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Abstract: With the growing popularity of cryptocurrencies, which are an important part of day-to-
day transactions over the Internet, the interest in being part of the so-called cryptomining service
has attracted the attention of investors who wish to quickly earn profits by computing powerful
transactional records towards the blockchain network. Since most users cannot afford the cost of
specialized or standardized hardware for mining purposes, new techniques have been developed to
make the latter easier, minimizing the computational cost required. Developers of large cryptocur-
rency houses have made available executable binaries and mainly browser-side scripts in order to
authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles
to complete a proof of work. However, malicious actors have taken advantage of this capability to
insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack,
also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-
malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate
detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there
are alternative solutions, mainly using machine learning techniques, one of the important issues to be
solved is still the correct characterization of network and host samples, in the face of the increasing
escalation of new tampering or obfuscation techniques. This paper develops a method that performs
a fingerprinting technique to detect possible malicious sites, which are then characterized by an
autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing
the classification power by means of a deep dense neural network.

Keywords: cryptomining; machine learning; antoencoders

1. Introduction

The constant technological evolution, which, thanks to the ubiquity of the Internet
and the services offered by cloud computing, allows a large part of human activities to be
developed in an online and digital way, through the widespread use of electronic devices
and computers. The design of new solutions offered as scalable and on-demand systems has
connected society in fields such as education, health, privacy and security, culture, personal
development, and, to a large extent, e-commerce. This has served to transform technical
information, previously understood only by experts, into easy-to-understand ontologies for
the average end-user, to operate their technology needs. As a result, there is a big demand
for access to this new era of easy digitization of payments, benefiting monetary transactions
that are now better comprised and can be carried out instantaneously, overcoming currency
or regional barriers [1,2].
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The new era of digital finance has been gradually replacing the physical form of money
provision with an electronic one, which, in turn, involves a better level of independence,
but has consequences for the privacy and confidentiality of payments.

Indeed, the security and anonymity offered by VPNs, together with sophisticated
authentication mechanisms and multi-factor add-ons [3] have gained the trust of the
common user, but undoubtedly one of the forms of electronic money that have been
adopted in a considerable way are cryptocurrencies, which touch on the advantages
mentioned before and also the freedom of banking intermediaries: digital cash that is
handled on a peer-to-peer (P2P) basis. The appeal of cryptocurrencies is that they offer a
distributed transactional model, using cryptographic techniques and a puzzle-solving stage
to address the risks of counterfeiting and double-spending, also known as anti-tampering
resistance. Although a degree of confidentiality and integrity is implied, cryptocurrencies
are not backed by a trusted third party; however, this has not limited their commercial use,
which has increased since their creation in 2009, becoming a newly popular method for
online payment transactions and investment [4]. In fact, the interest in cryptocurrencies has
spread to such an extent, that it is a matter of selecting the desired cryptocurrency house,
reading the documentation provided, using a recommended application and then start
monitoring trends, mining blocks, or simply making the desired monetary transactions [5].
The cryptocurrency boom has been presented as a consumer commodity, even used as part
of marketing campaigns. One of the most convincing cases is the one explained in [6], in
which airlines suggested the adoption of the advertising of large cryptocurrency houses
as a promotional medium on the Internet and the generation of more popularity ratings,
within them.

Many cryptocurrencies are decentralized networks based on blockchain technologies,
i.e., distributed operations enforced by a network of computers, involving an arduous
computational process to cryptomine new blocks towards the blockchain network. This
procedure, namely, the proof-of-Work (PoW), is a pool of consensus, aimed to solve a
puzzle that avoids cheating the system by solving expensive and difficult cryptographic
calculations, to eventually gain the binding of a new block, restricted to a hashing rate. The
latter is performed thanks to the distributive capabilities of various device networks, where
different participants provide, in an individual manner, processing capacity in terms of
specialized hardware, GPUs, FPGAs, or ASICs, which can efficiently protect the transaction,
given the algorithmic power, and the resistance to fault attacks [7]. Finally, if the block is
successfully constructed, users are rewarded with a certain amount of the cryptocurrency,
which is undoubtedly a lucrative business for digital money enthusiasts.

The growing phenomenon of investing in crypto-processing has led developers to
implement more flexible ways for solving PoWs. For example, Monero, the once-popular
cryptocurrency brokerage company, designed an algorithm called CryptoNight, which
offered new opportunities to process calculations over standard CPU-oriented systems.
With this in mind, several POW systems opted to take advantage of the large-scale commu-
nication capabilities of the Internet, thus giving birth to web-based cryptomining, which has
as its main advantage, the distributed use of computational resources. With the consent of
a large number of users, the scripts are executed from the carrier site, through the browser,
which binds the puzzle fraction to be solved to the CPU, adding it as another node in the
transactional network [8].

In the same way, the market demand has increased the commercial value of cryptocur-
rencies, with Bitcoin, Ethereium, Litecoin, Dogecoin, and Riple as main exchanges, all of
which offer attractive ways to join the PoW network, via system software, shareware, or
web scripting [9]. An interesting example is what happened during the early days of the
COVID-19 pandemic, which according to [10], special attention was paid to cryptocurrency
investment as an alternative means of profit, with Bitcoin being the dominant currency
in the market. Given this ease of joining the network of crypto-processing competitors,
malicious actors have also been attracted to make money illicitly, leveraging classic attack
vectors such as malware, botnets, or by simply taking advantage from already discovered
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security breaches, to embed malicious mining code over IT infrastructure, targeting num-
berless third-party computing services; therefore, the rise of illegal mining has alarmed
governments and security providers, assessing illegitimate cryptocurrency as a significant
threat over the Internet, affecting numerous visitors who fall prey to the lure of infected
sites. Based on a CTA (Cyber Threat Alliance) white paper, the growth of counterfeited
cryptocurrency mining has intensified since the last months of 2017 and shows a rapid
development with no signs of slowing down [11].

Although infections by cryptocurrency-related malware can be found on malicious
links in email messages and attachments, applications with masqueraded activity and
hijacked browser extensions, the last, remains as the main and most lucrative way of
web-based-mining scripting, namely, web-based cryptojacking; which according to [12]
contains stealthy attack vectors to make use of several computational resources without
any restriction. This is a great advantage on the attacker’s side as it only requires the visitor
to stay long enough on the website to proceed with the execution of the malicious code. In
a point of fact, this implies a critical security point, since this form of cryptojacking does not
require the download of executables, binaries, or adware, but as a primary tool, a common
web browser, which is a native component of numerous operating systems from everyday
devices: personal computers, workstations, smart-phones, and IoT gadgets.

As an example of malware persistence, between the years 2017 and 2018, Coinhive,
one of the most expanded malicious platforms for the development of cryptojacking-
oriented scripts, quickly defaced a significant number of websites, via server-side content
injection, where more than 45,000,000 illicit transactions were recorded in that period [13].
Figure 1 describes different platforms, which are used as cryptocurrency malware or
web-based cryptojacking.

Figure 1. On the authority of ENISA and the Internet Organised Crime Threat Assessment (IOCTA),
a list of illegal cryptocurrency abuse platforms is presented, as part of the most frequent and harmful
threats since 2019 [14,15].

Web-based cryptojacking is a threat that seems difficult to fade, according to a report by
the European Union Agency For Cybersecurity (ENISA), between January 2019 and April
2020 were detected 64.1 million sites with some kind of unlawful cryptocurrency activities,
with novel and more sophisticated attack vectors. In addition, the ENISA confirmed that
65% of cryptocurrency transactions are subject to weak or leaky know-your-customer-
processes, leaving a loophole in the illegal exploitation of IT resources for cryptomining
purposes. This was increased severely during the first months of 2021, where a significant
increase in the illicit cryptomining market was reported, and although the trend is against
infected files, web-based propagation is still striking. An example of this was zero-day
attacks on unpatched Microsoft Exchange Servers, where the first payloads had traces of
web-based cryptomining code, with new tactics of concealment.
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Even though the shutdown of several classic web-based cryptocurrency sites is well
known, the attention of malicious actors has shifted to cloud infrastructures, exploiting
APIs and containers (e.g., Docker and Kubernetes) to install illegal cryptocurrency images.
In any case, the strength of cryptojacking strains is coupled with the handiness of coding,
thanks to the incorporation of technologies such as WebSAssembly, WebWorkers, and
Websockets, which simplify the execution of high-performance multi-platform scripts,
intensifying the number of potential victims [16].

