33] proposed real-time algorithms
for dependent task scheduling on time-triggered in-vehicle networks. Another work [36]
presented adaptive scheduling algorithms for task graphs in dynamic environments. All
the above literature studied constructive heuristic algorithms. In contrast, the algorithm
proposed in our paper is an iterative heuristic, offering more flexibility for optimization,
that works on heterogeneous edge computing systems.

3. Problem Formulation

This Section introduces the system models and formulates the optimization problem.
We consider an edge computing system with a certain number of local processors and MEC
servers, as shown in Figure 2. These processors and servers cooperate to compute a set of
dependent tasks. Hence, we investigate the problem of offloading dependent tasks in the
edge computing system. We begin by listing the notation and terminology in Notation.

In the system, the local processors are typically installed in the mobile users and
mobile peers. Each local processor is only capable of executing one task at a time, while
other assigned tasks wait in a queue. Nevertheless, each MEC server is able to execute
multiple tasks concurrently, depending on how many processors it possesses. We also
assume a remote cloud center (RCC) which is able to provide an unlimited amount of
computation resources. In other words, the processing cores of the remote cloud center
are infinite. Therefore, all the assigned tasks can be performed simultaneously. Let P be
the set of all processors and its size be M. Let fi denote the time taken by processor i to
process per unit workload. Let dij define the delay per unit data transfer from processor i
to processor j. It is clear that the value of fi is much smaller while offloading to RCC, yet
the value of dij is often much higher.

Appl. Sci. 2022, 12, 3189 5 of 17

Figure 2. An offloading model of a MEC system.

We consider a scenario where a single application must be completed before its
deadline Tdl . The application is partitioned into multiple tasks, whose dependency is
modeled as a Directed Acyclic Graph (DAG), as shown in Figure 3. Let G(v, ε) denote a
DAG, where v represents the set of task vertices and ε represents the set of directed edges.
Each task vi is assigned with a certain amount of workload, which is represented by wvi .
Hence, the execution time of task vi on processor pj is

Tex(vi) = wvi fpj (1)

Each directed edge (vi, vj) in ε indicates that there is some data, denoted as evivj ,
required to be transferred from vi to vj. Therefore, vj will not be able to start until vi finishes.
We define vi to be the parent of vj. Furthermore, if vi and vj are scheduled to be executed on
processor pm and processor pn respectively, the time taken by data transferring is dpm pn evivj .
However, such time is ignored if vi and vj are scheduled on the same processor, since no
data transferring is required.

Figure 3. A topology representation of task graphs.

Appl. Sci. 2022, 12, 3189 6 of 17

It is assumed that the application starts at a particular local processor and must end at
the same local processor. For simplicity, we insert one dummy node at the start of DAG to
trigger the application, which is referred to as the entry node hereinafter. It has zero weight
and no data to be transferred. Likewise, one dummy node, called the exit node, is inserted
at the end of DAG to retrieve the results at the processor where the application started.
Therefore, the number of tasks considered is

N = |v|+ 2 (2)

Each task shall be assigned to a position of a processor; hence, the task-scheduling
decision involves both the processor mapping and the relative order of tasks on each
processor. Let xijr denote the scheduling decision, which is given as follows:

xijr :

{
1 i f task i is assigned to processor j in position r

0 i f otherwise
(3)

The application must start and end at the same local processor, which is denoted as ps,
so we have

Lps

∑
r=1

x1psr = 1 (4)

Lps

∑
r=1

xNpsr = 1 (5)

Each task can only be assigned to exactly one certain position on one processor, therefore,

M

∑
j=1

Lj

∑
r=1

xijr = 1, ∀i = 1, . . . , N (6)

where Lj represents the number of available positions on processor j. Furthermore, each
position on each processor can only be allocated to at most one task, which is given as:

N

∑
i=1

xijr ≤ 1, ∀r = 1, . . . , Lj, j = 1, . . . , M (7)

