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Abstract: In the past two decades, technological advancements in smart devices, IoT, and smart
sensors have paved the way towards numerous implementations of indoor location systems. Indoor
location has many important applications in numerous fields, including structural engineering,
behavioral studies, health monitoring, etc. However, with the recent COVID-19 pandemic, indoor
location systems have gained considerable attention for detecting violations in physical distancing
requirements and monitoring restrictions on occupant capacity. However, existing systems that rely
on wearable devices, cameras, or sound signal analysis are intrusive and often violate privacy. In this
research, we propose a new framework for indoor location. We present an innovative, non-intrusive
implementation of indoor location based on wireless sensor networks. Further, we introduce a
new protocol for querying and performing computations in wireless sensor networks (WSNs) that
preserves sensor network anonymity and obfuscates computation by using onion routing. We
also consider the single point of failure (SPOF) of sink nodes in WSNs and substitute them with a
blockchain-based application through smart contracts. Our set of smart contracts is able to build the
onion data structure and store the results of computation. Finally, a role-based access control contract
is used to secure access to the system.

Keywords: WSN; indoor location; privacy; blockchain; COVID-19

1. Introduction

We have recently witnessed the coronavirus disease 2019 (COVID-19) outbreak caused
by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).At the time this
manuscript was written, SARS-CoV-2 was still spreading and affecting billions of lives
globally [1]. It is now well established from a variety of studies that the SARS-CoV-2
primary infection vectors are the respiratory droplets of infected people produced by
coughing, sneezing, or talking [2–4]. Therefore, the rapid spread is driven by the social
aspects of everyday life, which in recent days have been altered by the guidelines for
preventing infection spread, such as the mandatory use of masks, cleaning and disinfection,
and the introduction of social distancing. Respecting the mentioned guidelines is of
particular concern in public buildings where multiple people share the same space, and
the infection spread could endanger not only individuals but also halt the operations of
organizations. Moreover, in confined spaces, the probability of infection is higher than
outdoors since infection transmission is dependent on ventilation [4].

The role of IoT (Internet of Things) to prevent the spreading of the COVID-19 disease
has already been discussed in [5–8], which conceptualize frameworks for monitoring the
spread of the COVID-19 disease through heterogeneous sensor technology and apply
data-driven inferences to forecast new outbreaks and predict virus mutations. However,
the mentioned literature barely discusses privacy concerns and only recent studies [9] are
deliberating over the privacy aspect of integrating such monitoring solutions in everyday

Appl. Sci. 2022, 12, 3204. https://doi.org/10.3390/app12063204 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063204
https://doi.org/10.3390/app12063204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5627-4420
https://orcid.org/0000-0003-1082-0697
https://orcid.org/0000-0002-7876-5009
https://doi.org/10.3390/app12063204
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063204?type=check_update&version=2


Appl. Sci. 2022, 12, 3204 2 of 17

life. Even though encryption effectively provides data privacy, monitoring indoor activities
by relying on wireless IoT devices could disclose contextual information on data transmis-
sion [10,11], not only posing risks to the privacy of individuals, but also compromising
building security.

This has motivated us to extend the research on our privacy-aware IoT and blockchain-
based indoor location system to counter the spread of the COVID-19 disease. The presented
indoor location system is particularly suitable for application in medical facilities, public
buildings, and residential homes as a framework for privacy-aware indoor location moni-
toring. The proposed solution could be applied for structural health monitoring, studying
behavioral patterns of a building’s occupants and health-related issues such as locating
lost patients with memory and orientation disorders, fall detection, and also identifying
violations of social distancing, counting the number of persons in a room, and determining
when and which room needs surface disinfection due to over-utilization, etc.

The key contributions of the privacy-preserving framework are:

• A novel privacy-preserving indoor location system with querying capabilities: The
network of sensors is embedded in the floor and senses the local force applied over
it. It is non-intrusive and does not require active user interaction. Moreover, the raw
sensory data collected by sensors describe the force applied to the floor and can only
lead to unique user identification via walking gait analysis. However, the walking
gait analysis [12] requires large amounts of data from individual users, and in our
privacy-aware framework, the raw data do not leave the source sensor, therefore
inhibiting similar attempts.

• A secure WSN with anonymous source location and sensor network identity: We
propose a new querying protocol for WSN, which uses multi-layer encryption to
conceal the network identity of sensor nodes, obfuscating the computation described
in [13]. The protocol relies on particular messages similar to those used in the onion
routing [14] to convey edge data processing information to sensor nodes and privately
retrieve data.

• A blockchain-based fault tolerant indoor location system with no single point of
failure(SPOF): We address the fault tolerance shortcomings of sink nodes [15] in tradi-
tional WSNs by substituting it with a smart contract, which handles the processing of
queries, and storing the results. A decentralized role-based access control (RBAC) con-
tract provides user access authorization to monitor individual building spaces defining
privacy boundaries and further improves the security over traditional centralized
approaches.