Being a threat that encompasses a high proportion of risk, due to its high level of
profitability, it is therefore necessary to understand the current landscape, in order to gather
the necessary elements for timely detection. Classical reverse engineering scopes and those
based on anomaly modeling have not been sufficient to project the threat. Beforehand it can
be considered that the user’s activities are the primary task in information security events,
the same that allow to trace failures, intrusions, bad functionality, and in general any point
that is considered surface and vector of attack, where it interacts [17]. An important point
in this type of research related to a malicious agent that spreads on different surfaces is to
understand the taxonomy of the anomaly, therefore, in [18] it is proposed that it is necessary
for security systems to reason the change in the normal activity flows and to be able to
discriminate similar/non-similar objects.

This manuscript takes the above references as a key starting point and is intended to
contribute to solve the problem of web-based cryptojacking with a novel form of latent
representation of malicious traces, which are trained by a deep learning algorithm that
maximizes the capabilities of sensing, from different flanks, specifically network, and host
characteristics. The results discussed later in Section 6 show that by means of the strategy
proposed in this paper it is possible to achieve a Precision of 99.41%, a Recall with a score
of 99.11%, and an F1 Score of 99.26%, with a time no longer than a minute and a half for the
generation of the final model. Thus, this methodology can be quickly adapted to different
threat properties and attack the problem of web-based cryptojacking.

The remainder of the manuscript is organized as follows. Section 2 explains the moti-
vation and background that gave rise to this research. Section 3 describes the phenomenon
of cryptomining, the threats of web-based cryptojacking, and its prevalence. Section 4
discusses the most employed detection methods, the scope of the algorithms, and the
related work through the incorporation of ML techniques. In Section 5, the AE and DDNN
framework is extensively described. Section 6 describes the results obtained, their discus-
sion, and improvements presented against other state-of-the-art works. Finally, Section 7
concludes this work.

2. Background and Motivation

Like any other security threat, cryptojacking has been subjected to different solutions
for its mitigation and eradication. As a malware where the cryptographic element is present,
there is a relationship between new strands, such as crypto-ransomware, where symmetric
cipher blocks can be distinguished during the exploitation stage and heuristic flagging
from different antivirus vendors [19].

Beyond detecting such malware merely by cryptographic elements, the first scans
presented in the state-of-the-art have distinguished the inherent properties of the executable
as a starting point for examinations by means of the well-known static (SA) and dynamic
(DA) analyses. The last-mentioned can provide preliminary results that can be used for
triaging and exploratory data analysis, which can reveal important points in end-to-end
network traffic forensics, source code auditing, CPU stress operations, and functional
monitoring of infected sites, within user interactions [16]. It is well known that SA and DA
are the first and primordial stage for discovering and tracing a malicious agent in a chain
of custody, however, these practices, lack of automation properties, and therefore any kind
of knowledge-base to further learn from significant patterns, beyond what can be humanly
configured, interpreted, and managed using a wide repertoire of security tools. Therefore,
the outputs of SA and DA cannot be used to construct simple detection signatures, nor
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to be released to work as a single security mechanism, instead, the resulting data can be
properly characterized and tuned to serve as input for machine learning ML algorithms,
capable of discovering important underlying information [20].

The literature for detection, classification, and clustering of samples for timely detec-
tion of web-based cryptomining threats, especially for observations of different varieties of
cryptojacking, comprises a broad spectrum of supervised learning (SL) [21], unsupervised
learning (UL) [22], and deep learning (DL) algorithms [23], where an emphasis is placed on
the true positive (TP) radius enhancement. It is worth mentioning, that the above-named
fields presented interesting findings with more than 90% of accuracy for cryptojacking
classification. Despite their theoretical effectiveness, there is no consensus on what set of
features can represent the threat as a whole, given the attack surfaces where it unfolds.
The first surface resides on the LAN and WAN (Internet) networks since it is the point
where traffic connections are made between the attacker’s PoW and the victim executing
the malicious script. The second surface involves the events that occur on the client (host)
side when the malicious script is running. In this part, it is possible to log the activities
from the operating system related to the consumption of resources from the browser during
the time it is hijacked. The purpose of outlining the above is simple: by adding features
from the network and host side, the generalization of the cryptojacking problem can be
increased, thus expanding the likelihood of successful feature extraction, selection, and
learning process.

In agreement with [24], when incorporating ML solutions in the cybersecurity domain,
it is important to take into account a holistic view of the event occurring on the network and
host fronts; therefore, the algorithm proposal is not enough, we also require the acquisition,
processing, and proper characterization of the observed and fused data. Cryptojacking
does not operate in a traditional way compared to other types of malware, its nature is
a pivot attack, where the browser concentrates the payloads and acts as an intermediary
between the remote site and the user, without a direct infection. So then, it is important to
meet the criteria for an optimal representation of the observed samples, from various edges.
A great challenge can be encountered when capturing a pivoted threat: samples from
different but interlinked origins can lead to a large occurrence of outliers due to dissimilar
measurements, sizes, and types of data, incrementing the chances of high dispersion, as
some records could only be observed under the presence of well-configured sandboxed
cryptojacking instance.

As described in Section 3, there are two important gaps in the state-of-the-art regarding
cryptojacking detection: 1. In the first instance, it has already been proven that traditional
scopes are outdated and not sufficient, therefore SA and DA techniques can serve only as a
basis for congregating sample-features 2. The source and selection of the features, either at
the network or host level, may be merged to achieve a desired level of detection, but not to
be considered separately. This raises an important research question:

Research question: How to optimize web-based cryptojacking detection by a proce-
dure that takes the best of network and host features and merges them?

This work concentrates on a new form of cryptojacking feature representation tech-
nique, recently adopted for ML-oriented cybersecurity scenarios, called autencoding
(AE) [25], which is a specific structure of neural network (NN) focused on compressively
capturing the latent information from unstructured data, in virtue of dissimulating the
effects of noise, high dimensionality, and non-linearity. Then, the outputs are subjected
to a deep dense neural network (DDNN) [26], a type of deep neural network, which has
demonstrated nice effectiveness in the treatment of a vast number of malware-related
scenarios. As a sign of a successful performance, the resulting model is compared with
different methodologies presented in the state-of-the-art for cryptojacking detection.
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3. Cryptomining, Cryptojacking, and Web-Based Mining Threats

As mentioned in Section 1, legal cryptomining is an attractive activity in order to
earn a profit by mining new blocks to the blockchain-based currency network, where the
puzzle-solving process is the most lucrative component, within a network of competitors.
At its most fundamental level, cryptocurrency mining is simply the use or reuse of any
system resource to increase the performance of complex mathematical calculations over a
PoW, usually involving a hashing-type solution. These calculations maintain and validate
the transaction history of the distributed ledger, generally known as the blockchain-net.
As the cryptocurrency network grows, the calculations become more difficult, making
individual machines less likely to solve equations with their limited processing power.
Hence, it is common for specialized hardware components, better known as ASICs, to be
used in conjunction with other workstations to serve as cryptomining farms. Consequently,
alternatives have been sought when sufficient processing capacity is not available, where
collaborative works (P2P nodes) are a way to pool the distributed power of single devices
and solve more expensive computations [27]. The latter is known as pool mining, a
technique aimed to help parallelized mining procedures and successfully create new blocks
to obtain an expected reward.

The phenomenon of distributed lending of resources has led to a fierce career within
the mining chain since the final dividend is proportional to the hashing power, i.e., the
performance of each individual miner, which depends directly on the speed to verify the
data through hashing algorithms: the faster the performance, the more cryptocurrency the
miner will receive [28]. The arduous struggle to complete mining tasks, especially those
implemented by Bitcoin, proved that the exponential volume for power consumption and
the difficulty of the PoW challenges, require extensive configurations found in ASICs such
as FPGAs or GPUs, and therefore, an unattractive high-cost investment in the face of the
growing demand for faster hashing operations. In consequence, other cryptocurrencies
such as Monero decided to turn the well-known P2P collaborative network into software
alternatives, specifically, scripts that can be run inside a web browser, proficient in exploiting
average CPU architectures [29].

This fashioned form of rapid access to cryptomining has generated a significant
enrichment within the stakeholders, incorporating a new kind of informal economy, since
miners do not need to have deep knowledge of IT, only the ability to build and operate
a command base with sufficient computational power, to rapidly construct emerging
blocks [30]. These attractive financial movements have engaged the attention of malicious
actors, who take advantage of the distribution of resources, thus abusing personal devices
and ultimately, profiting without funding or adequate infrastructure. Illegal cryptomining
is a stealthy cybercrime, the victim usually is not aware of being hijacked, leaving few
indicators of compromise, in such a way to be difficult to detect at a first glance [31].
This class of threats, attacks, and electronic crimes are included as cryptojacking, since
they share the same goal: an unauthorized way of cryptomining, which is carried out by
stealing resources of one or several victims, to exfiltrate specialized hashes towards the
PoW endpoints.