Each task is required to be assigned sequentially to the available positions on each
processor, which is imposed as follows:

N

∑
i=1

xijr ≤
N

∑
i=1

xij(r−1), ∀r = 2, . . . , Lj, j = 1, . . . , M. (8)

For each task, the earliest time it finishes depends on the finish of all of its parent tasks.
Moreover, it is also constrained by the time when the task occupying the last position on
the same processor finishes. Hence, we have

FTi = max(FT(j,i)
tx , FTpre(i)) + Tex(i), ∀j ∈ G(i) (9)

where pre(i) represents the task scheduled at the last position of i and G(i) denotes the set
of parent tasks of i. We use FT(j,i)

tx to denote the time when the results from j are received
by i, which is given as:

FT(i,j)
tx = FTi + dpi pj eij (10)

where pi and pj represent the processor where i and j are executed respectively.

Appl. Sci. 2022, 12, 3189 7 of 17

The finish time of each task executed on local processor j is constrained by:

FTi − FTk + C(2− xijr − xkj(r−1)) ≥ Tex(i)

∀i, k = 1, . . . , N, j = 1, 2, . . . , M, r = 2, . . . , Lj
(11)

where C is set to be a relatively large positive number. It is guaranteed that the finish time
of i on processor j is at least equal to the finish time of its preceding task plus the execution
time of i. Notice that the value of 2− xijr − xkj(r−1) is equal to 0 if and only if task k and
task i are scheduled consecutively on processor j. Moreover, our task-scheduling decision
must meet the application deadline, which is imposed by:

FTN ≤ Tdl (12)

Our goal is to reasonably schedule the tasks such that the finish time of the application
is minimized, which is given by:

min FTN ,

s.t. Equations (4)–(12)
(13)

4. The IDCP Algorithm

This section describes the design of IDCP in detail, which is shown in Algorithm 1.
IDCP works by iteratively adjusting the task-scheduling decision such that the solution
is optimized. At every iteration, IDCP executes three steps: (1) node selection; (2) node
assignment; and (3) solution update. In step 1, some nodes, which may be critical to the
solution quality, are selected. In step 2, the nodes selected are rescheduled to retrieve a
better solution. In step 3, the solution is updated based on the new task-scheduling decision.
Figure 4 illustrates an example of the node migration steps in one iteration.

Algorithm 1 The IDCP Algorithm

1: Initialization
2: S∗ ← ∅
3: while exit criteria are not satisfied do
4: Get Sn ← {nodes on the current critical path}
5: while Sn 6= ∅ do
6: Select a node ni from Sn randomly
7: Get candidate positions for ni
8: Calculate Mobility(ni, m) for all candidate positions
9: Assign ni to the candidate position with the maximal Mobility(ni, m)

10: Remove ni from Sn
11: Update EST and LST for all nodes in Sn
12: Get the solution S
13: if S is currently the best then
14: S∗ ← S
15: end if
16: end while
17: end while
18: Return S∗

Appl. Sci. 2022, 12, 3189 8 of 17

Figure 4. An example of node migration process.

4.1. Definitions

Following [31], we first give the following definitions.

Definition 1. The earliest start time (EST) of a node ni is defined as:

EST(ni) = max(ESTG(ni), ESTP(ni)) (14)

where, ESTG(ni) is the EST value constrained by n′is parent nodes; ESTP(ni) is the EST value
constrained by pre(ni). One can write ESTG(ni) as follows:

ESTG(ni) = max
nx∈G(ni)

(EST(nx) + Tex(nx) + dpx pi enxni) (15)

where px and pi represent the processors where nx and ni are executed respectively. Equation (15)
states that the EST of a node is no greater than the time when the results from all of its parent nodes
are received. ESTP(ni) equals to the earliest finish time of the node that is scheduled immediately
before ni on the same processor and can be written as:

ESTP(ni) = EST(pre(ni)) + Tex(pre(ni)) (16)

If ni represents the starting dummy node, ESTP(ni) = 0. In addition, if ni has not yet been
scheduled, ESTP(ni) = 0.

