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Abstract: Leukocytes classification is essential to assess their number and status since they are the
body’s first defence against infection and disease. Automation of the process can reduce the laborious
manual process of review and diagnosis by operators and has been the subject of study for at least
two decades. Most computer-aided systems exploit convolutional neural networks for classification
purposes without any intermediate step to produce an accurate classification. This work explores
the current limitations of deep learning-based methods applied to medical blood smear data. In
particular, we consider leukocyte analysis oriented towards leukaemia prediction as a case study. In
particular, we aim to demonstrate that a single classification step can undoubtedly lead to incorrect
predictions or, worse, to correct predictions obtained with wrong indicators provided by the images.
By generating new synthetic leukocyte data, it is possible to demonstrate that the inclusion of a
fine-grained method, such as detection or segmentation, before classification is essential to allow
the network to understand the adequate information on individual white blood cells correctly. The
effectiveness of this study is thoroughly analysed and quantified through a series of experiments on a
public data set of blood smears taken under a microscope. Experimental results show that residual
networks perform statistically better in this scenario, even though they make correct predictions with
incorrect information.

Keywords: convolutional neural networks; transfer learning; fine-tuning; direct classification; blood
smear images; leukaemia diagnosis

1. Introduction

The last decade has seen remarkable Deep Neural Network (DNN) advancements in
dealing with large-scale and challenging machine learning problems. Among the commonly
used DNNs, the Convolutional Neural Network (CNN) is the most used in the computer
vision (CV) field due to its efficiency in image detection [1], segmentation [2,3], recognition
and classification [4,5].

Their outstanding performance in many fields mainly causes the rise of CNNs. For ex-
ample, several works adapted them to different tasks, from medical [6], to remote sens-
ing [7], to surveillance [8] and also at different stages of processes that can range from
pre-processing [9] to classification [10].

For these reasons and results, CNNs are considered state of the art for many tasks.
This can be seen from the number of articles published in recent years that exploit CNNs,
either pre-trained or fine-tuned for a specific task.

In fact, in the literature, there are more than 17,000 articles (source Scopus, accessed on
13 November 2021) for the keywords “neural AND networks AND ((fine AND tuning) OR
(transfer AND learning))”. As can been from Figure 1, the first articles (less than one per
year) starting from the end of the 1960s are related to the classical Artificial Neural Networks
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(ANNs), which undergo a substantial rise after the advent of CNNs and in particular with the
appearance of the most famous architectures: AlexNet [4] and VGG Nets [5].

Figure 1. Number of documents per year related to the use of neural networks for fine-tuning or
transfer learning, source Scopus.

However, this outstanding success has also led to a “dangerous” trend. It is pretty
common to choose CNNs to have a more outstanding guarantee of success in terms of
performance and publication; manuscripts that exploit CNNs, even those with little novelty,
are generally preferred and more cited than manuscripts using traditional methods.

In addition, the way of approaching CV tasks has changed radically. In fact, in many
cases, authors immediately focus on a deep learning tool without even doing proper
preliminary analysis and, worse, without doing a posthoc analysis to understand if the
approach used is feasible to the task under consideration.

The dangerous tendency mentioned above refers to the superficiality that authors
often have when approaching a task. For example, in the medical field, the outcome is
crucial, but relying solely and totally on the potential of CNN without a proper analysis
of the output results does not guarantee correctness. Conversely, for example, using class
activation maps for visual explanation [11,12] would validate the method’s feasibility in
clinical practice.

In addition, it appears that, when dealing with CNN, a typical preliminary analysis of
the input data/images or pros and cons is often neglected, even if different limitations of
CNNs have been observed [13–16]. One of such limitations is mainly related to the use of
CNNs for image classification that requires fixed-size input images due to the inclusion of
fully-connected layers [17]. This issue has commonly been addressed by simply resizing
the images to match the CNN’s input size requirement (squared size, typically 227 × 227).
This step is often underestimated and instead is very important if the analysis must focus
on fine-grained details and should be approached with great caution with large and non-
squared images. Indeed, with the resizing process, many details can be lost, and it could
compromise the shapes of the objects.

