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Abstract: Remote monitoring of a fall condition or activities and daily life (ADL) of elderly patients
has become one of the essential purposes for modern telemedicine. Internet of Things (IoT) and
artificial intelligence (AI) techniques, including machine and deep learning models, have been
recently applied in the medical field to automate the diagnosis procedures of abnormal and diseased
cases. They also have many other applications, including the real-time identification of fall accidents
in elderly patients. The goal of this article is to review recent research whose focus is to develop
AI algorithms and methods of fall detection systems (FDS) in the IoT environment. In addition,
the usability of different sensor types, such as gyroscopes and accelerometers in smartwatches, is
described and discussed with the current limitations and challenges for realizing successful FDSs.
The availability problem of public fall datasets for evaluating the proposed detection algorithms are
also addressed in this study. Finally, this article is concluded by proposing advanced techniques such
as lightweight deep models as one of the solutions and prospects of futuristic smart IoT-enabled
systems for accurate fall detection in the elderly.

Keywords: artificial intelligence; internet of things; fall detection; wearable sensors; old people

1. Introduction

Recently, the World Health Organization (WHO) reported that there are approximately
684,000 disastrous falls worldwide each year, with a majority of victims being individuals
over the age of 60 [1]. This large percentage places it behind road traffic injuries as the
leading cause of unintentional injury fatality. Falls are considered as a main public health
concern for the elderly around the world, of which over 80% are in low-income and middle-
income countries. Without a doubt, the injuries that elderly people sustain as a result
of falls have far-reaching effects on their families, as well as for healthcare institutions
and society in general [2]. Emergencies can occur without recognition and even without
warning. That is why fall detection technology in medical warning systems is such a critical
and life-saving feature. If, for any reason, you were not able to reach the assistance button
after a fall (or in a medical emergency), a medical alert system’s automated fall detection
feature could give you a peace of mind that you would still get the care you need [3].

Fall detection devices employ alert systems technology to identify and provide emer-
gency assistance to a senior who is prone to falls [4]. If the user falls, these systems will
quickly activate the sensor. The built-in technology can be placed around the neck, around
the wrist, or on the waist, depending on the device. For premium service charges, most
medical alert companies incorporate the fall detection capability within their medical alert
system [5]. Some firms sell fall detection gadgets that can be worn separately from one’s
medical alert button. The cost of the second device may be added to the monthly subscrip-
tion plan. In the last few years, fall detection has garnered significant concern from both
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industry and academic research, as seen in Figure 1. It can be noticed that the number
of research articles has increased dramatically. Furthermore, the topic of fall-likelihood
prediction, which is based on modern applications concentrated on fall prevention, such as
the Internet of Things and artificial intelligence, is also quite important [6].

Accelerometers, a sort of low-power radio wave technology sensor, are used in fall
detection systems to continuously monitor the user’s movements [6]. Three-axis accelerom-
eters, such as those in smartwatches and smartphones, are employed in state-of-the-art fall
detection devices. Some fall detection systems have a built-in tri-axial accelerometer that
uses Biosensor’s patented algorithms. By detecting unexpected changes in body motions,
fall warning detectors can determine whether a user has fallen [7]. The device can assess
a person’s body position, physical activity, and the smoothness with which movements
are being sped up. If these variables are in the danger zone and a fall has happened, the
smart device will automatically activate an emergency fall alarm and contact emergency
response agents for assistance.

Figure 1. Fall detection interest rate, start April 2004-to-December 2021. The experimental data is
taken from “Google Trends” based on “fall detection” as the search object. The results are equalized
using the largest rates; therefore, the highest interest rate has a value of 100.

One commercial approach for preventing falls is the use of personal emergency re-
sponse systems (PERS) [8]. Individuals who fall can use these clinical alarm devices to
invoke an emergency department by pressing a button. While the PERS system is useful in
many instances, it is rendered worthless if the user is completely unconscious or unable
to reach the button. Even when the system is available, recent cohort research indicated
that roughly 80% of older persons who were wearing a PERS did not use it to call for
aid after falling. Passive monitoring approaches have been proposed to identify falls due
effectively and precisely to the problems connected with PERS systems [9]. Several options
are currently available, the majority of which are wearable devices, cameras, microphones,
and pressure sensors implanted beneath the flooring that are incorporated in the domestic
surroundings. Based on the best of our knowledge, this article presents the first survey of
IoT-based fall detection systems, including different wearable and non-wearable sensor
types, machine learning and deep learning detection algorithms. In addition, the arti-
cle also describes the challenges and the future trends of fall detection systems, such as
the availability of public datasets of falls for senior people and the development of new
lightweight deep models for accurate fall detection with minimal hardware resources.