Because of the diverse range of attack vectors, cryptojacking can be set up on mobile
devices, software, binaries, network appliances, compromised third-party libraries, botnets,
IoT instruments, and server-side applications [13,32]. With those residing on the web being
the most prevalent, given the simplicity of inserting a few lines of code into a website
and thus forcing the execution of the malicious payload [33] against the visitor’s CPU.
For its part, the now-defunct Monero, was one of the pioneers in developing web-based
cryptomining with ASIC resistance, allowing the incorporation of scripts compatible with
common desktop processors and a wide range of operating systems.
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The sudden use of Monero API intermediary programs and the extensibility/reusability
of the code allowed the accelerated expansion of sites with embedded mining scripts, which
in most cases did not require user consent, as well as an authorization note to warn that the
site contains cryptomining code. According to [34], due to a large number of visits in a short
time, streaming sites, online games, pornographic sites, download shortener redirection
sites, and e-commerce platforms remain the main target for attackers to compromise
the dynamics of the web page by inserting arbitrary code; however, the constant search
for more feasible and integrated (all-in-one) means to disseminate the Monero code led
to the development of frameworks such as Coinhive, capable of capturing 30% of new
block transactions on the black market, and designed with anonymity options such as
no traceability and no perceptibility at a browser level. Although Monero started with a
benign purpose, it gradually grew as a hazardous strain that quickly spread over vulnerable
websites, being almost 81% of the adware threats formally detected in [35].

Despite the fact that Monero closed its operations in 2019, cyberattacks related to
browser-based cryptomining are still present and with regular intervals of an uprising.
An example of which are recent malicious scripts such as Cryptoloot, JSECoin, Miner,
XMROmine, and deepMinerAnonymous, that according to statistics presented in [36], as of
2020 were found within 66,000 domains with 1.4 million active URLs.

To conclude this section, it is important to mention that the speculative price of
cryptocurrencies, as it is a flourishing phenomenon, will continue to attract cybercriminals
to attempt the disruption of web applications, at the expense of innumerable vulnerabilities,
poor source code auditing, lax security configurations, and intrusion detection/prevention
systems or antivirus with inadequate signatures.

4. Detecting Browser-Based Cryptojacking and Related Works

As many other viruses, malware, and suspicious objects, the first line of defense against
cryptojacking is through antiviruses and web browser extensions, anti-malware software,
firewalls, intrusion detection (IDS), or intrusion prevention systems (IPS), which depending
on their structure, share as a common point: an up-to-date detection signature capable of
performing a match and flag procedure [37]. Nevertheless, it is important to note that such
solutions must differentiate between those contexts where the user expressly agrees to the
execution of cryptomining scripts and those who do not, making this, a difficult task to
accomplish, since a signature-based appliance works by mapping sequences of bits towards
a targeted object and presents the result in terms of similarity, which is, therefore, not an
expert system, but an effective one for detecting already observed samples. On the other
hand, cryptojacking detection can also be categorized into host-based defenses, including
primarily, the so-called resource consumption analysis (RCA) [31], which use the threads
generated by the web browser to detect if the use of computational resources on the client
side is being abused by comparing with previously established thresholds.

In addition, with SA, a well-known technique for evaluating syntactically and seman-
tically patterns in source code, bytecodes, opcodes, and configurations of an executable or
binary, malicious cryptomining scripts [38] can be partially identified and blocked from
execution. An example of SA, is the proposed NoCoin blacklisting of the Opera browser,
which is used as an extension, to block requests from malicious net ranges [39]. In [29], a
hybrid scope of SA and DA over time series is presented, where malware feeds and OSINT
(Open Source Intelligence) techniques are merged to differentiate between different classes
of executable binaries: illegal and benign cryptomining. To accomplish the workflow,
data from URLs and public domains were scraped to monitor wallets and mining pools
and determine the number of records generated per block. With this, the hashing ratio
can be computed to provide sufficient values to conclude if the binary is considered a
cryptojacking attack scenario as part of a botnet or produced by a single attacker.
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Further on, in [40] a detection scenario is presented by identifying PoWs signatures and
a profile detector, based on the calculation of workloads from several websites appended
on Alexa’s Top Domain list [41]. It is concluded that by means of a considerable number of
heavy hash rates, measured by a stack structure-based profiler (SSBP), it is possible to verify
if a signature corresponds to an abnormal cumulative processing time, compared to regular
loads of benign sites. In the same sense, in [8] a reconnaissance system was developed to
find different types of cryptomining scripts distributed in popular search categories such
as: technology and communications, games, dynamic sites, business, pornography, and
digital marketing. The system works by determining the origin of a malicious transaction
and mapping the link between the PoW and the Merkle tree used to mine the block. With
this, it is possible to discern between an indirect command execution, the size of the mining
network and the destination of the forged request.

In the last SA scope, in [42], a system titled MANiC: Multi-step Assessment for Crypto-
miners was implemented with the ability to parse different sites with possible illegal mining
or cryptojacking, using a web crawling method composed with several regular expressions
related to already flagged code syntax. The authors demonstrate that MANiC is able to
recognize more than fourteen crypto-malware families.

Among the works using DA, in [43] a controlled sandbox environment is fed with
samples of different malicious scripts, then, monitoring techniques are used to classify the
irregular behavior of crypto-malware compared to benign software, in terms of sequences
from the processing opcode flows and win32 api functions. In the same vein, the authors
in [44] proposed to identify connections between the web browser and dynamic executions
of programs running in JavaSript and WebAssembly (WASM). It is argued that due to the
sophistication of obfuscation methods in the script code, detection by SA or DA may be
difficult. Instead, if semantic signatures are defined, the detection will be more accurate as
it pinpoints on portions of crafted WASM code that cannot be hidden.

Although advances in cryptojacking detection are important at different layers and lev-
els via SA, DA, or both, it is mentioned in [45] that most of the physical and logical devices
that offer solutions based on pre-built signatures have proven not to be as effective due to a
high false positive rate, which is a major disadvantage for unveiling unfamiliar samples.

Even so, in [46] it is discussed that SA and DA processes executed individually are
not entirely useful for building an effective detection system, but rather, they serve as
initial steps for building datasets that will lead to the design of intelligent sensors that can
figure deeper patterns. This has gradually led to more robust detection systems, which as a
nucleus use artificial intelligence (AI) algorithms to assemble and enhance the capabilities
of traditional solutions.

One of the first works to employ ML for cryptojacking detection is [31], where a
complex feature analysis based on SA and web content, specifically JavaScript source code,
is applied. On the content side, it is shown that web-based cryptocurrency mining is a
widespread threat that can be quickly camouflaged within other scripts and tags, mostly
due to security holes in request filtering, allowing arbitrary injection of malicious objects.
The authors inferred that a large part of the samples found belonged to Coinhive, where
an extensive demand for counterfeited calculations around Monero’s PoW points was
revealed, being the main source of cryptojacking-related traffic. The authors estimated that
through the application of algorithms called cyclomatic complexity (CC) and cyclomatic
complexity density (CCD), it is possible to formally screen script execution flows, which
are assessed by a non-supervised learning (NSL) process, aimed to differentiate groups of
benign and malignant sites.

On the other hand, in [47], BMDetector was presented as a framework that locates
some peculiarities in the execution of client-side codes programmed in JavaScript: first,
the heap snapshot is monitored as a process tree between the document object model
(DOM) nodes and the malicious script triggers, in order to cover samples that could be
obfuscated. Then, a representative set of memory stack-related features is presented and
evaluated by tracking low-level memory calls through JavaScript APIs, since some scripts
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could be encrypted or encoded. The former process is sequenced within a recurrent neural
network (RNR) connection with long short-term memory (LSTM) units. As a result, a
global precision of 93.04% was obtained. Likewise, in [12] Crypto-Aegis was built, which
couples two aspects in a multi-adversary scope: insiders and outsiders. The first flank
operates as a LAN network examiner, i.e., on the client side it can monitor the entire
blockchain transaction pipeline, across the host’s local network; the second one observes
the outgoing load flows from the client to the remote PoW command and control center. In
conjunction, adversarial observations are characterized as host-based and network-based
traffic, conforming a dataset that is trained in its last stage by an ensemble algorithm (EA).
It is shown that by profiling various network features of a web-based cryptojacking attack,
in alignment with the distributive power of EA learning, it is possible to achieve an average
F1 score of 96.00%.