The remainder of the paper is structured as follows: In Section 2, we present the
relevant literature. Section 3 highlights the core features of the proposed solution. In
Sections 4 and 4.1, we present our onion route protocol and filtering. In Section 5, we
detail how blockchain smart contracts can replace sink nodes. In Section 6, we provide the
validation of the proposed framework, and finally give final remarks in Section 7.

2. Literature Review

Indoor real-time locating systems (RTLS) have been gaining relevance due to the
widespread advances of devices and technologies and the necessity of location-based
services. The interest of the mobile industry to accelerate the adoption of indoor position
solutions turned into the foundation of the InLocation Alliance (ILA (InLocation Alliance):
inlocationalliance.org, accessed on 19 December 2021). The goal of this alliance is to
facilitate a rapid market adoption so that new business streams are opened up with context-
aware applications in indoor environments. The ILA chose Wi-Fi and Bluetooth as their
preferred technologies. Both proposed technologies require specialized apps on the mobile
devices in order to produce satisfactory results [16].

A thorough and contemporary survey of the Indoor Positioning Systems (IPS) for IoT
is presented in [17]; it presents indoor positioning concepts and a list of already used criteria
that define IPS for IoT. Brena et al. [16] provide a classification of Indoor Positioning Systems

inlocationalliance.org
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(IPS), basing the classification on a set of papers comparing different IPS approaches. This
is a list of identified technologies: Infrared mobile reader, Infrared (IR), laser (passive),
ultrasound passive, audible sound, magnetic, RFID mobile tag, RFID mobile reader, Wi-Fi,
Bluetooth, ZigBee, UWB, tomographic technology (water resonance), camera infrastructure,
cameras (portable), floor tiles, air pressure, inertial, ambient light, artificial light, indoor
AGPS, cellular technology, TV, and FM. All the technologies that need any intervention
from the user are out of the scope of this experiment, so all technologies based on wearables,
which demand the installation of software on mobile devices or the users to act in a certain
way, are out of the scope of the paper. All technologies based on audible and visible
changes in the environment (such as the usage of fluorescent lighting) pose a distraction.
Additionally, the use of video cameras and microphones presents a huge privacy concern
and were thus eliminated from this study. Most IR systems require line-of-sight (LOS)
clearance from the emitter to the sensor; in the context of IR IPS systems, the requirement of
LOS clearance is a great disadvantage, as it suffers from no-detection areas, and the system
performance is also affected by sunlight [18].

A metaheuristic for anomaly detection in IoT is proposed in [19], which is an extension
of the work presented in [20]. The method is based on an activity footprints-based method
to detect anomalies in IoT, but with small changes it can be used to track indoor activity.

The technology that “survived” the criteria posed by the presented study was “in-
telligent tiles”, usually using pressure sensors. There has been some research in the area
of employing pressure sensors to track the users’ indoor behaviors, ranging from person
tracking and indoor localization to fall prediction. The Smart Floor project at Georgia
Institute of Technology [21] and ORL Active Floor at The Olivetti and Oracle Research
Laboratory [21] provide location and identification without encumbering the users, but
their highest levels of precision will not be reached until the user steps on the exact centers
of the floor tiles, which for a reliable measurement would require conscious attention. Chan
et al. [22] present a smart-sensored floor setting that draws energy to power the motion
sensors from the integrated generators that are powered by normal floor activity such
as walking or sport activity. Kaddoura et al. [23] present a cost-effective intelligent floor
setting using pressure-sensing sensors that functionally competes with higher-cost systems.
Shen and Shin [24] report on the development of a distributed sensing floor using an optical
fiber sensor. However, all presented intelligent floor systems fail to properly address the
privacy and data-sensitivity issues.

Privacy preservation in location systems has already been addressed in some works,
although in different domains, such as [25], which proposes a location privacy method
based on k-anonymity, and [26], which uses blockchain to achieve the desired behavior.

Cumulative pressure sensors [27] for large areas have been proposed to present a
rough estimate of the number of persons present in a designated area (effectively measur-
ing/counting the occupancy of a room). This technology is only useful for counting the
number of occupants in the observed are; it lacks all the other IPS properties.