This aspect also characterises the use case for peripheral blood smear (PBS) slide
analysis we focus on in this work, which is very important for monitoring cell population
and potential diseases. In particular, the size and morphology of the leukocytes can indicate
the presence of several diseases, including severe ones such as leukaemia. For this reason,
losing their detail in the resizing procedure could induce classification errors. Consequently,
the primary purpose of this work is to explore the limitations of the leukaemia prediction
systems entirely based on CNNs.

In order to provide a reliable and efficient approach that overcomes the disadvantages
associated with manual inspection, several computer-aided diagnosis (CAD) systems have
recently been proposed for this task [18–20]. Specifically, in recent works [21–23] the task
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of leukemic image classification has been addressed with success (e.g., Reference [21]
achieved 100% accuracy), performing the image classification directly on the original
images, without any image segregation process. However, despite the outstanding results,
this approach seems too fragile for two main reasons. First of all, it was validated on
a minimal data set. Secondly, the images used are not challenging and, above all, not
representative of real application cases. Indeed, one might wonder, how did CNNs arrive
at the final diagnosis? How could they behave with more complex images?

In order to assess the level of reliability of such a diagnosis, in this work, we investi-
gated the performance of different CNN architectures on the classification of a specific type
of leukaemia called acute lymphoblastic leukaemia (ALL), which is characterised by an
overproduction of immature lymphocytes into the bloodstream.

We first repeat the experiments conducted by other authors in the literature [21–23]
also using additional metrics and class activation maps for visual explanations [12]. Sub-
sequently, we simulate a more realistic scenario using synthetic images created ad-hoc
from the original healthy ones, adding several healthy leukocytes, to analyse the behaviour
of CNNs when stressed on more complex images. Thus, the main contribution of this
work is a detailed evaluation of the strengths and weaknesses of existing classification
systems in order to provide valuable suggestions/guidelines for the creation of reliable
CNN-based or, in general, CAD systems that can be employed in clinical practice. There-
fore, this work does not aim to create a new image classification system that outperforms
state-of-the-art methods.

The rest of the manuscript is organised as follows. Section 2 provides some preliminary
knowledge on the analysis of PBS and discusses some state-of-the-art methods related to
the classification of leukocytes. In Section 3 we present the used real data set, the creation
of synthetic images, the used CNN architectures and the experimental setup. Section 4
presents and discusses the obtained results, and finally, in Section 5 we draw the findings
and directions for future works.

2. Background and Related Works

This section describes the medical background related to the task at hand and the
related works proposing CAD systems to address such a task.

2.1. Medical Background

Haematology and blood smear analysis fields have attracted the attention of re-
searchers in the medical field over the years. In the context of PBS analysis supported
by information technology tools, three main targets have been exploited [24]: malaria
detection, leukaemia diagnosis and blood cells classification. The solutions proposed can
vary according to the addressed task and considering that a PBS generally includes three
main types of blood cells: thrombocytes, erythrocytes (RBC) and leukocytes (WBC). For
example, from a medical point of view, the diagnosis of leukaemia requires one or more
hematochemical analyses and correct history of the subject, with further confirmation by a
bone marrow examination [25]. In general, there are four main groups of leukaemia: acute
lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML), chronic lymphocytic
leukaemia (CLL) and chronic myeloid leukaemia (CML), as well as some less common
types [26]. Each type of leukaemia affects a different type of blood cells that, in all cases, are
overproduced by the bone marrow and released into the peripheral circulation when still
immature [26]. Although the diagnosis could be long and tedious depending on the stage,
the identification could be made much more immediately. Referring to the object of this
study, indeed, the National Cancer Institute (NCI) has outlined some criteria for identifying
the ALL, including age, the presence of related diseases, and the white blood cell count
(WBCC) [27]. Moreover, the World Health Organisation (WHO) considers morphology and
other complementary tests and molecular biology essential for the integrated diagnosis of
ALL [28]. For these reasons, timely and accurate identification and diagnosis are crucial for
effective disease management [29].
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As previously said in Section 1, this article discusses a particular case study involving
leukocytes analysis geared toward predicting the type of leukaemia called acute lym-
phoblastic leukaemia. ALL is one of two leukaemias that affect lymphoid cells, which
would develop into lymphocytes, and require in-depth analysis of blood leukocytes [30,31].
More specifically, it is characterised by the development, in the bone marrow, of large num-
bers of immature lymphocytes, called lymphoblasts. They are then released prematurely
into the bloodstream [26].