The remainder of this paper is divided into the following sections: Section 2 gives an
overview of relevant fall detection methods using current technologies. The taxonomy of
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current methods for fall detection is described in Section 3. Sections 4 and 5 demonstrate
techniques of machine learning and provide a discussion, respectively. Finally, conclusions
and future directions of this research are presented in Section 6.

2. Current Technologies for Detecting Falls

In the diagnosis and treatment of disorders, health monitoring is crucial. Fall detection
devices, for example, can help detect anomalies and transmit real-time signals to health
and social care professionals about the abnormalities [10]. Fall detection systems based on
wearable devices have been increasingly popular in recent years due to various advantages,
such as being lightweight, low-cost, energy-saving, and non-intrusive. In recent years,
the growth of fall detection and prevention approaches has been a prevalent study area.
For the development of such systems, a variety of methodologies are used [11]. Artificial
intelligence (AI), Internet of Things (IoT), and cloud computing-based systems are the three
primary categories in which these technologies fall.

2.1. Artificial Intelligence

Artificial intelligence gives the system the ability to detect falls based on the dataset
and data trends. Sensors produce data connected with various fall parameters during the
data collection procedure. As a result, machine learning methods are utilized to categorize
or identify fall actions based on the requirements of an application [12]. For fall detection
as well as other activity detection, deep learning techniques are becoming the preferred
method, particularly for visual detectors and sensor fusion [13]. Another area of fall
detection examination is deep reinforcement learning, which is based on psychological and
neuroscientific theories about how humans adapt to changing environments and improve
their behaviors. Deep reinforcement knowledge incorporates both deep and reinforcement
learning to expand detection alternatives that respond to changing environments, while
preserving accuracy and robustness.

Figure 2 shows the five processes that make up the overall system for fall detection
methodology. Depending on the application’s needs, data collection from sensing devices
is the first step. In the second step, the noisy and undesired signals are removed from the
collected fall data. Feature extraction from fall datasets, which takes the preprocessed data
and extracts the desired features, is the third step. In the fourth step, machine learning
techniques are applied to classify abnormal falls and ADL. It separates the data into two
categories: training and testing. Finally, different evaluation matrices, such as accuracy and
confusion matrices, are used in the performance assessment step to analyze the system’s
overall outcome.

Figure 2. Fall detection overall procedure system using machine learning (ML) algorithms.

2.2. Internet of Things

The Internet of Things (IoT) is a relatively new technology that has a great potentiality
for developing a fall detection system. To construct fall diagnosis systems, this emerging
technology could supply data processing, communication channels, and smart sensors [14].
IoT also offers powerful processing and storage capabilities, as well as providing services
to the other layers of edge and cloud computing [15,16]. Edge, as well as fog comput-
ing, can be used to detect falls. Edge devices process data and are located near other
devices and users. On the other hand, fog nodes are located near local networks and other
system infrastructure.
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Wireless communication systems such as 5G comprise both physical and software
virtual network functions [17]. To begin with, 5G is expected to become a significant and
generic communication technology for the Internet of Things. It brings the potential to
transmit data at fast speeds and with low latency, which could aid the development of IoT
systems for fall detection [18]. Second, passive sensing technologies can be implemented
using 5G cellular. Unlike other types of RF-sensing systems, such as Wi-Fi and radar, the 5G
wireless network may be used as a pervasive sensing method in both indoor and outdoor
environments for fall detection. Intelligent systems or networks powered by IoT and deep
learning could be utilized for a variety of ubiquitous sensing and smart monitoring systems,
allowing older people to live independently and with a high quality of life [19].

2.3. Cloud Computing Based Systems

The Smart IoT Gateway sends data about the falls to Cloud Services, which stores it
in a document-oriented database (MongoDB). After a fall, the model is reconstructed and
trained via a cloud-hosted machine learning platform (BigML) with representational state
transfer (REST) and an application program interface (API), before being locally instantiated
in the gateway [20]. Fog computing, in terms of architecture, allows for the decentralized
distribution of different processing levels of data throughout the associated edge devices.
Smart solutions that can perform data processing and connect directly with one another
are more appealing for real-time applications than cloud computing systems [21,22].