EST(ni) can be computed once the EST of all n′is parents and pre(ni) are known. Hence, the
EST of all nodes can be calculated by traversing the DAG in a top-down manner beginning from the
dummy node we insert at the beginning of DAG. Consequently, when all the EST of n′is parents
and pre(ni) are available, the EST of ni can be computed.

Definition 2. The latest start time (LST) of a node ni is defined as:

LST(ni) = min(LSTC(ni), LSTN(ni)) (17)

where LSTC(ni) is the LST value constrained by n′is parent nodes. LSTN(ni) is the LST value
constrained by nxt(ni), which denotes the node scheduled immediately after ni on the same processor.
One can write LSTC(ni) as follows:

LSTC(ni) = min
nx∈C(i)

(LST(nx)− Tex(nx)− dpx pi enxni) (18)

Appl. Sci. 2022, 12, 3189 9 of 17

where C(i) represents the set of children nodes of ni. If ni is the dummy node we insert at the end of
DAG, then LSTG(ni) = ∞.

LSTN(ni) is constrained by the start time of nxt(ni). Therefore, one can write LSTN(ni) as:

LSTN(ni) = LST(nxt(ni))− Tex(ni) (19)

If ni has not yet been scheduled or ni is the ending dummy node, LSTN(ni)= Tdl . Analogously,
the LST of all nodes can be calculated by traversing the DAG from bottom to top.

Definition 3. A critical path of a DAG is a set of nodes and edges, forming a path from the starting
dummy node to the ending dummy node, of which the sum of execution time and communication
time is the maximum.

According to the definition, the nodes on the critical path are vital to the finish time
of the application. Therefore, high priority shall be placed on optimizing the schedule of
these nodes. To identify the nodes on the critical path, we simply check the equality of its
EST and LST value [31].

4.2. The Algorithm

Before the iterative task-scheduling process, an initial solution needs to be constructed.
For the sake of simplicity, as well as the efficiency of IDCP, we adopt HEFT [34] to obtain
the initial solution. As in previous statement, the nodes on the critical path are rescheduled
at every iteration, offering better chances for improving the current solution. However, the
rescheduling operation on each node is highly likely to change the critical path. Hence, a
working set is involved to store the nodes on the current critical path.

Sn = {ni|i f ni is on the currernt critical path} (20)

At the start of every iteration, all the nodes on the current critical path are added to
Sn. Then IDCP iterates to reschedule all the nodes in Sn and update the current solution.
Note that every time a node is rescheduled, the solution is updated and the critical path
is changed. Thanks to the working set, IDCP is able to focus on critical path we try to
optimize at the beginning.

Further, to prevent infinite iterations, we introduce two exit criteria. The first one is the
number of iterations. The IDCP simply exits after NR number of iterations. In addition, it
may occur that the solution is not improved for NT consecutive times due to local optimum
or global optimum. Either way, we choose to exit IDCP.

As stated above, three steps are executed at every iteration, namely node selection, node
assignment and solution update, which are detailed respectively in the following subsections.

4.2.1. Node Selection

IDCP iterates to optimize the task-scheduling decision of the initial solution. Therefore,
an order in which nodes are rescheduled needs to be determined first. Since the critical path
is crucial to the solution quality, we prioritize the nodes on the critical path for scheduling.

As in previous statement, the critical path changes dynamically during the scheduling
process, which means nodes on the critical path are not fixed. To reduce the time complexity
of the algorithm, we randomly select nodes from the critical path for scheduling.

4.2.2. Node Assignment

As one can see from the definitions of EST and LST, the start time of each node can
slide between its EST and LST. Hence, the EST and LST of each node reflect its mobility,
which is defined as:

Mobility(ni) = LST(ni)− EST(ni) (21)

The value of Mobility(ni) implies the flexibility of scheduling on node ni.