Otherwise, in the work carried out in [48] it is assumed that by characterizing different
CPU metrics: kernel-level usage, the start of processes and threads, interrupt and end
time, and disk operations it is possible to fine-tune the detection of sites that send large
amounts of batch processing from the browser to the operating system. Significantly, a
portfolio of SL algorithms was used to evaluate the characterized CPU samples, on the
basis of the following two-level classification algorithms: multiple-instance support vector
machine (MISVM), random-subspace (RS) + decision trees (DT), and sequential minimal
optimization (SMO) + SVM. On an overall average, a favorable result was obtained for the
RS + DT algorithm by obtaining results in excess of 99.2% of accuracy. In view of WASM as
the main indicator of cryptojacking traces, the authors in [16] developed a methodology
known as MINOS, which dumps the sections of benign and malicious executable binaries,
represented as gray-scale images. Then, a convolutional neural network (CNN) can learn
from anomalous patterns, sensing them as malicious or benign. It is argued then, that it
is possible to implement the methodology as a blocking extension in browsers such as
Chrome, as the process is computationally lightweight and supported with an overall
performance metrics above 98.97%.

To conclude with the related works that occupy ML as the main focus of their con-
tribution, in [49], a method for characterizing Botnets with some cryptojacking patterns
in physical IoT devices was developed by combining an adaptive filter with an AE and a
scatter graph to identify the P2P nodes that congregate the commands from a control and
command center, that pushes the requests as a distributed denial of service (DDoS) attack.
It is shown that by identifying the root of a botmaster using network features and client re-
sources, logistic regression (RL) and support vector machine (SVM) algorithms can achieve
accuracy rates of up to 99.69%. Aggregating the above information, Table 1 describes most
of the relevant work that has been developed to mitigate web-based cryptojacking. It is
organized by including the type of scope, its algorithm/technique, the analyzed threat, and
the type of defense employed.

Of the widely identified works tabulated in Table 1, ref. [8,29,37,39,40,42] contain some
type of static or dynamic defense, particularly on the client side (host-based) [8,29,40,42],
which is a great advantage for a first kick-off and triaging of raw cryptojacking observations,
but in any case, it is possible to fail in the process of rapid assimilation of numerous samples
that may interact with higher incidence, because its strength lies entirely in manually
generated efforts to unveil the results. The two remaining hybrid works [37,39] employ SA
and DA jointly, but continue to follow the so-called mechanism of comparison based on
bit distances or similarity, leaving aside important aspects that can be better implemented
through anomaly detection processes. In contrast, there are eight recommendations that
make use of some type of intelligent mechanism or are ML-driven, of which four are
host-based solutions [16,43,44,48], two network-based [12,38], and three hybrids [31,47,49].
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Table 1. Related work on detection of cryptojacking and cryptomining threats in the web browser.

Authors ML-Based Algorithm/Technique Type of Threat Type of Defense

Aziz et al. [37] No
Static behavioral signatures,
embedded in perimeter security
devices

Network traffic traces or binaries
detected with cryptomining
malware

Hybrid

Razali et al. [39] No Blacklists, browser behavioral
analysis and dynamic content Web-based cryptojacking Hybrid

Eskandari et al. [29] No
Dynamic analysis: blocking of
excessive use of resources. Policies:
consent of use

Web-based cryptojacking Host-based

Rüth et al. [8] No WASM fingerprinting Web-based cryptojacking Host-based

Hong et al. [40] No
Hybrid analysis: on the static side:
SSBP; on the dynamic side: web
content analysis

Web-based cryptojacking Host-based

Burgess et al. [42] No Web crawling + customized regular
expressions Web-based cryptojacking Host-based

Saad et al. [31] Yes Content-currency and code-based
analysis + Fuzzy C-Means Web-based cryptojacking Hybrid

Berecz et al. [38] Yes SVM, Multi-Layer Perceptron(MLP)
and RF

Anomalous sites and URLs, related
to cryptojacking & Malicious email
attachments

Network-based

Carlin et al. [43] Yes Random Forest (RF) Web-based cryptojacking Host-based

Wang et al. [44] Yes SVM Web-based cryptojacking Host-based

Liu et al. [47] Yes LSTM Web-based cryptojacking Hybrid

Caprolu et al. [12] Yes RF Malicious cryptojacking patterns on
network traffic Network-based

Gomes et al. [48] Yes MISVM, RS + DT (Decision Trees),
and SMO + SVM Web-based cryptojacking Host-based

Naseem et al. [16] Yes CNN Web-based cryptojacking Host-based

Kumar et al. [49] Yes SVM, RL, and CNN (Convolutional
Neutal Network) Cryptojacking as part of a botnet Hybrid

The great advantage of AI or ML applications is an improvement for quickly por-
traying emergent cryptojacking scenarios, in addition to tools that can be integrated in
an enhanced manner; however, there is still a question mark derived from the type of
characteristics to be analyzed, firstly, some authors agree in giving more steadiness to the
client side, since the computation of blocks resides in the operating system of the infected
device; but, on the other hand, it is stated that there are important details that emerge in the
communications network, since it is the entry point of the threat. Of the hybrid solutions
using ML, the former [31] delegates more importance to client-side activity, concentrating
its logs on outgoing network packets and subsequently on the effects of malware responses
on the CPU, specifically on prolonged power consumption. In turn, the second one [47],
is more oriented to handle several elements belonging to the content of the infected sites,
which could be a great advantage when trying to categorize the type of cryptojacking
families, as it is often performed for phishing menaces in accordance with natural language
processing (NLP) methods. Conversely, this would not help in the construction of the
dataset, by considering web content in co-occurrence with network and host features,
since as a consequence, the dimension of the data could increase, magnifying the risk of
misgeneralization and leading to a possibly slower analysis. The third and last one [49]
is the only manuscript that applies a similar AE technique, but the pre-processing steps
first lie in the operation of a botnet, assuming that cryptojacking attacks are derived from it,
and in the course of the tests, the authors refer to shallow algorithms as the machinery for
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detection. From this perspective, authors [50] who evaluated a similar threat, but within
IoT spoofed nodes, emphasize that the content of the threat, e.g., printable characters,
payloads, or encoding, is important for the initial recognition tasks, but not sufficient to
assume that a malicious object is identifiable through these factors, since for experienced
malicious actors, these are only the vehicle of the attack, and the activity occurs mostly at
the client level, at the network layer and the incidents that converge in both.

After presenting the list of advances that have been made historically in terms of cryp-
tojacking detection on the web, it can be summarized that there is currently no consensus on
the type of features to evaluate in order to generalize the picture. Similarly, there is no clear
context to address which pre-processing steps may be the most ideal to employ to improve
data quality, and finally it has been shown that although shallow algorithms can quickly
generalize the sample set, by their nature, they tend to work only on well-structured data,
losing learning power if the proportion of information contains variable multidata [51].

For this reason, a multi-layered viewpoint (host-based and network-based) is proposed
in this project, with a new scope in the characterization of the cryptojacking samples, as
a fundamental element in a proper detection. Thus, it can be said that the following
hypothesis arises:

Research hypothesis: by addressing the two feature selection flanks on which the
cryptojacking attack vector extends, the host and the network, and by representing their
best latent information employing algorithms that maximizes them, such as an AE and a
deep dense neural network (DNN), the detection radius can increase significantly.

5. Proposed Framework

The workflow outlining the main aspects of this project is described in Figure 2. First,
by considering the websites proposed in [42,43,52] and a curated list of malicious crypto-
mining scripts previously identified in [42], a catalog of malicious URLs was generated
and automatically traversed using web-scraping techniques; each site was fingerprinted in
terms of highlighting the existence of cryptojacking scripts by computing statistical NLP
techniques. Then, sites that are likely to be suspicious are examined in a sandbox environ-
ment, where the behavior is dynamically monitored with the assistance of an instrumented
navigator, that allows assessing network traffic and operating system traces. The outputs
are then stored on a local data warehouse, that is to say, tabulated and presented as a
dataset with associated class labels. Next, pre-processing techniques are applied, based on
feature extraction and selection algorithms, using AE techniques. Further on, a subset of
training data was prepared to train the DDNN algorithm, and finally, with a subset of test
samples, the performance of the resulting classification model was measured in terms of
the following performance metrics: Precision, Recall, and F1-score.
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Figure 2. Workflow of the proposed methodology.