2.2. Related Works

Several CAD systems have been proposed for the analysis of blood smear images to
support either the disease identification as early as possible or to perform an automatic
diagnosis. CAD systems for PBS image analysis typically consist of four main steps: image
pre-processing, segmentation or detection, feature extraction and classification. Obviously
not all the CAD systems exploit all the mentioned steps. This depends on the type of
analysis performed and also on the type and quality of the used images. For example, the
pre-processing step may not be necessary in most cases given that the images captured by
new digital microscopes are of excellent quality. At the same time, methods devoted to cell
counting do not need feature extraction and classification. Thus, the used pipelines are
heavily influenced by the medical problem they deal with and the task they are designed for.

Furthermore, some steps may be repeated more times inside a single pipeline in
order to address specific issues related to the images under investigation or to perform
a hierarchical analysis. To give an example, multiple segmentation steps can be used or
combined with detection steps to deal with adjacent or clustered cells [32–34]. In addition,
multiple segmentation or multiple classification steps might be performed to identify cells
and their sub-types or separate their components. As a general rule, the more fine-grained
the analysis step to be performed, the greater the need for intermediate processing steps
between the input data and the output results.

The visual difference between mature lymphocytes and lymphoblasts is very subtle,
as shown in Figure 2b, and distinguishing them is very complex even for trained experts.
The complexity of such a task was also highlighted by the recent C-NMC [35] challenge,
where few authors achieved an F1-score value higher than 90%, even though the provided
data set is extensive, with high-quality images presenting a single WBC centred and
manually segmented.

Considering that typically a whole PBS contains a considerable number of leukocytes,
the analysis has always been approached with methods involving at least two steps: one
dedicated to leukocyte detection/segmentation [36,37] and one dedicated to leukocyte
classification [20,38].

In some cases the first step has been simplified, dedicating it to the detection of all cell
types [24,39–41] and leaving the separation into the various sub-types and lymphoblasts to
the classification step.

On the other hand, other authors have simplified the classification step into just two
types (leukocytes vs. lymphoblasts or even lymphocytes and lymphoblasts) by inserting
intermediate steps for cataloguing WBC to improve the final accuracy [19,42].

However, several authors recently tried to avoid complex segmentation methods
involving intense computations. In particular, they performed the classification task directly
on the original images exploiting different CNN architectures [21–23]. The reported results
are outstanding, achieving even 100% [21] accuracy on the well-known ALL-IDB1 data set
(for more details on the data set, see Section 3.1). This approach takes advantage of the
fact that ALL causes an overproduction of lymphoblasts in the PBS, which facilitates and
influences the classification process.

Several important considerations should be made up to this point. First, we must
remember that the CNN-based approach works with resolutions lower than 300 × 300 pixels.
Therefore, as previously introduced in Section 1, a considerable amount of information is
lost. Second, distinguishing between mature lymphocytes and lymphoblasts at this resolution
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level is almost impossible. Third and consequently, a classification system based on the
original images can at most predict the overproduction of leukocytes rather than leukaemia,
considering that leukocytes are indistinguishable from the lymphoblasts. The overproduction
of leukocytes in the PBS is a more common condition known as leukocytosis, which is not
necessarily related to leukaemia but also to viral infections, stress, allergies and more.

(a)

(b)
Figure 2. Example of the whole PBS image and the single cropped WBC. (a) Original PBS image was
acquired from a healthy subject (source ALL-IDB1). (b) From the left, two lymphoblasts and two
lymphocytes (source ALL-IDB2).

Table 1 summarises the approaches presented in this section. In bold, we emphasise
approaches based on direct whole-image classification. As can be seen, most of the work
has focused on classifying WBC types and classifying leukaemia by processing single
cell images.