Google and Apple have jointly developed an exposure notification system (https://
www.google.com/covid19/exposurenotifications/, accessed on 19 December 2021) based
on a shared sense of responsibility to help the global community fight the pandemic by
keeping track of contact. In the background, users’ phones and surrounding phones share
randomly generated privacy IDs via Bluetooth. Routinely, the application checks if some of
the IDs that the phone has been exposed to have a “compromised” ID, the IDs of owners
who have anonymously proclaimed to be infected. The exposure notification system does
not monitor users’ locations; Google, Apple and other users cannot see users’ identities; and
the data are only available to the public health authorities. This system does not address
the same issues as the system proposed in this paper as the proposed system cannot be
utilized as a substitute of the Google/Apples solution for the lack of a backward loop (the
information of the infection case cannot be linked to the pseudo-anonymous identities used
in our system).

https://www.google.com/covid19/exposurenotifications/
https://www.google.com/covid19/exposurenotifications/


Appl. Sci. 2022, 12, 3204 4 of 17

Tošić et al. [28] present a non-intrusive fall detection solution based on a smart floor,
which this paper extends to an indoor location system. The system enables a non-intrusive
(with no need for special applications based on wearable devices, smartphones or any
other devices) indoor location system with additional privacy preserving properties such as
anonymity and sensor location/network anonymity. We achieved this by using the smart
floor, coupled with onion routing for source location anonymity and blockchain for the
final sink personal pseudo-anonymity.

2.1. Secure Data Processing in Network of Sensors

The data sourcing from a network of sensors is usually processed in a system external
to the network; the processing system is often a cloud service. Solutions such as Transport
Layer Security (TLS) are applied to provide a secure data transfer from sensor nodes to the
data processing system. However, even though TLS solutions ensure data confidentiality,
a number of studies [29–31] show that it is possible to associate TLS traffic patterns with
activities monitored by the network of sensors.

The technique of Compressive Sampling (CS) found application in WSNs to severely
reduce the sending data size by representing the data using a smaller number of samples
than dictated by the Nyquist theorem [32,33]. Furthermore, the CS was not applied only to
reduce the communication overhead but also to provide data confidentiality by changing
the CS coefficients at each transmission by relying on a secure seed at sensor nodes [34].
In [35], the authors propose a CS data-gathering scheme that provides data confidentiality
and protection against traffic analysis via the use of public-key Homomorphic Encryp-
tion [36] to secure the transmitted data [35]. However, in CS techniques, the data recipient
can reconstruct and identify the data from individual nodes, and therefore, it is an appeal-
ing target for attackers since, if compromised, it could disclose the private data of several
nodes. Moreover, CS requires that the data recipient node solves a linear programming
equation to recover the original data; therefore, the computation load is introduced and
does not take advantage of the processing power of nodes forming the sensor network.

Numerous studies [37,38] have focused on preserving sensor network privacy by
aggregating data as they flow through the network. The technique is dubbed as in-network
data aggregation and relies on aggregator nodes that aggregate the data from multiple
sensor network nodes; however, it does this without the possibility for the aggregator node
to disclose the private data of individual nodes. The survey [37] provides a classification of
privacy-preserving data aggregation techniques, categorizing and describing them.

Even though privacy-preserving data aggregation could preserve the data privacy of
individual nodes, the current solution only allows computing aggregates such as SUM,
MAX, AVG, variance, etc. The mentioned aggregates could provide an overview of the
monitored environment; however, they are not sufficiently descriptive for indoor location
requirements. In this study, we propose a data acquisition layer based on the General
Purpose Data and Query Privacy Preserving Protocol described in [13]. This technique
allows the retrieval of arbitrary aggregated data without disclosing which nodes contribute
to the data retrieval. The generated network traffic is uniform due to randomized paths
and the sojourn time, therefore preventing traffic analysis attacks. The computing power of
sensor nodes is utilized for data processing in situ. Moreover, in the present contribution,
we present a technique coupled to a blockchain solution to secure query creation, ensure
that only the message origin knows nodes contributing to the data retrieval, and eliminate
the aggregator/sink node SPOF.

2.2. Role Based Access Control—RBAC

Traditional IoT access control schemes are mainly built on top of the well-known access
control models, including the role-based access control model (RBAC) [39,40], the attribute-
based access control model (ABAC) [41], and the capability-based access control model
(CapBAC) [42]. In the RBAC-based schemes, the access control is based on the roles (e.g., ad-
minister and guest) of the subject. RBAC oversees the user role assignment and permission
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assignment. Three implementations currently exist in the form of smart contracts for the
Ethereum network [43]: RBAC-SC [44], Smart policies and OpenZepplin contracts (Open-
Zepplin contracts: https://github.com/OpenZeppelin/openzeppelin-contracts, accessed
on 19 December 2021). The blockchain and RBAC service were used as an off-the-shelf
service providing the necessary functionality and the scope of the paper does not support
any analysis on the comparable properties of the presented solutions.