5.1. Data Collection

The data collection process starts with fingerprinting, which is a well-known initial
detection process that correlates different data, versions, services, and some patterns when
performing penetration testing (pentesting) tasks. In this case, cryptojacking, being a threat
that resides mainly on websites, goes through an exploration process similar to phishing,
with particular aspects that are listed below:

• Cybercriminals can create instances of illegal cryptocurrency mining within a few
lines of source code in a script, which can slow down the fingerprint search based on
simple text queries towards a broad set of websites. This also tends to happen when
the script is part of another vulnerability exploit and the attacker attempts to encode
or encrypt the lines in other schemes, to evade defenses.

• Often, malicious sites redirect requests within HTTP headers, negatively affecting
the responses when capturing client–server bidirectional transfer of information. The
answer is simple: if a traditional fingerprinting scope is set via web crawling, it may fail
to properly follow the responses, as it may only return the first and not the forwarding
paths. Some attackers time the loading of HTML or add dynamic content presentation
mechanisms to avoid content query automation techniques. Other malicious actors
add riddles, bogus captchas, or shorteners that only by constant human interaction
will reveal the final destination.

For this reason, an analysis of data congregation between layers is proposed as shown
in Figure 3. Each layer is described below:

• Layer 1—Fingerprinting: in this initial layer, sites that may contain signs of crypto-
mining are captured. This stage is vital as it filters out those that will be useful
for exploration and eventual characterization, discarding inappropriate storage of
unwanted, duplicated, or error-coded sites.

• Layer 2—Network-based data: comprises the information flows of traffic transiting
through the HTTP/s and TCP protocols. This allows the analysis of request–response
patterns in site activity and tracking nested scripts on the site.

• Layer 3—Host-based data: is the monitoring of the website once it interacts with the
browser. In this step, the activities of the web browser are implemented through an
application that resembles human navigation, leaving aside the complications of a
classic web crawler. Attention is paid to the actions that are triggered once the content
is rendered and consequently the behaviors that are directed towards the CPU and
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the processes that are activated for resource consumption. At this stage, suspicious
samples that are not detected in the previous ones, due to their obfuscated or coded
form, can be revealed.

Figure 3. Proposed strategy for the capture of cryptojacking samples.

To run the instances for fingerprinting, analysis, network monitoring, and capture of
host activity, a virtual environment was configured, with the following characteristics: two
virtual machines (VMs) with Ubuntu 16.04 and Windows 10 operating systems, both with
an Intel Core i7 processor and 16 GB of RAM. For HTTP crawling and TCP processing,
native parsing libraries were used by means of Python 3.7 programming language. For
its part, Selenium [53] web instrumentation tool served as the action automator of the
fingerprinted sites, which inherently contains Chrome as the browser that resembles the
human-oriented navigation activity.

In order to select the necessary sites to be crawled, dumps of databases with previously
identified malware, were appended: firstly, the NoCoin adblock list [52], which is a series of
642 URLs with regular expressions, containing traces of common web-based cryptojacking
families. It is actively handled to complement extensions such as AdBlock, uBlock Origin,
and AdGuard; also conforming a native component of web browser policies such as
Brave and Opera. Secondly, the compendium presented in [42] was integrated, which
likewise, employs a list of malicious sites that have been previously sandboxed and tagged
with some sign of illegal cryptomining. This breaks down into a list of 913,554 benign
sites, 63,002 URLs that could not be accessed correctly or displayed some HTTP error
code, 415 suspicious sites with some type of embedded malware, and 887 sites that were
undeniably classified as malicious.

From a total of 2038 sites, a first fingerprinting traversal run was executed using Sele-
nium, with the objective of extracting active cryptojacking script structures and therefore
confirming if the site is still operating. For this, HTTP responses with uploaded .js object
extensions were identified and captured. Afterwards, the asynchronous XMLHttpRequest
loads were filtered out. Finally, a parsing process to HTML content, to select only DOM
tags that matched a regular expression, was designed to highlight any element within
the normative JavaScript syntax. Each discovered script was transformed at a character
level using the TF-IDF (term frequency-inverse document frequency) algorithm, known to
statistically encode words or letters based on their relevance and represented by weights
(normalized values under the range of [0, 1]) comprised in a vector, of vocabulary length
(number of encoded characters).

To filter the sites, each vectorized script was compared by cosine distance against
the summary presented in [42], where 981 cryptojacking code fragments are presented. If
the site does not present an error code or a timeout and the similarity is greater than 0.8,
the presence of scripts is confirmed, labeled as cryptojacking and stored in the database,
along with the DNS resolutions, domain names, IP addresses, and access nodes, with
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which it interacts to complete the PoW. According to [54], the similarity values vary in
the range [0, 1], where 0 represents the absence of similarity and 1 the perfect comparison.
The threshold is difficult to establish since 0.6 could be said to represent a 60% match. In
this particular scenario the highest similarity was 0.91 and 0.13 the lowest, with an overall
average of 0.82. Thus, 0.8 was left as the optimal criterion as a minimum similarity. For
those that do not exceed the threshold, but could be suspicious, a second traversal recursive
tracker was programmed to follow requests and links to the already identified lists from the
first traversal run, if any of the following scenarios occur: unwanted downloads, pop-up
flooding, or malvertising, URLs with encoded characters or pronounced length, constant
redirects, and forced clicks. If a request matches, then the site is also labeled as cryptojacking
and appended to the database. In a third traversal run, the previously confirmed and stored
sites were used as the basis for customized queries on Public WWW [55] databases, which
is a source code search engine that allows finding any alphanumeric fragment, signature or
keyword over HTML, JS, and CSS documents across a wide selection of websites.

To complete the dataset with benign sites, a random selection was made from those
listed in Alexa Top Domain List [41], since a large part of them share similar anatomies:
active HTTPs configuration from common certificate authority companies, controlled
redispatching to non-out-of-domain links or subdomains, presence of CSRF tokens in POST
methods or X-CSRF-TOKEN header attributes and cross-domain policies. On the other
hand, other security policies that they share are: JS execution is limited to interactions
within the DOM, asynchronous uploads are restricted to the same host or domains with
same-protocol policies and through verified whitelisting of social networks, payment
APIs, animation scripts, and web development frameworks. The final dataset comprises
8000 random benign sites, and 8156 tagged and validated as cryptojacking. Table 2 tabulates
the families of cryptojacking scripts, the top-level domains (TDLs), DNS, or IP addresses
found, and the number of infected sites involved.

Table 2. Queries of malicious script patterns, top-level domains, and number of detected sites

Malicious Script TLD/DNS/IP Targeted Number of Infected Sites

Crypto-loot crypto-loot. com, cryptoloot. pro, 104. 21. 56. 113 172. 67. 184. 223 355

CoinIMP hostingcloud. *, free-content. * 1931

Minr cnt. statistic. date. *, cdn. static-cnt. bid. *, ad. g-content. bid. *, cdn. jquery-uim.
download. * minr. pw, cnt. statistic. date. *, ad. g-content. bid. * 692

DeepMiner/Coinhive 37. 187. 165. 17, 217. 182. 164. 9 217. 182. 164. 10 1979

Jsecoin server. jsecoin. com, load. jsecoin. com, platform. jsecoin. com 2377

RubyMiner internetresearch. is, dgnfd564sdf. com 203. 24. 188. 242 822

In the next step, to aggregate the features at the network and host layer, each infected
and benign website was navigated for a period of 120 seconds, simulating a user’s browsing;
on Ubuntu (Linux) and Windows operating systems. Using the Processing Performance
Tool (Windows) and HTOP (Ubuntu-Linux), processing signals from the web browser
to memory, disk, and CPU were recorded every 30 seconds. Parallel to this, Wireshark
protocol analyzer was focused on inspecting, filtering, and capturing network packets on
TCP and HTTP protocols. Each analysis result was mapped with its respective site, class,
and stored as a document in a separate collection in the data warehouse, which is the base
of operations of the project. The final eighteen features are presented in Table 3, where their
exploratory static values are described.
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Table 3. Features comprising the data set.