On the other hand, works in [21–23,42] have addressed leukaemia classification with
whole-image classification-based approaches. They are emphasized in bold in the table.
The first three directly classify the image as leukemic or not, while the latter exploited a
hybrid approach based on a fine-tuning strategy performed on a combination of images
from different data sets.

As previously introduced (see Section 2.1, leukaemia affecting lymphoid cells, such as
ALL, require in-depth analysis of lymphocytes to provide a reliable prediction.

In particular, the approach proposed by Vogado et al. [23] seemed promising in
this regard. Indeed, the authors showed the results of their methods on crops of the
original images containing different lymphoblasts. However, again, it must be said that
this classification can at best predict a leukocytosis condition as ALL needs fine-grained
analysis on leukocyte [26,30,31,43,44]. In other words: correctly predicting the image label,
in this case, does not mean you have correctly identified leukaemia.
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Table 1. Overview of existing works in this field with key insights from the proposed methods.

Method Work Task Approach

D
et

/s
eg

[20] WBC detection detection from entire images
[36] WBC detection two-steps approach
[39] WBC detection + classification detection from entire images
[38] WBC segmentation + classification work on single WBC

C
la

ss
ifi

ca
ti

on
on

ly

[40] WBC types classification single WBC approach
[41] WBC types classification single WBC approach
[24] Blood cells classification work on single cells
[19] WBC types classification single WBC analysis
[37] ALL classification work on single WBC
[42] ALL classification entire image
[21] ALL classification entire image
[22] ALL classification entire image
[23] ALL classification entire image with fine-tuning

3. Experimental Setup

This section describes the materials and methods used to perform the investigation
mentioned above by first illustrating the used real and synthetic data sets and then the
CNNs architectures and the experimental setup.

3.1. Materials

We used the Acute Lymphoblastic Leukaemia Image Database (ALL-IDB) [45], pro-
posed for ALL detection. It is a well-known benchmark data set regarding leukemic
image analysis.

3.1.1. Data Set

The ALL-IDB comprises images belonging to healthy individuals and patients affected
by ALL. The PBSs were collected at the M. Tettamanti Research Centre for Childhood
Leukaemia and Haematological Diseases, Monza, Italy. The images were digitised with
a single light laboratory microscope but coupled with two different digital cameras: an
Olympus Optical C2500L and a Canon PowerShot G5. This acquisition leads to different
variations in colour and brightness. Furthermore, different magnification levels, ranging
from 300 to 500, were used during the acquisition process, introducing further challenges
due to differences in scale and cell sizes. The data set consists of two versions named
ALL-IDB1 and ALL-IDB2. The former contains the original images in JPG format with
24-bit colour depth. It is also the most challenging version since the contained images
present a variable number of cells and different clusters. The number of PBS images in
this version is 108, labelled by experts as 59 healthy and 49 ALL cases. ALL-IDB2 version
instead is a collection of single WBC extracted from the previous version. It contains
260 images, and each has a single centred leukocyte, 50% of which are lymphoblasts.
Since we were interested in emphasising direct image-based approaches for leukaemia
classification, in this work, we used the ALL-IDB1 version for the CNN training and
testing process. In contrast, we used the ALL-IDB2 version to create synthetic images that
reproduced the cell number and distribution of leukemic PBS but without lymphoblasts.
For this purpose, we exploited the pixel-wise ground truth in the form of a binary mask for
ALL-IDB2 provided here (ALL-IDB2 masks, accessed on 13 November 2021), in order to
extract the foreground that contained the WBC only.