Figure 3 depicts the general system architecture for fall detection, as proposed in [21].
The Internet of Things device, such as a mobile phone or wearables, can sense the envi-
ronment, gather, process, and transmit data. When the targeted person falls after a certain
amount of time, the mobile application can automatically call an emergency service or a
caregiver or family member. The data from the sensors are transferred to a cloud-based
data center. If the fall detection is done via the medical cloud service, the data are sent to
the machine learning web service, which is in control of classifying the situation over time.
This web service determines whether or not there has been a fall.

Figure 3. Fall detection system architecture general model.
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2.4. Edge Computing Based Systems

Edge computing, also known as mobile edge computing, is a modern and booming
computer paradigm that was founded recently [15]. Its ultimate goal is to transfer com-
putation from the cloud to the network’s edge. Edge computing, in other terms, will be
an efficient architecture for computations and storage close to the data source. Edge, as
well as Fog computing, can be used to detect falls [16]. Edge devices process data and are
located near other devices and users. On the other hand, fog nodes are located near local
networks and other system infrastructure. Edge computing also has positives in terms of
energy consumption, response time, scalability, mobility, cost, security, and other factors
that are similar to those of personal computing services. As a result, edge computing is
well suited to be used in conjunction with AI for the detection of human falls with more
accuracy and precision [23].

3. Fall Detection Methods and Technologies
3.1. Taxonomy of Current Methods

This section presents the different methods and technologies of fall detection systems
in previous studies as illustrated in Table 1. Noury et al. [24] place a strong emphasis on the
mechanics of a fall, as well as the methods for detecting it and the evaluation criteria which
rely on statistical analysis. They look at a variety of analytical methods for detecting falls,
including thresholds on sensor reading velocity, no movements detection, and the sudden
polarity inversion of the acceleration vector. Xinguo [5] focuses on identifying the methods
and basics of fall detection for old people. In this survey, fall detection methods are divided
into three categories based on the type of fall detector: wearable device, ambient device, or
vision based. The classification is further refined based on the type of analysis into motion,
posture, proximity, body shape, and 3D head movement. Perry et al. [25] classified real-time
approaches into three categories: techniques that solely measure acceleration, techniques
that integrate acceleration with other gyroscope data and static orientation to acquire fall
events. Hijaz et al. [26] presented the techniques used for detecting falls and irregular
movements of the elderly by monitoring their daily activities. In this research, the surveyed
techniques are classified into three categories: based on video analysis, based on acoustic
and ambient sensors, and based on kinematic sensors. Mubashir et al. [27] emphasized
in their review on different fall detection systems and their underlying algorithms, that
fall detection methods are divided into three classes: wearable device-based, ambiance
device-based, and camera-based. These classes are then refined into smaller ones based
on the type of accelerometry, posture analysis, audio/visual ambiance sensing, shape
modeling, and others.

Delahoz and Labrador [28] conducted a survey on fall detection and prevention sys-
tems and provide a qualitative comparison among them. They categorized the sensors into
two types, namely wearable and external sensor devices. The external sensors are further
split into vision-based or ambient-based systems. They also list the main aspects of machine
learning algorithms, e.g., feature extraction, construction, and selection. In addition, they
compared the time complexities of various classification algorithms, which are decision
trees, K-Nearest Neighbor, and SVM, and discussed model evaluation strategies. Some
major design concerns for fall detection and prevention systems, such as privacy, cost,
energy consumption, obstructiveness, and others, are also highlighted. A discussion of the
possible physical, psychological, and environmental risk factors that may lead to a fall is
presented. Schwickert et al. [29] perform a systematic review of wearable-sensor-based fall
detection systems. They look at whether previous research on fall detection used artificially
recorded falls in a lab setting or spontaneous falls in real-life scenarios.