Feature Name Description Type Mean (µ) std. (σ) † min. ‡ 25% § 50% § 75% § max ‡

C1 Time in C1 is a subset of the total processor
idle time host-based 68.52 39.80 0 18.25 90.87 97.69 100.98

C2 Time at C2 is a state of lower energy and
higher output latency than Time at C1 host-based 48.29 29.52 0 29.86 51.82 72.03 98.52

C3 Time at C3 is a lower energy state and higher
output latency than Time at C2 host-based 9.27 7.39 0 1.80 8.85 15.77 22.83

I/O Data Operations Speed at which the process is issuing read
and write I/O operations host-based 36.13 72.26 0 1.73 12.08 35.68 1795.31

I/O Data Bytes Speed at which the process is reading and
writing bytes in I/O operations host-based 1.11× 105 4.79× 105 0 8.32× 102 5.07× 103 3.97× 104 4.67× 106

Number of subprocesses Number of sub-processes that are currently
active in a parent process host-based 29.82 5.67 1 27 28 30 51

Time on processor The total time, in seconds, that a process has
been running host-based 0.48 1.55 0 0 0.03 0.45 25.24

Disk Reading/sec Speed of disk reading operations host-based 5.33 18.07 0.04 0.75 1.71 5.90 1064.81

Disc Writing/sec Speed of writing operations to disk host-based 0.98 13.8 0 0 0 0.02 831.50

Confirmed byte radius The ratio of Memory/Bytes committed and
Memory/Confirmation limit host-based 28.45 3.96 18.05 25.26 28.57 30.99 46.78

Percentage of processor
usage

Elapsed time on the processor when an
active thread is running host-based 31.48 39.79 1.092 2.30 9.06 81.75 100.01

Pages Read/sec Speed rate at which the disk was read in
order to resolve hard page errors hots-based 0.99 12.07 0 0 0.02 0.08 475.03

Pages Input/sec Speed at which pages are written to disk to
free up space in physical memory host-based 0.01 0.08 0 0 0 0 3.91



Appl. Sci. 2022, 12, 3234 16 of 28

Table 3. Cont.

Feature Name Description Type Mean (µ) std. (σ) † min. ‡ 25% § 50% § 75% § max ‡

Page Errors/sec This is the average number of pages with
faults per second host-based 2760.23 4905.27 16.14 353.27 685.07 1371.68 98,031.40

Bytes Sent/sent The rate at which bytes leave the browser’s
HTTP requests network-based 538.14 1766.38 1.19 33.39 66.87 218.10 98,097.78

Received Bytes (HTTP) Speed of bytes arriving to the browser’s
HTTP responses network-based 15,394.97 80,792.11 1.55 27.29 86.24 547.75 4,812,144.22

Network packets sent Speed of sending packets in the TCP protocol network-based 4.54 18.60 0.02 0.39 0.71 1.53 1118.87

Network packets received Packet reception speed over the TCP
protocol network-based 11.84 54.94 0.02 0.33 0.62 1.71 3183.70

† displays the value of the standard deviation; ‡ represent the maximum and minimum values; § shows the percentile values at 25%, 50% (median), and 75% of the data, sorted in
ascending order.
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5.2. Data Pre-Processing

This stage describes the pre-processing of the data, where data cleaning, transforma-
tion, and normalization techniques are applied. The process starts with exploratory and
cleaning analysis, aiming to impute missing, null, or unprocessable data via last observation
carried forward (LOCF) [56], which performs a statistical longitudinal compensation that
replaces the errors with the last carried forward observation. The dataset is then subjected
to a Z-score normalization process [57], due to the existence of outliers. This is a common
phenomenon when converging measurement data from different sources, generating a
trend prone to bias-variance effects, such as demonstrated in Table 3. Z-score normalization
is denoted in Equation (1).

Xzscore =
X− µ

σ
, (1)

where X is the raw dataset, µ is the mean, σ is the standard deviation, and Xzscore is the
new normalized data.

Once the data are normalized, a novel compression and dimensionality reduction
technique, namely, the autoencoder [25] is proposed. This is an unsupervised learning
algorithm, which uses a backpropagation and compression technique to reconstruct the
output as closely as possible to the input of the network, in other words, with a minimum
reconstruction error that can be used for feature extraction, with a latent representation of
the original characteristics, while minimizing the effects of linearity. AE applications have
been successfully applied in cybersecurity areas, as they have in common, the handling
of raw and noisy information of web attacks, forensic chains, indicators of compromise,
malicious techniques and tactics, and substantially any security disruption event that must
be quickly transformed and evaluated. As an example of their application, in [58], two
scenarios were selected: network-based anomaly intrusion detection and malware classi-
fication. The tests showed rapid progress in detection ratios, without the need for large
pre-processing steps. In the same direction, several authors have applied different AE as-
semblies to improve detection techniques based on anomalies occurring in IoT devices [59],
security situation assessment [60], and for cyber–physical system (CPS) environments [61].
Having mentioned the applications of an AE, Figure 4 displays its formal structure.

Figure 4. Graphical representation of an AE.

When the AE reconstructs the input, it learns from an identity function that maps
the input against the output. Thus, it comprises an input layer (L1), a hidden layer (H1)
and an output layer (O1), where the hidden units at H1 layer learn from a dimensionally
reduced representation of the input, usually with fewer neurons or units than L1 [62]. In
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the encoding phase [63], the compact hidden representation, denoted as vector hd, of the
input vector x with d characteristics is given by Equation (2).

hd = fθ(xd)
= γ1(Wxd + b1), (2)

where fθ(xd)
is the mapping function, Wxd is the p× p weight matrix with p hidden units,

b1 is the bias vector, θ is the parameterized set, and γ1 is the encoder activation function. In
the decoding phase, the reconstructed vector of dimension d is calculated by mapping back
the compressed hidden representation or vector hn, as shown in Equation (3).

hn = gθ(hd)
= γ2(Whd

+ b2), (3)

where gθ(hd)
is the inverse mapping function, γ2 and b2 the decoder activation function and

bias, respectively. The optimized mean squared error function is one of the most commonly
used loss functions when it comes to AEs to measure the reconstruction error L. Given that
fθ : x → hd constructs the input and gθ : hd → x decodes the output, then the error can be
minimized as denoted in Equation (4).

arg min
fθ ,gθ

||x− ( fθ ◦ gθ)||2 (4)

Equation (4) can be rewritten as follows:

L(W, b, x, hn) = ||hW,b(x(i))− h(i)n ||2, (5)

accordingly, in Equation (5), x(i), h(i)n are the coded and decoded samples of the training set;
hW,b is the hypothesis parameterized to a weight matrix Wp×p and the bias b.

One of the important points to consider about the architecture of an AE is that the
coding/decoding capacity can be very high, this is usually caused by a compromise when
hd is greater than x, leading to a serious problem of learning the final representations. This
is solved by modeling the distribution complexity of the model, using regularization by
the `1 norm. Thus, the AE will be able to set the level of noise or missing values, even if
the capacity is not large enough to learn a trivial identity function. One of the most widely
used AE configurations for classification problems, with regularization elements, is the
sparse auto encoder (SAE), where only some nodes are forced to activate when an input
feeds the network. With this, features will still be optimally represented by reading latent
representations, reducing redundant information. Figure 5 shows the graphical form of
an SAE.

Figure 5. SAE architecture. The SAE-type AE network can work with input and output copies
in conjunction with supervised or unsupervised targets. Here the highlighted a1, . . . , ak neurons
represent those activated in the hidden layers.
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For the purpose of noise reduction and redundancy of the normalized samples, the
SAE regulated model is used in this work, adding the penalty term `1(hd, x) in the loss
function, as shown in Equation (6).

obj = L(W, b, x, hn) + `1(hd, x), (6)

where obj corresponds to the objective of the loss function with the shrinking term of the `1
norm. Table 4 shows the values used to configure the SAE. According to [64], the hidden
layer H1 can occupy 2

3 units proportional to the length of the neurons in the input layer L1;
similarly, the resized output layer O1 contains a proportion of units at least half the length
of the input layer L1.

Table 4. Settings and parameters for SAE construction.

General Configuration Properties Layer Units Activation Function

Optimizer = ADAM
Loss function: MSE (Equations (5) and (6)) L1 18 ReLU

Penalty value for `1 = 10× 10−5 H1 14 ReLU
Epochs = 100 O1 9 Softmax

Batch size = 32
Validation split = 20%

In order to improve the inter-neuronal learning rate of the SAE, the hyper-parameter
ADAM (adaptive moment estimation) was added [65]; an optimization algorithm that
works in conjunction with the gradient method, becoming quite efficient given the existence
of large amounts of parameters in the data. It combines and extends the properties of
AdaGrad (adaptive gradient algorithm) and RMSProp (root mean square propagation),
which allow increasing the quality of the learning radius in the presence of sparse gradients,
by averaging the speed of change (the average of recent gradients). The great advantage is
that it requires little memory, making the adaptation ideal for data sets that are measured
in a short time.