3.1.2. Synthetic Images

As previously mentioned, the main goal of this work was to evaluate the effectiveness
of the direct image classification approach proposed by other authors, which in our opinion
was too sensitive to the coarse-grained details, such as the number and distribution of

https://github.com/lputzu/ALL-IDB2_masks


Appl. Sci. 2022, 12, 3269 7 of 16

leukocytes, rather than to fine-grained details such as cell textures and shapes. To this
aim, for each original ALL-IDB image belonging to the healthy class, we created different
synthetic versions, adding other healthy leukocytes belonging to ALL-IDB2. Several
approaches have been proposed for creating synthetic images, and most of them are based
on DNN and, in particular, on Generative Adversarial Networks (GANs) [46,47]. Despite
the great success of GANs, they do not have an encoder, which makes them difficult to
train, and at the same time, it is not easy to force their equivalence to the desired factors.
This means that one cannot have complete control over the type and features of images
they produce as output. Instead, we aimed to produce images with specific features to be
used as an additional testing set. For this reason, we used a relatively simple approach for
image synthesis based on cut and paste, also called a “smart augmentation” process [46].
Firstly, we built a GUI that allowed us to select the locations where the synthetic leukocytes
could be placed inside the original ALL-IDB1 images. In order to create the synthetic
images without visually altering the original cells, we manually selected the plasma regions
(where no cells were present) of appropriate sizes as candidate positions for placing the
cells. Thus, the final number of cells artificially added to the original image was strictly
related to the nature of the image itself; the higher the number of appropriate plasma
regions, the higher the number of added cells. In addition, a bounding box (BB) was
drawn for each candidate position (see Figure 3a) in order to define the size of the cell
that it could accommodate. Then, given that our aim was to create synthetic images with
leukocytosis but without leukaemia, we selected and computed the size of all the healthy
cells in ALL-IDB2, from now on called candidate WBC. Then, to create a synthetic image
from an original one, we performed the following steps to add a single WBC for each
candidate position:

• We selected the ith candidate position and its relative bounding box;
• We filtered the candidate WBC by preserving the ones whose sizes are ≤ the bounding

box size;
• We randomly extracted a single WBC among the filtered WBC;
• We transformed the selected WBC with random rotations (multiples of 90 degrees),

horizontal and vertical flipping (note that the size and appearance of the WBC remain
unaltered);

• We placed the WBC in the candidate position by simply replacing the original image
content with the foreground region of the binary mask;

• We applied an average filter of size 3 × 3 along the new WBC borders to better blend
it into the original image.

The final results of such an additive process are shown in Figure 3b, where the final
number of added WBC is 39.

(a) (b)
Figure 3. Example of synthetic image creation process. (a) Original ALL-IDB1 images and the BB
manually selected as candidate positions for applying other leukocytes. (b) Synthetic image was
created by exploiting the previous BB and the healthy WBC belonging to ALL-IDB2.
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3.2. Methods

In order to repeat the experiments conducted by other authors in the literature [21–23]
for direct PBS image classification, several CNN architectures were used. They can be
mainly categorised into plain, residual, inception and lightweight networks. Plain networks
are very simple since they present just direct connections and are also the earliest CNN
architectures. The employed CNNs belonging to this category are AlexNet [4], the VGG-16
and the VGG-19 [5]. They are very similar and differ mostly in the number of layers, 8,
16 and 19, respectively. Residual networks are typically much deeper, but being based on
residual learning, they are easier to optimise [48]. We employed ResNet-18, ResNet-50 and
ResNet-101, which present 18, 50 and 101 layers, respectively. Inception networks are those
based on the inception layer. We employed GoogLeNet [49] and Inception-v3 [50], which
differ in the number of layers, 100 and 140 for GoogLeNet and Inception-V3, respectively,
but also because the latter exploits a few additional layer types. Lightweight networks
are lighter networks specifically designed for mobile devices with minimal computing
power and real-time executions. We employed ShuffleNet [51] and MobileNet-v2 [52],
which present 50 and 28 layers, respectively. The CNNs were all pre-trained on a well-
known natural image data set (ImageNet [53]). Thus, they could not be directly used for
classification, but they had to be adapted, by transfer learning, for the new classification
problem. Here it was done following an established procedure [54] that consisted of
preserving all the pre-trained CNN layers and replacing the final one to match the number
of classes of the new classification task.