Appl. Sci. 2022, 12, 3189 10 of 17

Constrained by the dependency of tasks, ni shall not be scheduled before its parents or
after its children. A position that satisfies this constraint is called a candidate position. Let
the set of candidate positions of node ni be CP(ni). Let EST(ni, m) and LST(ni, m) denote
the EST and LST of node ni if it is scheduled onto the position m among all of its candidate
positions respectively, which are given as

EST(ni, m) = max(ESTG(ni), EST(nm−1) + Tex(nm−1)) (22)

LST(ni, m) = min(LSTG(ni), LST(nm+1)− Tex(nm)) (23)

where nm−1 and nm+1 denotes the node on the last position and next position of m.
Likewise, let Mobility(ni, m) represent the slide range of node ni if it is scheduled onto

position m among the candidate positions:

Mobility(ni, m) = LST(ni, m)− EST(ni, m) (24)

Among all the candidate positions in CP(ni), ni is scheduled onto the position with the
greatest Mobility(ni, m). In this way, the high flexibility of the node is preserved, offering
more room for future optimization. After assigning node ni to the proper candidate position,
ni is removed from Sn.

Theorem 1. If the current schedule is feasible, the node-assignment operation maintains the
feasibility, provided that:

Mobility(ni, m) ≥ 0 (25)

After the node ni is scheduled onto a new position m, the EST value of each node can be
retained recursively from the entry node since the dependency of tasks has been considered
in the node-assignment operation. Similar to EST, the LST value can also be obtained
recursively. Accordingly, ni can be scheduled onto its new position m, with its starting time
sliding between the range [EST(ni, m), LST(ni, m)], which is valid if Mobility(ni, m) ≥ 0.
Theorem 1 ensures that the feasibility of the solution is not violated after node-assignment
operation is executed.

4.2.3. Update

Since the task-scheduling decision has changed after node assignment operation, the
EST and LST values of each node need to be updated. As discussed previously, the EST
and LST value of each node can be retrieved by traversing the DAG. After the solution is
updated, IDCP is able to evaluate the solution and determine whether to continue working
on the current working set or to start the next iteration (line 3 of Algorithm 1).

5. Performance Evaluation

In this section, an evaluation study is carried out to show the performance of the
proposed algorithm. For this purpose, three other approaches, namely Infocom-2018 [8],
TC-2017 [36] and TPDS-2012 [32], are utilized to compare with IDCP. First, the evaluation
setup is presented.

5.1. Evaluation Setup

The system considered in our evaluation study is composed of a remote cloud center,
an MEC server and several local processors. For simplicity, each processor is presumed to
have an infinite number of available positions. An application, which is composed of multi-
ple dependent tasks, needs to be finished before its deadline. To verify the practicability
of the application, we consider three kinds of applications with different DAG topologies:
tree, workflow, and random topologies.

To understand the merits of IDCP, three baseline algorithms are adopted to make a
comparison, namely:

Appl. Sci. 2022, 12, 3189 11 of 17

• Infocom-2018: an efficient offloading algorithm for multicore-based mobile devices
proposed in [8], which can minimize the energy consumption while satisfying the
completion time constraints of multiple applications;

• TC-2017: an online dynamic-resilience scheduling algorithm called Adaptive Schedul-
ing Algorithm (ASA) proposed in [36], which realistically deals with the dynamic
properties of multiprocessor platforms in several ways;

• TPDS-2012: an offloading algorithm for multiprocessor-embedded systems proposed
in [32], which is an online scheduling methodology for task graphs with communica-
tion edges.

Table 1 lists the four algorithms evaluated in our simulations.

Table 1. Comparison of the algorithms evaluated.