5.3. Deep Dense Neural Networks

Dense neural networks are an architecture of deep, biologically inspired models,
consisting of one input L1, one output O1 and one or more hidden layers H1, . . . Hn, with the
ability to process information of a non-linear nature, to solve supervised or unsupervised
learning problems [66]. As the name indicates, the neurons are densely connected, with
each neuron receiving information from the previous layer, similar to an AE, providing an
initial abstraction layer that is the basis for networks such as CNNs and RNNs. Their great
ability to generalize a scenario has made them preferred over shallow algorithms [22,38],
which need more processing tasks before learning from the samples that encompass the
context. Figure 6 depicts the architectural form of a DDNN.

For stability purposes, a DDNN with rectified linear units (ReLU) activation functions
with three hidden layers is proposed to establish a non-linearity criteria following a regu-
larized dropout layer and a sigmoid output layer, since the expected values will be binary
y ∈ [0, 1], where 0 represents a benign site and 1 cryptojacking. The final architecture of the
DDNN, used for this project, is described in Figure 7 and Table 5.
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Figure 6. Conceptual diagram of a feed-forward, fully connected DDNN. DDNNs have been applied
in multiple cyber-security tasks [12,26,43,44,48,49,67] because of their ability to effectively analyze
different backgrounds, types of values, and measurements in the collected data, often from sources
that are presented in real time. The propagation of desired feature information between multiple
neurons in the hidden layers H1 and H2 is strengthened, maximizing the recognition capability of a
sample, in this case, cryptojacking.

Figure 7. Final DDNN architecture, which consists of an input layer L1 ∈ R9, three hidden layers
H1 ∈ R120, H2 ∈ R64, H3 ∈ R32 and a final output layer O ∈ R.

Table 5. Settings and parameters for SAE construction.

General Configuration Properties Layer Units Activation Function

L1 9 ReLU + weight constraint = 5
Optimizer = ADAM H1 120 ReLU

Loss function: Binary Cross Entropy H2 64 ReLU
Epochs = 100 H3 32 ReLU

Batch size = 32 Batch normalization layer
Validation split = 20% O1 1 Sigmoid
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In Table 5, three hyper-parameters are introduced. The first concerns weight con-
straints, which are a way of adjusting weight sizes against a pre-established threshold,
ideally functioning as regularization, ensuring that weights remain small during training,
avoiding fading, or decay problems. The second with the training time, which through
the normalization layer, helps to increase the learning coefficient, making it faster to learn
and adjust weights, while ensuring that the input to the layer maintains a good distribu-
tion within the mean and standard deviation of the units. Thirdly, a loss function, called
binary cross-entropy, is applied, which arises from taking advantage of the probabilistic
relationship of the desired class distributions predicted by the DDNN. The LOSS function
is denoted in Equation (7).

LOSS = − 1
N

N

∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi), (7)

where yi is the expected class, ŷi the predicted output of the DDNN and N the size of
the output.

6. Results and Discussion

This section describes the classification results of the SAE + DDNN, to demonstrate
the viability of the algorithms presented in this project. For the experimental tests, it was
decided to first train an unnormalised set X directly towards the DDNN algorithm, with
raw samples and then by transforming each one, via SAE characterization. Furthermore,
using the normalized set Xzscore, by feeding raw normalized samples towards the DDNN
inputs, and subsequently, by applying the SAE encoder. Both scopes engage training sets
{Xtrain ∈ X and Xtrainz ∈ Xzscore} with 80% of random samples without replacement, from
which validation subsets {Xval ∈ Xtrain and Xvalz ∈ Xtrainz} with 20% samples to obtain
preliminary metrics in terms of accuracy, during each epoch. In due course, the test subsets
are divided {Xtest ∈ X, Xtestz ∈ Xzscore}, with 20% of observations for the final DDNN
model evaluation. The metrics used to display the performance values are Precision, Recall,
and F1 score, as described in Table 6.

Table 6. Proposed performance metrics. It is important to note that the target class 1 is the site
infected with cryptojacking, therefore TP represents the true positives and FP the false positives.
Analogously, the non-target class 0 represents the benign sites, of which TN is identified as the true
negatives and FN as the false negatives, respectively.

Evaluation Metric Description Mathematical Description

Precision
It measures the quality of the model. It is the fraction of relevant observations
relative to the total number of classified instances of benign and cryptojacking
sites.

Precision = TP
TP + TF

Recall Describes the fraction of classified relevant samples out of the total number of
relevant instances. Recall = TP

TP + FN

F1-score It is the harmonic between Precision and Recall, it measures whether the model
performs as expected, by compensating the PF and FN rates. F-1 = 2 · Precision · Recall

Precision + Recall

Table 7 shows the results obtained through the above-mentioned data set configurations.
Table 7 shows an improvement in pressure for raw Xtest and normalized samples

Xtestz with the SAE + DDNN configuration, with an average score of 99.41% and 90.03%,
respectively; however, for raw samples Xtest, a lower Recall rate, with a value of 24.59% was
presented. This is an effect explained in [64], as the reconstruction of the output is facilitated
with normalization processes, as it is well known that high variability ensembles are prone
to fail when copying the information in the bottleneck layer, that is called as, reconstruction
error effect. This problem can be commonly observed by plotting the MSE cost function
of the SAE in terms of training data losses versus model validation losses. Two events
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occur during this representation, when the training set is not sufficiently representative or
the validation set presents problems to generalize each sample–characteristic relationship.
Both conditions generate a gap in the convergence of the reconstruction of the SAE inputs,
causing a decay in the output layer, finally leading to underfitting, as portrayed in Figure 8a.
In turn, Figure 8b shows the stability of the losses during training and validation in regard to
Xvalz and Xtrain from epoch 80 onwards, where the two are coupled in a constant decrease.

Table 7. Performance results obtained after evaluating the DDNN + SAE model.

Testing Set Configuration Target Class Precision Recall F1-Score

Xtest DDNN cryptojacking 83.61% 51.44 % 63.69 %
Xtest DDNN benign site 27.87% 17.15 % 21.23 %

Average DDNN 55.74% 34.29% 42.46%

Xtest DDNN +SAE cryptojacking 99.57% 12.57 % 22.33 %
Xtest DDNN + SAE benign site 80.49% 36.61 % 28.97 %

Average DDNN + SAE 90.03% 24.59% 25.65%

Xtestz DDNN cryptojacking 81.40% 99.29 % 89.46 %
Xtestz DDNN benign site 99.70% 91.38% 95.36 %

Average DDNN 90.55% 95.33% 92.41%

Xtestz DDNN + SAE cryptojacking 99.41% 99.78% 99.59 %
Xtestz DDNN + SAE benign site 99.42% 98.43% 98.92%

Average DDNN + SAE 99.41% 99.10% 99.25%

(a) (b)

Figure 8. Comparison of loss function curves using MSE, in contrast to raw and normalized samples,
subject to SAE reconstruction.

At this point, the proposed SAE+DDNN architecture is initially compared with shallow
state-of-the-art algorithms, as described in Section 4. To run the comparative tests, a grid-
search cross-validation [45] approach is considered, which is a method of hyper-parameter
tuning that seeks to maximize the performance of supervised algorithms by setting a
series of values prior to training. The grid combines a cross-validation with k iterations, to
calculate the average ability of the algorithms under test, towards a persistent accuracy. To
find the optimal subset, it was formulated the approach described in Equation (8).

λ∗ = arg min
λ

{F(L(A, Xzscore, λ))}, (8)

thus then, L denotes the loss function, F is the objective function, A is the algorithm to
be submitted, Xzscore is the normalized training set, where each sample xi ∈ Xzscore is a
fixed vector R1×18, and λ the hyper-parameters to be evaluated, resulting in a subset λ∗

of optimal parameters. Table 8 lists the authors, algorithms, and hyper-parameters to
be compared. Likewise, from the works that present applications of DL algorithms, a
base architecture was arranged, to resemble as close as possible the authors scopes. The
configurations used for training and comparison are tabulated in Table 9. It should be
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mentioned that the classification strategy for the LSTM network employs a many-to-one
design, since this work does not consider a sequential network, in this sense, for the CNN
a fixed vector was used as with the shallow algorithms, since the samples can hardly be
coupled to the dimensions of an image with 2D spatial layers for the convolution of graphs.

Table 8. List of selected authors who have presented solution proposals regarding cryptojack-
ing, using shallow algorithms. The λ hyper-parameters to be evaluated and then optimized
are described.