3. Architecture

Our framework makes use of three main innovations to implement unique properties,
which we rely upon to address the limitations of existing indoor location systems. The
architecture encompasses these as modules such that it allows interoperability between
them to achieve an additive effect of their unique properties. In our implementation, we
design a unique cost-effective passive indoor location system that relies on off-the-shelf
sensors embedded in an additional layer between the tiling described in more detail in
Section 3.2. At the local level, the sensors form a WSN which reduces the complexity of
the large-scale implementations. The security and network anonymity [45] concerns are
addressed by a specially designed computational model that relies on onion-routing [46]
messages for network anonymity, and a general-purpose obfuscated computing model. By
using multi-layer encryption and onion routing, nodes are able to collaborate in federated
and distributed computations without ever revealing what the global computation is, nor
the origin of the computation; further details can be found in Section 4. In the third module,
we further improve the security and reliability of the solution by decentralizing the system
to introduce much-needed fault tolerance, and secure the entire solution against a single
point of failure (SPOF). By using blockchain, we are able to replace sink nodes with smart
contracts. We implement an access control module that protects the underlying WSN
against unauthorized queries, further detailed in Section 5.

In our vision, different deployments of indoor location systems have different re-
quirements, ranging from personal home deployments (smart home) to health providers
(hospitals, homes for older adults, clinics, nursing homes, etc.), and public buildings (mu-
nicipalities, government buildings, etc.) illustrated in Figure 1. Using a global blockchain
network, which stakeholders can participate in, we can inherit the same security level on
all of the underlying sensor deployments.

Residential
Home/ Grid

based

Medical
Facility/
Wireless

Public
Building/ 
Hybrid

Blockchain
Node

Blockchain
Network

Onion-routed
Query

Figure 1. High level view of the presented architecture.

https://github.com/OpenZeppelin/openzeppelin-contracts
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3.1. Cost Aspects of the Proposed Solution

The proposed solution was implemented with cost effectiveness as one of the most
important factors. The retail value of the ICT hardware employed in the solution should
not exceed USD 100 per square meter (10.76 square feet). One square meter would occupy
nine tiles, around USD 20 for the controller and less than USD 80 for the nine pressure
sensors. The solution scales linearly with no additional cost.

3.2. Non-Intrusive, Privacy-Preserving Indoor Location

Indoor location has many applications for structural health monitoring, studying the
behavioral patterns of a building’s occupants and health-related issues such as locating
lost patients with memory and orientation disorders, healthy activities, etc. Most existing
solutions for indoor location rely on wearable devices (i.e., location-aware bracelets), which
require frequent charging and can generate invalid data in case the device is forgotten. Our
approach is a passive system that does not require any maintenance or wearable device.
We used off-the-shelf force resistors (FSR model 406), which are emended and centered
inside a 30 × 30 cm tile of foam. Once force is applied, the foam and FSR deform, which
can be measured as a voltage drop by the controller.

In a wired setting, each tile of foam is shaped like a puzzle piece, which ensures easy
assembly. Each tile has two connectors on each face of the square to seamlessly connect to a
neighbouring tile. It also includes a small chip for converting the analog signal to a digital
that finally allows the collection of sensor readings over a one-wire type protocol. Every
three-by-three grid of tiles contains one compute unit, which serves as a controller for the
underlying sensors, and a WSN/blockchain node, as depicted in Figures 2–4. Figure 5
illustrates an assembled module in grid mode.

Figure 2. Bottom side of the foam tile.
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Figure 3. A detailed view of the male connector.

Figure 4. Upper side of the foam tile.

Figure 5. Grid-based connection of individual force sensors.

If physical connections are not suitable, a completely wireless configuration is possible
but less cost effective. Figure 6 illustrates a module in full WSN mode.
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Figure 6. Wireless-enabled force sensors.

4. Secure, and Private Data Filtering, and Aggregation

In this section, we present the data acquisition layer, consisting of the General Purpose
Data and Query Privacy Preserving Protocol described in [13]. The communication protocol
presented in [13] is characterized by messages containing a layered object made of several
encryption layers similar to the one employed in the onion routing [46]. Each layer of the
layered object contains the IP address of the next receiver of the message, and since layers
are produced using public key cryptography [47], the message must travel through the
exact sequence of nodes defined at message construction. The technique of encoding the
message path in the message is commonly known as source routing [48]. Path information
is carried in encryption layers to restrict the knowledge obtained by nodes processing the
message, which only learn about the sender and the next receiver of the message. Therefore,
the whole message path is not revealed to any node receiving the message.

In addition to the layered object, messages specified by the communication protocol
in [13] include a payload. The payload consists of computer code specified in a general-
purpose programming language and a binary string that stores an aggregate. Therefore, it
includes instructions specifying the data to retrieve and the aggregated data of nodes in
the message path. In the following, we will refer to the onion message (OM) as a structure
consisting of the layered object and the aforementioned payload. The OM payload is
secured by symmetric key encryption to prevent malicious actors from tracking the OM
and obtain values added by sensor nodes by comparing the aggregate pre and post OM
processing. Moreover, encryption keys required to decipher the OM payload are delivered
only to specific nodes in the OM path by enclosing symmetric encryption keys in the
layered object. Nodes in the OM path are either: (a) processing the OM or (b) emulating
OM processing.