3.3. Setup

In order to reproduce the same experiments reported in the literature by [21–23], we
split the ALL-IDB1 data set into three parts, namely the training, validation and testing
set, with 70%, 20% and 10% of images, respectively. In order to favour reproducibility
and preserve the same partitions for all the experiments that we carried out, the images
were selected in lexicographic order. In addition, we used a stratified sampling procedure
to keep the splits almost balanced. In this way the testing set presented 5 and 6 healthy
and ALL images, respectively. Finally, the images are resized to match the input size
requirements of the CNNs. The training process was run using the ADAM solver for
50 epochs, with a starting learning rate of 1 × 10−4 and learn rate decay of 0.1 every 10
epochs. During training we used the cross entropy loss function and the best model for
evaluation was chosen based on the lowest validation loss value (the minimum observed
values were between 1 × 10−3 and 1 × 10−5).

Since the number of training images was limited and no image augmentation proce-
dures were used, in order to avoid over-fitting, the regularisation factor L2 was set to 0.1.
All the experiments were conducted on the same machine that presented the following con-
figuration: Intel(R) Core(TM) i9-8950HK @ 2.90 GHz CPU with 32 GB RAM and NVIDIA
GTX1050 Ti 4 GB GPU. Finally, the classification performance was evaluated by using five
common metrics, Accuracy (A), Precision (P), Recall (R), Specificity (S) and F1-score (F1),
which are computed as follows:

A =
TP + TN

TP + FP + TN + FN
P =

TP
TP + FP

R =
TP

TP + FN

R =
TN

TN + FP
F =

2RP
R + P

where TP (True Positive) indicates the number of images correctly classified as positives,
FP (False Positive) provides the number of negative images wrongly classified as positives,
TN (True Negative) indicates the number of images correctly classified as negatives and
FN (False Negative) gives the number of positive images wrongly classified as negatives.
Furthermore, to provide a visual explanation for the decisions made by the CNN-based
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models, making them more transparent, we used the Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) algorithm [12]. This produced a coarse localisation map that
highlighted the important regions in the image used for predicting a specific concept.

4. Experimental Results

We first evaluated the classification performance of the investigated CNNs on the
original test set obtained from ALL-IDB1 and then on the synthetic images produced by us.

4.1. Evaluation on Real Images

Table 2 reports the results obtained when testing on real images and, as it can be
observed, all the tested networks reported 100% performance in every calculated metric,
apart from AlexNet that reached only 72.73% of accuracy. Considering the excellent
classification results obtained by the networks without any explicit information on the WBC,
we further investigated which features led to such results. Consequently, we computed
and represented the related activation through the Grad-CAM algorithm. In particular, we
reported examples of activation calculated on all the test set images. For the sake of brevity,
we reported the activation maps for the ResNet-50 only, which achieved the best results in
the previous test.

Remembering that, from a clinical point of view, the correct prediction of ALL is
strongly influenced by the condition of leukocytes [29], we expect that CNNs also exploit
such indicators to perform the predictions. Thus, we use the healthy features of WBC
to predict the healthy case and those of lymphoblasts for the ALL case. As can be seen
in Figure 4, the explanations for the healthy class could be considered correct. Indeed, even
if the activation areas are much bigger than the WBC areas and the WBC are not centred
in the maximum activation values, this could be considered an expected behaviour for
the correct classification of healthy leukocytes and the correct status grading. However,
Figure 5 reports several issues on the ALL images. Specifically, let us consider the three
images composed of two WBC. Figure 5a–c depict how ResNet-50 considers only one WBC
in the first one and completely ignores both WBC in the remaining two. Moreover, it gives
much more importance to the RBC that are not meaningful in the leukaemia diagnosis.
Moreover, the situation in Figure 5d,e is even more critical because the network tends to
consider only a small portion of the WBC included in the images, ignoring the majority
of them.

These critical classification issues lead us to further investigations. In particular, at first
glance, it seems that the networks tend to consider the WBC as meaningful only when they
are alone, as represented in the healthy images in Figure 4. On the other hand, the WBC
are almost ignored when the networks classify the ALL class. This situation leads to the
correct classification results, as demonstrated in Table 2. However, it is not acceptable if we
want to use such a system in a real environment, where the number of classes is not limited
to two (healthy and not healthy).

Table 2. CNN performance obtained with the original ALL-IDB1 test set.