Algorithm IDCP Infocom-2018 [8] TC-2017 [36] TPDS-2012 [32]

Objective Total time Energy Total time Total time
Type Iterative List scheduling List scheduling List scheduling

Online No No Yes Yes

The finish time of the application, referred to as application latency, is the only per-
formance metric that interests us. It is defined as the EST value of the exit node, which
represents the earliest time when the application can finish. Indubitably, a lower value of
the application latency indicates higher performance of the algorithm.

First, we fix the other settings and only vary the number of nodes in range (30, 70),
which indicates the scale of the application. The results are represented graphically in
Figure 5a–c. Second, the number of nodes is set at 50 while the number of local processors
varies in the range [3, 15]. Figure 6a–c depicts the corresponding results. Finally, the
number of nodes and local processors are fixed at 50 and 10 respectively, with the delay
factor varies between 1 and 5. The delay factor controls the deterioration of the network.
The results are presented in Figure 7a–c.

5.2. IDCP Simulation Results

Figure 5a–c shows that IDCP outperforms the other three algorithms significantly,
under all three types of applications. It, in turn, verifies that IDCP can adapt to multiple
types of applications. The performance of Infocom 2018 and TC 2017 is quite close when
applied to our problem. In addition, it can be observed that the more tasks needed to be
offloaded, the higher the application latency, which is consistent with intuition.

IDCP also has significant advantages with varying number of local processors, as
shown in Figure 6a–c. When the number of local processors varies from 3 to 15, IDCP
always achieves the best performance. In particular, when working on workflow DAG,
the application latency of IDCP is less than 0.085 on average, but the lowest application
latency of the other three algorithms is over 0.13, which means that IDCP improves the
performance by at least 150%.

Figure 7a–c shows that when the delay factor varies between 1 and 3, the application
latency of IDCP changes rapidly from high to low, and then continues to decrease slowly
after the delay factor reaches 3. It indicates that IDCP is quite sensitive to the situation of
the network, yet it still achieves greatest performance under all situations. In random DAG
situation, when delay factor reaches 5, the application latency of IDCP is less than one-half
of the work in TPDS2012. Hence, IDCP reduces application latency by over 200%.

Appl. Sci. 2022, 12, 3189 12 of 17

30 35 40 45 50 55 60 65 70

Number of Nodes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(a) Tree topology

30 35 40 45 50 55 60 65 70

Number of Nodes

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(b) Workflow topology

30 35 40 45 50 55 60 65 70

Number of Nodes

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(c) Random topology

Figure 5. Time cost of different topologies under the number of nodes.

Appl. Sci. 2022, 12, 3189 13 of 17

2 4 6 8 10 12 14 16

Number of Processors

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(a) Tree topology

2 4 6 8 10 12 14 16

Number of Processors

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(b) Workflow topology

2 4 6 8 10 12 14 16

Number of Processors

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(c) Random topology

Figure 6. Time cost of different topologies under the number of processors.

Appl. Sci. 2022, 12, 3189 14 of 17

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(a) Tree topology

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(b) Workflow topology

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
im

e
 C

o
s
t

IDCP

Infocom2018

TC2017

TPDS2012

(c) Random topology

Figure 7. Time cost of different topologies under communication Computation Ratio (CCR).

Appl. Sci. 2022, 12, 3189 15 of 17

In conclusion, the simulation results show that under different experiment settings,
our proposed approach outperforms the three offloading algorithms Infocom-2018, TC-
2017, and TPDS-2012 by a clear margin. This is due to the fact that these algorithms
are constructive list-scheduling heuristics, which make only limited efforts to search for
efficient solutions, while the proposed IDCP algorithm is an iterative algorithm which
repeatedly migrates tasks to keep shortening the dynamic critical path such that the total
processing time is finally minimized.