(a) Nodes processing the OM obtain two symmetric encryption keys and the next-hop IP
address from layer decryption of the layered object. The first symmetric encryption
key is used to access the content of the OM payload. Next, the node executes the
computer code and embeds results in the binary string. The OM payload is then
encrypted using the second symmetric encryption key, and after a time-span affected
by randomness, the OM is forwarded to the next-hop node.

(b) Nodes emulating OM processing only obtain the next-hop IP address from layer
decryption of the layered object. These nodes retain the OM without accessing the
payload for a time-span similar to nodes processing the OM, and then the message is
forwarded to the next-hop node.

Therefore, external actors observing network communications are not able to identify
nodes contributing to the aggregated result; consequently, they cannot associate activities
occurring in the monitored environment with messages transiting network nodes.
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4.1. Data Filtering and Aggregation

The framework for privacy-aware indoor location makes use of the privacy-preserving
communication protocol described in [13] to securely convey to sensor nodes information
related to data filtering and aggregation while maintaining the identity of interested nodes
hidden from other entities except the message’s origin.

The information related to data filtering and aggregation is delivered to sensor nodes
in the form of computer code included in the payload of the previously described OM.
Sensor nodes processing the OM execute the delivered computer code in a secure execution
environment. The execution environment provides restricted access to the underlying
sensor node system, allowing the executing computer code to access sensor readings
recorded in the last h hours (h a fixed network parameter).

Since the described technique conveys general-purpose computer code to sensor nodes,
it is possible to compute virtually any operation on the data of sensor nodes. Therefore, the
presented technique can be used to count the number of persons in an environment, identify
when and where the social distancing is violated, determine if a room was over-utilized
and needs cleaning to prevent the spreading of the virus, etc.

In the following, we show how to verify if the social distancing is violated in a specific
area of the monitored environment. The processing of a similar request begins as described
in [13]. The sink node receives the request expressing the operation and the target location
and starts constructing the OM to answer the request. First, the required operation is
converted into a task specified in a general-purpose programming language. The task
pseudo-code for addressing the verification of social distancing is shown in Algorithm 1.
Then the set of nodes target of the request is selected and the sink node starts constructing
OM. Since the communication protocol [13] relies on messages uniform size, the request
will be resolved by issuing multiple OM.

An OM including the task given in Algorithm 1 being processed on a node of the
smart floor sensor network described in Section 3.2 will perform the following: The data
of the sensor network node is first filtered to a narrow time interval (timestart and timeend);
the narrower the time interval is, the more accurate the data acquired. All objects de-
tected are filtered from the data by observing the data variance. Then, the data are
filtered using the function FILTERSTATIONARY(data,time) to remove all non-stationary
activities, and the time argument is used to determine when an activity is considered
non-stationary. The observed phenomenon is considered non-stationary when it leaves the
sensor in an amount of time lower than time milliseconds. The threshold value must be of
time > (timeend − timestart) ∗ 1

2 ; otherwise, repeat event detection may occur. The filtered
data are discretized into a value array of underlying sensors, each value describing the
number of observed events. The array of values is then stored in w, the data carrying
binary string at the position determined by the two symmetric encryption keys and the
linear probing technique. Since both symmetric encryption keys are known only to the
current node and to the message’s origin, other nodes processing the OM cannot identify
which node contributed to which value in the data-carrying binary string. The OM is then
reassembled and sent to the next-node IP address.

When the OM ends its path at the issuer sink node, the sink node uses the symmetric
encryption key obtained from layered object decryption to decipher the OM payload and
access the data carrying string. Moreover, the symmetric encryption key acts as the OM
identifier. Thus, the sink node can uniquely identify the OM and use information about
symmetric encryption keys and the OM path maintained from OM construction to associate
the data in the data-carrying string to nodes in the OM path.

Therefore, the sink node gathers the results of all OM issued to resolve a request and
uses the collected data to reconstruct the environment representation as shown in Figure 7
to detect where and when the social distancing was violated.
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Algorithm 1: Data filtering to supervise social distancing violations
Input: D sensor node data

w binary string
S1, S2 symmetric encryption keys

Output: w′ modified binary string

Function Main (args):
tstart,tend ; // Time interval
tcontact ; // Time in milliseconds

// Filter the interval of data between timestart and timeend
D = FilterTimeInterval (D,tstart,tend);
// Exclude objects from the data
D = FilterObjects (D);
// Remove all activities that are not stationary for tcontact milliseconds
D = FilterStationary (D,tcontact);
// Discrertize the data into an value array of underlying sensors, each

value describing the number of observed events
tilestatus = DiscretizeData (D);
// Use encryption keys to find the position in w where insert the data

pos = (S1 + S2)%
size(w)

size(tilestatus)
;

// Use linear probing to insert data in w
while w[pos ∗ size(tilestatus)]! = null do

pos+ = 1;
end
w[pos ∗ size(tilestatus)] = tilestatus;
return w ;

end

Incoming
onion

message

Outgoing
onion

message

Sink node

Smart Floor
SN

Environment
representation

Figure 7. The figure displays the data acquisition layer relying on the privacy-preserving communi-
cation protocol in [13]. The environment representation highlights where the social distancing was
violated (red-colored squares).