Network Acc (%) Pre (%) Rec (%) Spe (%) F1 (%)

AlexNet 72.73 83.33 71.43 75.00 76.92
VGG-16 100.00 100.00 100.00 100.00 100.00
VGG-19 100.00 100.00 100.00 100.00 100.00
ResNet-18 100.00 100.00 100.00 100.00 100.00
ResNet-50 100.00 100.00 100.00 100.00 100.00
ResNet-101 100.00 100.00 100.00 100.00 100.00
GoogLeNet 100.00 100.00 100.00 100.00 100.00
Inception-v3 100.00 100.00 100.00 100.00 100.00
ShuffleNet 100.00 100.00 100.00 100.00 100.00
MobileNet-v2 100.00 100.00 100.00 100.00 100.00
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(a) (b) (c) (d) (e) (f)
Figure 4. Visual Grad-CAM explanations for ResNet-50 exploited on the original test set images
belonging to the healthy category. (a) Image n. 34 (b) Image n. 43 (c) Image n. 47 (d) Image n. 71
(e) Image n. 72 (f) Image n. 74.

(a) (b) (c) (d) (e)
Figure 5. Visual Grad-CAM explanations for ResNet-50 exploited on the original test set images
belonging to the ALL category. (a) Image n. 31 (b) Image n. 32 (c) Image n. 33 (d) Image n. 48
(e) Image n. 49.

4.2. Evaluation on Synthetic Images

To better investigate the reasons that brought the CNN to produce such results, we
developed a data set of synthetic images, as reported in Section 3.1.2, by adding healthy
WBC to the original healthy ALL-IDB1 test images (six samples) in all the candidate
positions. It must be noted that in this case, the number of cells added is different for each
image. This data set is used as an additional testing set for the CNN models fine-tuned with
the original ALL-IDB1 training set images. The results of such test are reported in Figure 6
and, as it can be observed, the performance degrades for all the tested CNN architectures.

In order to understand under what circumstances the networks start to misclassify,
we performed an in-depth investigation by selecting a portion of the previous synthetic
data set, where the maximum number of added cells is 20. This value was chosen based on
the limit of the image with the lowest number of candidate positions. Then we split this
synthetic data set into 20 sub-sets, each one containing the synthetic images presenting
the same number of images but with an increasing number of added WBC. That is to
say: imgSynt1 contains images with one additional WBC, imgSynt2 contains images with
two additional WBC, until the last one, imgSynt20 which contains 20 additional WBC. This
experiment aims to verify if progressively adding healthy WBC to the original test images
can affect the CNNs’ predictive ability.

This trend is completely confirmed for the majority of the networks exploited. As re-
ported in Figure 7, three networks start to misclassify quite early, breaking the 100% results
obtained on the original test sets. Indeed, VGG-16 and VGG-19 reached 63.6% and 78.8%
accuracy after five additions, as indicated by the magenta line. GoogLeNet followed the



Appl. Sci. 2022, 12, 3269 11 of 16

same scheme starting from eight additions, while MobileNet-v2 from ten and Inception-v3
from fourteen. Finally, ShuffleNet performance began to degrade from the seventeenth
addition. In this scenario, the only networks not affected by degradation are the residual
networks ResNet-50 and ResNet-101, showing strong robustness based on the obtained
accuracy. In Figure 8, we reported the activations computed on the synthetic images in
order to analyse the behaviour on the same images when varying the number of cells.
For the sake of brevity, we reported the activation maps for the ResNet-50 only and for the
imgSynt10, imgSynt15, and imgSynt20.
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Figure 6. Classification accuracy obtained by the different CNNs adopted in the synthetic data set.
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Figure 7. CNNs’ accuracy trend when increasing the number of WBC inside the image. In particular,
the x-axis values start with imgSynt1 that represent the synthetic test set with one WBC added and
terminate with imgSynt20, composed of twenty WBC added.