Authors Algorithm Hyper-Parameters (λ) Values

Saad et al. [31] Fuzzy C-Means fuzzifier (m): Controls how fuzzy the inter-group boundaries will be {0.5, 5}

SVM Penalty parameter C of error term {10, 100}
Berecz et al. [38]
and Wang et al. [44] SVM Type of division (div) One-vs-one, One-vs-rest

SVM Kernel type (ker) Polynomial, Linear, RBF

MLP Hidden layer sizes (H1 ∈ Rn) 32, 64, 128

Berecz et al. [38]
MLP Activation Functions (act) Sigmoid and hyperbolic

tangent

MLP Weight optimization solver (sol) ADAM and Stochastic
Gradient Descent

RF Attribute selection method (asm) GINI Index and Entropy
RF Max tree depth (mtd) {1, 15}

Berecz et al. [38],
Carlin et al. [43] and
Caprolu et al. [12]

RF Number of features to consider for best split (n f BS) {2, 18}
RF Minimum number of samples required to be at leaf node (mnsLN) {1, 30}

RF Minimum number of samples required to split internal nodes
(mnsIN) {1, 30}

RF Minimum number of trees in forest (mnTF) {1, 5}

MISVM Penalty parameter C of error term {1, 10}
MISVM Kernel type (ker) Polynomial, Linear, RBF

MISVM Number of bags (nb) 10, 20, 30, 40, 50, with 100
samples per class each

Gomes et al. [48] RS + DT Number of estimators (trees) 2, 10
RS + DT Maximum number of features in each estimator (mnFE) 2, 9

SMO + SVM Penalty parameter C of an error term {100, 1000}
SMO + SVM Kernel type (ker) Polynomial, Linear, RBF

LR Inverse of regularization strength of term C {0.1, 1}
Kumar et al. [49] LR Norm selected to regularize the cost function (`n) `1 and `2

LR Optimization algorithm (opt) Linear, LBFGS, SAG, SAGA

Table 9. List of authors who presented cryptojacking solution proposals, using DL algorithms. The
layers and units used for the construction of the models are described.

Authors Algorithm Configuration

Naseem et al. [16]
and Kumar et al. [49] CNN 1. 1D convolution layer L1 ∈ R1×18 with 64 filters, a kernel size with 3 units and as an

activation function ReLU
2. First pooling layer with two units
3. 1D convolution layer H1 with 32 filter, a kernel size with 3 units and as an activation
function ReLU
4. Second pooling layer with two units
5. A dense hidden layer H2 ∈ R32 with a ReLu activation function
6. The output layer O1 ∈ R with a Sigmoid activation function.

Liu et al. [47] LSTM 1. LSTM input layer 1. L1 ∈ R1×18 with 32 units
2. One Dropout layer with a radius of .2
3. LSTM hidden layer H1 ∈ R1×18 with 16 units
4. The output layer O1 ∈ R with a Sigmoid activation function.
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From Table 9, a general configuration was proposed comprising: the loss function via
binary cross-entropy, ADAM optimization, and Accuracy as validation metrics. The overall
results, with the aforementioned performance metrics, can be observed in Table 10.

Table 10. Comparison of state-of-the-art results after applying the grid search method. A significant
performance improvement can be noted in the proposed SAE + DDNN technique.

Algorithms λ∗ Precision Recall F1-Score Training Time (h:m:s)

Fuzzy C-Means [31] m = 1.5 95.71% 29.30% 42.35% 00:02:15

SVM [38,44] C = 10, div = One-vs-rest and ker = RBF 72.47% 100.00% 84.04% 0:17:11

MLP [38] H1 ∈ R128, act = Sigmoid and sol = ADAM 92.90% 92.62% 92.32% 00:01:25

RF [12,38,43] asm = GINI, mtd = 5, n f BS = 9, mnsLN = 17, mnsIN = 8 and mnTF = 4 94.67% 93.56% 93.74% 00:03:21

MISVM [48] C = 10, ker = RBF and nb = 100 96.38% 76.03% 85.01% 00:29:37

RS + DT [48] trees = 4 and mnFE = 4 94.09% 87.87% 90.38% 00:02:27

SMO + SVM [48] C = 1 and ker = RBF 69.79% 61.39% 65.11% 00:31:43

RL [49] C = 0.9, opt = LBFGS and `n = `2 99.13% 98.00% 98.57% 00:01:45

CNN [16,49] n/a 86.41% 83.23% 80.48% 00:07:55

LSTM [47] n/a 81.22% 51.34% 50.65% 00:04:22

This work (SAE + DDNN) n/a 99.41% 99.11% 99.26% 00:01:27

As shown in Table 10, after brute-forcing different hyper-parameters around the
grid search technique, the algorithms that are closer to neural behavior, MLP [38], and
RL [49], perform better on the F1 score ratio and reduced the training time. Although
the LSTM network [47] also falls within this concept, its recurrent engineering could be
better exploited by considering a scenario more focused entirely on content-based detection,
but, as described in Section 5, an NLP-based fingerprinting process is more feasible, since
it saves time in the initial recognition, without increasing the number of features in the
dataset. The CNN [16,49] architecture achieves considerable results, but the transformation
of samples to images and then to fixed vectors may degrade the ability to be spatially
invariant to one-dimensional data such as those collected in this project. The maximum
margin algorithms, SVM [38,44], and SMO + SVM [48], behaved with average performance,
a major disadvantage is that the training stage requires considerable time and the search
for suitable values for the penalty values C, increases the desired complexity. Of these,
it is noted that the MISVM algorithm [48] adds more processing time, since the samples
must be grouped and fixed in length in labeled bags, if the dataset is not large enough, the
algorithm will end up misinterpreting the classification judgment for each bag, leading to
major underfitting problems. The ensemble algorithms, RF [12,38,43], and RS + DT [48], on
the other hand, obtained a timely performance in terms of F1 score rates, in addition to a
fast training utilization, which is undoubtedly a clear example of why the authors decided
to select them as their base classification engine, since both algorithms share in common
the selection of random features subsets, resulting in multiple learners of low correlation,
even in high dimensional ensembles. The fuzzy C-means [16] algorithm has an effective
learning time, but its complexity increases, as with the maximum margin algorithms, when
the fuzzifier m obtains small number ranges, leading to a large number of iterations for
seeking the a priori number of specified clusters: benign sites and cryptojacking. It is
demonstrated then, that with the development of SAE + DDNN it is possible to improve
the performance of several works mentioned above and with a training speed similar
to MLP. This is expected, since the algorithm can also be considered as deep, due to the
number of neurons implemented in the hidden layer, and it could even be said that DDNN
is an extension of MLP.

7. Conclusions

Cryptojacking is a stealthy threat that constantly affects users, who without realizing it,
fall under the traps of malicious actors, who wait to consume the victim’s resources without
warning, in order to mine illicit operations towards a PoW. This paper proposes an ML-
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based solution that employs a holistic view of cryptojacking, concentrating its effort on two
major attack surfaces: the network, which is the entry point of the threat, and the host, which
is where the malware payload is executed and disseminated. Considering the sophistication
of several new strains, it is possible to characterize cryptojacking appropriately utilizing
host and network features. To achieve this goal, it was first proposed a traversal web crawl
towards possibly infected websites to perform the well-known fingerprinting process,
using statistical comparison techniques. This reduces the dimensional size of the dataset
and helps to follow a line of recognition similar to pentesting tests. This made it possible to
analyze important sites and rule out several false positives or URLs with inaccessibility
codes. Each site was subjected to a controlled environment that demonstrated that it is
possible to capture evidence of cryptojacking by presenting activity on the network and
within the victim’s operating system once the attack is triggered. To represent the most
important information, a novel feature extraction and selection technique called SAE was
employed, which reduces dimensionality while retaining the best latent data for variant
inputs such as those in the proposed dataset. The compressed and normalized outputs fed
a DDNN, which, thanks to its deep design, allowed higher performance rates, compared
to other state-of-the-art works, with a shorter training time. The values included are,
for Precision 99.41%, for Recall 99.10%, and for F1 score 99.25%, with an approximate
training time of one minute and twenty seconds. With the detailed metrics, one could
recommend the development of detection tools at the browser level or as an addition
to antivirus systems or industrial devices such as IPS and IDS, however, it must also be
considered that there are limitations to carry them out, which are addressed in two key
points of improvement. Firstly, it will be necessary to compile the model in such a way that
a baseline detection with a sensing agent can recognize and classify the samples, to produce
an alert or trigger a mitigation/remediation policy over minimal or restricted environments.
The second, is to consider the detection of cryptojacking binaries and executables; here the
procedure would be similar to the one developed in the present project, but at a lower level
of abstraction. It should be considered the addition of a bilateral LSTM communication
network, where the operating system API calls would extend the dataset and can be merged
as a single row of network, host and operating system process activities, and calls.
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