5. Blockchain for Secure Storage and Computation

Blockchain provides a secure, decentralized, transparent and immutable record that
has gained a lot of attention. The unique set of properties it provides have directed
researchers to seek other uses besides cryptocurrency. The first practical implementation
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was Bitcoin, which uses Proof of Work to secure the blockchain coupled with the unspent
transaction output (UTXO) transaction model. Even with the limited expressing power
of Bitcoin’s UTXO model, researchers have demonstrated that an access control can be
built [40]. Microsoft implemented a decentralized identity solution running on the Bitcoin
network [49], and Factom protocol, which uses the Bitcoin network as a decentralized notary
service [50]. Smart contract platforms such as Ethereum use a state-based model in which
state transitions are recorded in blocks. This paved the way for the development of smart
contracts, Turing complete programs that are recorded on-chain. With smart contracts,
more complex applications can be built. Our framework uses the OpenEthereum [51]
private network as a smart contract platform that facilitates two main modules, namely
Role-based access control (RBAC) and decentralized sink node for the underlying WSNs. In
a permissioned setting, Ethereum is configured to run a proof of authority (PoA), in which
only a selected group of nodes are configured as validators. In our use case, each building
with an indoor location system operates at least one OpenEthereum node. However,
preferably, most compute units that serve as sinks should run a light client.

5.1. WSN Sink

In order to perform queries and computation, WSNs are usually deployed with a sink
node. Sensors in the network collect information from the environment and ultimately
transfer the data to the sink node. In practical implementations, sink nodes usually reside in
the cloud and seldom on-site. Whatever the case, sink nodes arguably present a single point
of failure (SPOF) of the entire system [52]. Moreover, sink nodes are easier to identify as a
target due to their fixed network identity and recognizable traffic patterns. In our solution,
we achieve complete decentralization by replacing sink nodes with smart contracts. The
sink contract keeps a record of public keys of all nodes in the network. The publicly exposed
function sendQuery() enables users to initiate a query on a set of tiles and retrieve the result
once submitted on-chain. The contract keeps a registry of all the computing nodes, their
public keys, and references to which building/area they belong to. A query consists of a
set of compute units and a function. To obtain the set of compute units, the sender can call
the function getComputingNodes(), which checks the senders public key against RBAC and
filters the set accordingly. The result is a subset of units, the sender has access to. Upon
calling sendQuery() the contract creates an onion. The subset of computing nodes should be
randomized to avoid using on-chain randomness when creating the onion.

Computing nodes in the WSN run a light client of OpenEthereum and are able to
synchronize blocks with reasonable storage and resource requirements. Upon receiving
a new block, each node checks the list of added onions to determine the starting node on
the route. This is made possible by keeping encryption integrity checks on the first layer.
The node whose key passes the integrity check is able to decrypt the first layer and initiate
the query. Note that even if the onion is publicly available, no third party can decrypt it or
determine the route the query will take. From a network point of view, every query has a
sink node, which is pseudo-randomly selected amongst the set of nodes in the underlying
WSN, as detailed in Section 4.

The route ends at the starting node, which submits a transaction to the contract storing
the result of the computation encrypted with the public key of the original sender. This
protects the results on the public ledger so that only the owner of the corresponding private
key can view them.

5.2. Role-Based Access Control

RBAC is a smart contract deployed on the blockchain that allows the creation, removal,
revocation, and transfer of roles to actors that interact with the sink node contract and
underlying WSNs that are queried. Upon adding a new building, the transaction signer is
automatically given the role of admin. We divide assets into buildings, areas, and sensors.
Initially, each sensor must be registered using the public key and assigned to a area within
a building. After the configuration, new roles can be assigned to each of the resources by
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protecting their getter methods. This enables administrators to limit access to queries on
individual area; i.e., an open space in a public building can be queried by anyone to learn
how crowded it is. However, the offices of the public building can only be queried by the
manager and occupants. Each of the public functions exposed by the sink contract is first
filtered by the RBAC to determine if access is granted.

6. Validation

To validate the proposed privacy-aware framework, we designed an experiment
to assess the average response time. We define the response time as the elapsed time
between the execution of the sink smart contract and the subsequent transaction storing the
result of the data filtering and aggregation. To conduct this investigation, we individually
considered the latency introduced by blockchain operations (sink contract execution and
subsequent result transaction) and the technique presented in Section 4 for data filtering
and aggregation. Specifically, we validated the privacy-aware framework for the wireless
configuration of the floor location system. We considered only the wireless configuration
since the latency introduced by messages moving in the wireless multi-hop network is
inherently higher than in wired settings.