The proposed heuristic is fast and flexible, but it is still only an offline algorithm.
Accordingly, in future work, we can extend it to an online algorithm so that it can adapt
to various dynamic scenarios. In addition, the communication models in this paper do
not consider complicated 5G communications. In this case, another future direction is to
integrate complex 5G communication models in our algorithm such that the algorithm
would better fit future 5G scenarios.

6. Conclusions

In this paper, we have proposed a novel offloading algorithm, referred to as Iterative
Dynamic Critical Path (IDCP). IDCP minimizes the makespan by iteratively migrating
tasks to keep shortening the dynamic critical path. In IDCP, we essentially managed
the sequences among tasks, including task dependencies and scheduled sequences on
processors. Since we only scheduled sequences, the actual start time of each task is not fixed
during the scheduling process, which effectively helped to avoid unfavorable schedules.
Such flexibilities also offer much space for continuous scheduling optimizations. We have
conducted extensive experiments to evaluate the performance of IDCP, which have shown
that IDCP significantly outperforms existing list-scheduling heuristics under a variety
of scenarios.

Author Contributions: Conceptualization, M.H.; methodology, M.H. and B.X.; software, Y.H. and
F.L.; validation, B.X., Y.H. and F.L.; formal analysis, B.X.; investigation, M.H. and B.X.; resources, K.P.
and L.L.; data curation, F.L.; writing—original draft preparation, B.X. and Y.H.; writing—review and
editing, M.H. and K.P.; visualization, F.L.; supervision, M.H., K.P. and L.L.; project administration,
K.P. and L.L.; funding acquisition, K.P. and L.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Wuhan Science and Technology Bureau grant number
2019010701011387 and Province Key R&D Program of Hubei grant number 2021BAA026.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Notation
eij amount of data transferred from task i to task j
N total number of tasks
M total number of processors
wi amount of workload of task i
fi time taken by processor i to process per unit worload
dij delay per unit data transfer from task i to task j
pre(i) task occupying the last position of task i
Tdl application deadline
FTi finish time of task i
G(i) set of parent tasks of task i
Tex(i) the processing time of task i

FT(i,j)
tx time when task i received the results from task j

xijr scheduling decision
Li number of available positions on processor i

Appl. Sci. 2022, 12, 3189 16 of 17

References
1. Alshahrani, A.; Elgendy, I.A.; Muthanna, A.; Alghamdi, A.M.; Alshamrani, A. Efficient Multi-Player Computation Offloading for

VR Edge-Cloud Computing Systems. Appl. Sci. 2020, 10, 5515. [CrossRef]
2. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
3. Kang, J.; Kim, S.; Kim, J.; Sung, N.; Yoon, Y. Dynamic Offloading Model for Distributed Collaboration in Edge Computing: A Use

Case on Forest Fires Management. Appl. Sci. 2020, 10, 2334. [CrossRef]
4. Chen, Z.; Xiao, N.; Han, D. Multilevel Task Offloading and Resource Optimization of Edge Computing Networks Considering

UAV Relay and Green Energy. Appl. Sci. 2020, 10, 2592. [CrossRef]
5. Hu, M.; Liu, W.; Peng, K.; Ma, X.; Cheng, W.; Liu, J.; Li, B. Joint Routing and Scheduling for Vehicle-Assisted Multi-Drone

Surveillance. IEEE Internet Things J. 2019, 6, 1781–1790. [CrossRef]
6. Chen, M.; Zhou, J.; Tao, G.; Yang, J.; Hu, L. Wearable affective robot. IEEE Access 2018, 6, 64766–64776. [CrossRef]
7. Chen, M.; Hao, Y. Label-less learning for emotion cognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2430–2440. [CrossRef]
8. Geng, Y.; Yang, Y.; Cao, G. Energy-efficient computation offloading for multicore-based mobile devices. In Proceedings of the

IEEE Conference on Computer Communications (INFOCOM), Honolulu, HI, USA, 16–19 April 2018; pp. 46–54.
9. Sundar, S.; Liang, B. Offloading dependent tasks with communication delay and deadline constraint. In Proceedings of the IEEE

Conference on Computer Communications (INFOCOM), Honolulu, HI, USA, 16–19 April 2018; pp. 37–45.
10. Kao, Y.H.; Krishnamachari, B.; Ra, M.R.; Bai, F. Hermes: Latency optimal task assignment for resource-constrained mobile

computing. IEEE Trans. Mob. Comput. 2017, 16, 3056–3069. [CrossRef]
11. Yang, L.; Cao, J.; Cheng, H.; Ji, Y. Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Trans.