Even in this case, the CNNs do not give relevance to the features of WBC, but the
classification score is entirely based on features that are not generally useful to predict the
presence of leukaemia from blood images. In particular, it can be noted that the activations
change with the addition of more WBC, although the changes are not linked to the number
but mostly the position of the new cells.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)
Figure 8. Visual Grad-CAM explanations for ResNet-50 exploited on different synthetic test sets. From top
to bottom, examples of images belonging to imgSynt10, imgSynt15, and imgSynt20. Im stands for image,
and S stands for set. (a) Im: 34, S: 10 (b) Im: 43, S: 10 (c) Im: 47, S: 10 (d) Im: 71, S: 10 (e) Im: 72, S: 10 (f) Im:
74, S: 10 (g) Im: 34, S: 15 (h) Im: 43, S: 15 (i) Im: 47, S: 15 (j) Im: 71, S: 15 (k) Im: 72, S: 15 (l) Im: 74, S: 15 (m)
Im: 34, S: 20 (n) Im: 43, S: 20 (o) Im: 47, S: 20 (p) Im: 71, S: 20 (q) Im: 72, S: 20 (r) Im: 74, S: 20.

4.3. Discussion

The obtained results emphasise that the approaches based on direct whole image
classification are not applicable in clinical practice. Indeed, we demonstrated how CNNs
behave with more complex images, also answering the questions above. This was done
by varying the number of cells in the image, so we did not even have to insert additional
pathologies and change the problem from binary to multi-class. So what is expected is
that by adding additional complexities present in daily laboratory testing, the failures may
be even greater. Instead, it is not easy to determine why the CNNs could provide correct
results in real test images, especially because the activation maps do not seem to focus
on precise indicators for all images. In fact, it is very likely that in binary problems like
this one, the CNNs manage to find very different indicators from those actually used by
pathologists to provide the diagnosis but which would prove unusable in real cases.

Certainly, our analysis presents some limitations since it has been performed on a
single use case and on a single data set, but it can provide valuable suggestions/guidelines
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for the creation of reliable CNN-based CAD systems that can be employed in clinical
practice. In particular, when dealing with CNN, a preliminary analysis of the input
data/images must always be performed. In particular, CNNs for image classification
require fixed-size input images due to the inclusion of fully-connected layers [17], and if
the input data are not processed correctly, they can be significantly altered (e.g., the cells
or tissue form factor and size) or some important details can be lost (e.g., the presence of
vacuoles or nucleolus).

A further preliminary analysis must be performed for the task at hand, both depending
on the type of analysis performed and the type and quality of the used images, to design an
appropriate pipeline to handle all the encountered issues. In particular, for the considered
case study, which could be considered a fine-grained task, a preliminary detection or
segmentation step, before classification, is essential to allow the network to understand the
adequate information on individual WBC correctly. More generally, the more fine-grained
the analysis step to be performed, the greater the need for intermediate processing steps
between the input data and the output results.

5. Conclusions

In this work, we investigated direct image classification methods based on CNNs.
Such methods exploit whole images, without intermediate steps, to classify or predict the
subject depicted in the target images. In the case study, the target images show peripheral
blood images of healthy or leukaemia patients; thus, the outcome is crucial. The performed
analysis demonstrated that this case study is completely dependent on the correct induc-
tion of the most appropriate features related to leukaemia detection and evaluation for
proper classification. The synthetic test sets produced in this work emphasised how the
CNNs fail entirely in the correct individuation of the most suitable feature for leukaemia
prediction. Consequently, it is not possible to totally rely on the potential of CNN without
a proper analysis; in the case study and, we believe, in many other cases, the intermediate
step of the analysis process is fundamental to reduce uncertainty and improve accuracy.
Even if performed on a single use case and a single data set, we provided valuable sug-
gestions/guidelines for creating reliable CNN-based CAD systems that can be employed
in clinical practice. A further improvement for this specific use case could be analysing
synthetic images created by adding specific WBC sub-types and even lymphoblasts to
extract a more visual explanation of the CNNs’ response.
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ALL Acute Lymphoblastic Leukaemia
AML Acute Myeloid Leukaemia
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CML Chronic Myeloid Leukaemia
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ALL-IDB Acute Lymphoblastic Leukaemia Image Database
BB Bounding Boxes
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