6.1. Data Filtering and Aggregation

To evaluate the data filtering and aggregation duration, we used the simulator PP-
WSim [53]. PPWSim is based on the NS3 discrete-event simulation environment for Internet
systems [54] and is designed to simulate the General Purpose Data and Query Privacy
Preserving Protocol described in [13] and estimate network delays. We refer to the network
delay as the latency for an OM (onion message) to travel from one node to the node at
the next-hop address. To obtain valuable results to validate the proposed framework, we
further extended PPWSim to estimate the delay of OM processing.

Experimental Setup

Since the detailed simulation description can be found in [53], in the following, we
will outline the simulator parameters selected to obtain network delay results.

The simulator was set up to construct an ad hoc wireless network of 200 nodes. Nodes
were deployed according to a grid structure; each node was equidistant from the closest
nodes in cardinal directions. The simulated wireless communication conforms to the
IEEE 802.11n standard operating at 2.4 GHz at the data rate of 13 Mbps (Modulation
Coding Scheme index 1), abd the wireless communication range was set up to allow direct
communication only between neighbouring nodes. The maximum transmission unit and
maximum segment size were set to the ns-3 default value, 2296 bytes and 536 bytes,
respectively.

OMs were transmitted over the TCP protocol, and the routing of packets in the multi-
hop network was handled using the Optimized Link State Routing Protocol (OLSR) [55].

As described in [53], the simulator operates by issuing OMs from a node in the center
of the network. OMs are issued sequentially; after an OM returns back to the issuer node,
the following OM is issued. The central node was set up to issue 30 OM for each value
of n = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, the OM path length. OMs are constructed
by randomly selecting n nodes to include in the OM path. The OM path is encoded in
the layered object. Encryption layers of the layered object are produced using an ECC-
based [56] public-key cipher of 256 b key length implemented in the Libsodium library [57].
Each encryption layer includes a shared secret, the next-hop IP address, two 32b symmetric
encryption keys, and the inner encryption layer. To replicate the transfer of computer code,
OMs are including a payload consisting of padding p = 2.5 k bytes. The OM size at n path
length is given in Table 1.

To assess the OM processing delay using PPWSim, we had to first estimate ∆om the
maximum execution time of an OM. As described in [13], the ∆om is a fixed network
parameter depending on implementation specifics. The ∆om is used to bound the OM
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sojourn time on nodes to only a specific amount in order to achieve privacy preservation,
as discussed in Section 4. To estimate the ∆om specific to the privacy-aware framework,
we measured delays introduced at each step of the OM execution on a node of the floor
location system described in Section 3.2. Sixteen FSR sensors characterize each node of the
floor location system, and one compute unit, in our implementation the ESP32-DevKitC
V4. Table 2 presents the OM execution broken in individual operations, and the delays
of operations are reported. We emphasize the fact that in the privacy-aware framework,
the nodes of the floor system are executing only operations presented in Table 2. The OM
construction involving the computation of many public-key encryption layers is achieved
by the smart contract; therefore, this was executed on validator nodes of the blockchain as
described in Section 5 and discussed in Section 6.2.

Table 1. Size of the layered object at the selected OM path lengths n. The row total gives the OM total
size, including the payload of 2.5 kB.

n 10 20 30 40 50 60 70 80 90 100

Layered object (bytes) 840 1680 2520 3360 4200 5040 5880 6720 7560 8400
Total (bytes) 3340 4180 5020 5860 6700 7540 8380 9220 10,060 10,900

Table 2. OM execution broken in individual operations; the operation execution time was mea-
sured on the ESP32-DevKitC V4. Cryptographic operations were carried out using the Libsodium
library [57]. The public-key cipher is ECC based using Curve25519 [58] and the symmetric key cipher
is ChaCha20.

Operation ECC
Decryption

ECC
Decryption

ChaCha20
Encryption

ChaCha20
Decryption

Data
Processing

Data 1 B 1 kB 2.5 kB 2.5 kB 15 kB
Execution time 18.4 ms 18.9 ms 1.2 ms 1.1 ms 9.8 ms

Based on the data in Table 2, we estimated that the ∆om appropriate to our system
specifics is 35 ms. This value was derived for the OM size at the path length n = 100.
As reported in Table 2, the ECC decryption is computation intensive only in deriving the
shared secret. The ECC decryption of the layered object of 8400 bytes requires 22.2 ms,
payload decryption and encryption require 2.3 ms, and payload content execution requires
9.8 ms. Therefore, we obtained a rough estimate of ∆om = 35 ms.

The ∆om estimate was included in the PPWSim following the guidelines defined in [13]
specifying that the technique ensures privacy preservation if the OM sojourn time on WSN
nodes corresponds to ∆om × r. r is a randomly chosen float bounded by 1 ≤ r ≤ 5.