Comput. 2015, 64, 2253–2266. [CrossRef]
12. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.

2017, 19, 1628–1656. [CrossRef]
13. A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 2020, 169, 102781. [CrossRef]
14. Zhang, W.; Wen, Y.; Wu, D.O. Energy-efficient Scheduling Policy for Collaborative Execution in Mobile Cloud Computing. In

Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Turin, Italy, 14–19 April 2013.
15. Barbarossa, S.; Sardellitti, S.; Lorenzo, P.D. Communicating While Computing: Distributed mobile cloud computing over 5G

heterogeneous networks. IEEE Signal Process. Mag. 2014, 31, 45–55. [CrossRef]
16. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans.

Wirel. Commun. 2016, 16, 1397–1411. [CrossRef]
17. Chang, W.; Xiao, Y.; Lou, W.; Shou, G. Offloading Decision in Edge Computing for Continuous Applications Under Uncertainty.

IEEE Trans. Wirel. Commun. 2020, 19, 6196–6209. [CrossRef]
18. Zhang, J.; Guo, H.; Liu, J.; Zhang, Y. Task Offloading in Vehicular Edge Computing Networks: A Load-Balancing Solution. IEEE

Trans. Veh. Technol. 2020, 69, 2092–2104. [CrossRef]
19. Fairness-oriented computation offloading for cloud-assisted edge computing. Future Gener. Comput. Syst. 2022, 128, 132–141.

[CrossRef]
20. Mahmoodi, S.E.; Uma, R.N.; Subbalakshmi, K.P. Optimal Joint Scheduling and Cloud Offloading for Mobile Applications. IEEE

Trans. Cloud Comput. 2016, 7, 301–313. [CrossRef]
21. Wang, K.; Yang, K.; Magurawalage, C.S. Joint energy minimization and resource allocation in C-RAN with mobile cloud. IEEE

Trans. Cloud Comput. 2016, 6, 760–770. [CrossRef]
22. Chen, M.; Hao, Y.; Lai, C.F.; Wu, D.; Li, Y.; Hwang, K. Opportunistic task scheduling over co-located clouds in mobile environment.

IEEE Trans. Serv. Comput. 2018, 11, 549–561. [CrossRef]
23. Ren, J.; Yu, G.; Cai, Y.; He, Y. Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Trans.

Wirel. Commun. 2018, 17, 5506–5519. [CrossRef]
24. Chen, M.; Miao, Y.; Gharavi, H.; Hu, L.; Humar, I. Intelligent Traffic Adaptive Resource Allocation for Edge Computing-based 5G

Networks. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 499–508. [CrossRef] [PubMed]
25. Chen, M.H.; Liang, B.; Dong, M. Joint offloading and resource allocation for computation and communication in mobile cloud

with computing access point. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Atlanta, GA,
USA, 1–4 May 2017; pp. 1–9.

26. Hong, X.; Liang, L.; Jie, X.; Nallanathan, A. Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge
Computing. IEEE Trans. Commun. 2019, 67, 4193–4207.

27. Zhan, W.; Luo, C.; Min, G.; Wang, C.; Zhu, Q.; Duan, H. Mobility-Aware Multi-User Offloading Optimization for Mobile Edge
Computing. IEEE Trans. Veh. Technol. 2020, 69, 3341–3356. [CrossRef]

28. Jo, M.; Maksymyuk, T.; Strykhalyuk, B.; Cho, C.H. Device-to-device-based heterogeneous radio access network architecture for
mobile cloud computing. IEEE Wirel. Commun. 2015, 22, 50–58. [CrossRef]

29. Sheng, Z.; Mahapatra, C.; Leung, V.C.; Chen, M.; Sahu, P.K. Energy efficient cooperative computing in mobile wireless sensor
networks. IEEE Trans. Cloud Comput. 2015, 6, 114–126. [CrossRef]

http://doi.org/10.3390/app10165515
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.3390/app10072334
http://dx.doi.org/10.3390/app10072592
http://dx.doi.org/10.1109/JIOT.2018.2878602
http://dx.doi.org/10.1109/ACCESS.2018.2877919
http://dx.doi.org/10.1109/TNNLS.2019.2929071
http://dx.doi.org/10.1109/TMC.2017.2679712
http://dx.doi.org/10.1109/TC.2014.2366735
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.1109/MSP.2014.2334709
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TWC.2020.3001012
http://dx.doi.org/10.1109/TVT.2019.2959410
http://dx.doi.org/10.1016/j.future.2021.10.004
http://dx.doi.org/10.1109/TCC.2016.2560808
http://dx.doi.org/10.1109/TCC.2016.2522439
http://dx.doi.org/10.1109/TSC.2016.2589247
http://dx.doi.org/10.1109/TWC.2018.2845360
http://dx.doi.org/10.1109/TCCN.2019.2953061
http://www.ncbi.nlm.nih.gov/pubmed/33490308
http://dx.doi.org/10.1109/TVT.2020.2966500
http://dx.doi.org/10.1109/MWC.2015.7143326
http://dx.doi.org/10.1109/TCC.2015.2458272

Appl. Sci. 2022, 12, 3189 17 of 17

30. Barbarossa, S.; Sardellitti, S.; Di Lorenzo, P. Joint allocation of computation and communication resources in multiuser mobile
cloud computing. In Proceedings of the 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Darmstadt, Germany, 16–19 June 2013; pp. 26–30.

31. Kwok, Y.K.; Ahmad, I. Dynamic critical-path scheduling: An effective technique for allocating task graphs to multiprocessors.
IEEE Trans. Parallel Distrib. Syst. 1996, 7, 506–521. [CrossRef]

32. Choudhury, P.; Chakrabarti, P.; Kumar, R. Online scheduling of dynamic task graphs with communication and contention for
multiprocessors. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 126–133. [CrossRef]

33. Hu, M.; Luo, J.; Wang, Y.; Lukasiewycz, M.; Zeng, Z. Holistic scheduling of real-time applications in time-triggered in-vehicle
networks. IEEE Trans. Ind. Inform. 2014, 10, 1817–1828. [CrossRef]

34. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for heterogeneous computing.
IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

35. Hu, M.; Luo, J.; Wang, Y.; Veeravalli, B. Scheduling periodic task graphs for safety-critical time-triggered avionic systems. IEEE
Trans. Aerosp. Electron. Syst. 2015, 51, 2294–2304. [CrossRef]

36. Hu, M.; Luo, J.; Wang, Y.; Veeravalli, B. Adaptive scheduling of task graphs with dynamic resilience. IEEE Trans. Comput. 2017,
66, 17–23. [CrossRef]

http://dx.doi.org/10.1109/71.503776
http://dx.doi.org/10.1109/TPDS.2011.104
http://dx.doi.org/10.1109/TII.2014.2327389
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TAES.2015.140063
http://dx.doi.org/10.1109/TC.2016.2574349

	Introduction
	Related Work
	Problem Formulation
	The IDCP Algorithm
	Definitions
	The Algorithm
	Node Selection
	Node Assignment
	Update

	Performance Evaluation
	Evaluation Setup
	IDCP Simulation Results

	Conclusions
	References