Therefore, in the extended version of PPWSim, nodes receiving the OM decipher
the outer encryption layer of the layered object to reveal the next-hop IP address and the
inner encryption layer. The layered object size is uniform by adding the padding of the
same number of bytes as the removed layer. The payload is of uniform size, and after the
sojourn time of ∆om × r, the OM is forwarded to the next-hop node. Measurements are
taken separately for network delays and OM processing, and the results are presented,
respectively, in Figure 8 and Table 3.

Table 3. Delay introduced by OM processing at n nodes. Average and standard deviation are
computed for 30 OMs at each value of n.

n 10 20 30 40 50 60 70 80 90 100

mean (seconds) 1.12 2.28 3.23 4.24 5.35 6.38 7.39 8.60 9.55 10.61
std 0.018 0.022 0.046 0.078 0.080 0.092 0.121 0.153 0.097 0.110
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Figure 8. Required time for an OM to travel the selected path length. Measurements do not include
the OM processing delay. Statistics are computed for 30 OMs at each OM path length.

6.2. Blockchain

As described in Section 5, the privacy-preserving framework relies on a PoA Ethereum
blockchain maintained by a selected group of validator nodes operating in server farm-
like settings. Therefore, the smart contracts responsible for RBAC and OM creation are
executed on high-performance machines. Several studies [44,59] provide evidence that
RBAC could function in similar settings, and reported results show that RBAC operations
require low resource consumption. On the other hand, OM creation requires several public-
key cryptography operations. We measured the time to create an OM of 100 encryption
layers using Curve25519 [58] on a standard laptop (CPU: Intel i5, RAM: 16 GB). The OM
construction took 19 ms of CPU time.

However, the time required to execute the mentioned contracts is negligible in the
assessment of the framework response time since the blockchain state is propagated only
at new block creation. Therefore, the nodes of the floor system running the light client can
detect a new OM only after a new block is added to the blockchain. The PoA Ethereum
block period is usually in the range from 2 to 15 s [60].

6.3. Discussion

We provided the validation of the WSN framework for privacy-aware indoor location
by assessing its response time. The reported results show that applying the PoA Ethereum
on the floor system does not introduce significant latency in response times. Nonetheless,
it binds the detection of new OMs and the result transaction to a discrete basis imposed by
the block period.

Moreover, the results show the applicability of the General Purpose Data and Query
Privacy Preserving Protocol [13] to the indoor location floor system. The data in Figure 8
and Table 3 show that in the extreme scenario of OM path length n = 100, the OM Round-
Trip-Time is generally less than 30 s. However, in practical implementations, the system
will rather rely on multiple smaller OMs executed in parallel than one large OM. Therefore,
the framework response time is reduced to approximately 10 s + two block periods if
parallel OM execution is applied at n = 50.

7. Conclusions and Future Work

In this paper, we present a system for privacy-preserving, non-intrusive, and secure
indoor location monitoring. We specifically design the system to not allow identification
through data filtering. We present an innovative way of passively approximating location
by measuring the force applied to the floor. We are able to distinguish objects from persons
by observing the activity at the local level. The sensitized floor forms a WSN that is secure
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from both external and internal adversaries. By designing a unique onion routing-based
protocol, we were able to conceal the network identity of nodes in the WSN. Moreover,
our onion-based approach allows a general-purpose computing model for distributed
algorithms, and to the best of our knowledge, no comparable solution exists. To address
the issue of SPOF on sink nodes, we used blockchain-based smart contracts that replace
the onion creation and storage of query results. The blockchain operates in permissioned
mode in which sink nodes are registered, and their public keys stored on the blockchain.
We also show how using a blockchain-based RBAC is possible to further protect the query
and data access. We validate our solution on our use case of tracking violations of indoor
physical distancing restrictions to avoid the spread of COVID-19.

The presented solution aims at an implementation of a self-managing system to control
the compliance to a set of predefined rules, such as the COVID-19 pandemic rules issued
by local governments. The set of rules can be arbitrarily defined and modified without
requiring updates of sensor nodes.

A typical use-case for the presented system would be the installation in a nursing
home. The occupants are automatically pseudo-identified by the system in bedrooms and
later tracked along the corridors of the building, ensuring an overview of the number of
occupants in specific areas, triggering temporary blocks and sanitizing actions.

The system cannot be used as a critical contact signalling system (such as the exposure
notification system by Google and Apple) as it is lacking a backward loop that would enable
the information about an infection or critical contact to be attributed to a specific person.

Future work should explore more sophisticated algorithms for the detection and
tracking of users. Data should be analyzed to advance our understanding of behavior
in an effort to improve future building designs. Implementations that aim to identify
occupants (i.e., elderly homes) should explore a key management scheme and extend the
smart contracts to include the ability for users to grant the system permissions to use
their data.
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