Zhang et al. [30] look at research publications that employ vision sensors only. They
present some publicly available datasets on fall detection. They classified vision-based
approaches that use one or more RGB cameras, as well as 3D depth cameras. Automatic fall
detection systems were the main focus of the survey given by Pannurat et al. [31]. In this
study, the authors categorized the current platforms into two classes: wearable and ambient
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devices. Furthermore, they divided the classification techniques into two sub-categories:
rule-based and machine learning-based algorithms. Other topics of fall detection systems
were also covered, including sensor types and position, subject information, classification
algorithms, and performance evaluation. Furthermore, they evaluated different fall detec-
tion products in terms of size, weight and type of sensors and battery with their operational
functions; and then make predictions about future developments in the field.

Igual et al. [32] examined 327 research publications on fall detection, and divided them
into two main systems, namely context-aware systems and wearable devices including
smartphones. The context-aware systems are classified based on system components such
as cameras, pressure and infrared sensors, and microphones. Ward et al. [33] analyzed
relevant techniques based on the usage and implementation technology for detecting
fall events, warning end-users such as relatives of patients and healthcare workers for
assistance. They divide fall detection technology into three categories: manually controlled
devices, body-worn automated alarm systems, and devices that detect changes that might
lead to a fall. Luque et al. [34] presented a comparative study and major characteristics of
developed Android-based systems of fall detection. They argue that most smartphone fall
detection solutions rely on machine learning (pattern matching) or preset thresholds.

Casilari et al. [35] explored fall detection methods for Android-based smartphones.
They highlighted and compared various algorithms in previous studies, considering many
characteristics, e.g., proposed system design, applied sensors, methods and reaction in the
event of a false alarm.

From a data availability standpoint, Khan and Hoey [36] conducted a review of fall
detection approaches. They divided these approaches into two high-level classes based on
whether the available training data for falls are sufficient or not, not considering the type
of sensors employed or feature extraction or selection algorithms. Casilari-Pérez et al. [37]
presented a review paper on applying artificial neural networks (ANNs) in fall detection
systems that rely on wearable sensors. The authors of this study split fall detection methods
into three categories based on the features that are given to the ANN-based classifiers.
The first category includes features based on the raw data from the sensor measurement.
The second category includes fall detection features derived from the pre-processing
measurements. The last category contains fall features based on a combination of raw
sensor data and other features calculated from the sensor readings.

The authors of [38] conducted a comprehensive review of all papers, projects, and
patents on the topic of fall prediction, detection, and prevention from around the world.
The review divided the relevant works into categories depending on the technique they em-
ployed, their types, and their accomplishments. The approach proposed by Ribeiro et al. [39]
is based on IoT devices deployed in people’s homes. The suggested non-wearable solution
is non-intrusive and can be used in a variety of settings, including residences, hospitals,
rehabilitation centers, and homes for the elderly. Edge, fog, and cloud are all part of the
solution’s three-layer processing architecture. For human fall classification, an artificial
intelligence model based on ANNs and a mathematical model based on the Morlet wavelet
are both employed and contrasted. The results demonstrated that combining both models
is practical and beneficial to the system, with a 92.5% accuracy and no false negatives.

Table 1. Taxonomy of main fall detection methods with different sensing devices.

Authors Year Methods

Noury et al. [24] 2007 Using analytical methods with thresholds of accelerometer sensor readings.

Xinguo [5] 2008 Categorized methods based on wearable, computer vision and
ambient devices.

Perry et al. [25] 2009 Using techniques that measure only the acceleration or combined with
gyroscope and static orientation data for fall detection.
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Table 1. Cont.

Authors Year Methods

Hijaz et al. [26] 2010 Categorized methods into vision based, ambient-sensor based, and
kinematic-sensor based approaches.

Mubashir et al. [27] 2013 Three main classes, namely wearable devices based, ambience device based,
and vision based.

Delahoz and Labrador [28] 2014 Categorized methods into wearable devices and external sensors that includes
vision based and ambient sensors.

Zhang et al. [30] 2015 Utilizing vision-based methods with RGB and 3D depth cameras.

Igual et al. [32] 2013 Categorized into context-aware systems and wearable devices
including smartphones.

Ward et al. [33] 2012 Dividing the applied technologies based on manually operated devices, body
worn automatic alarm systems and devices that sense the high risk of falling.

Casilari et al. [35] 2015
Systematic classification and comparison of various proposed detection

algorithms with respect to the system architecture, sensors, methods and false
alarm cases.

Khan and Hoey [36] 2016
Two high level categories have been defined: sufficient training data for falls or

insufficient (or no training) data for falls, without considering sensor types
and/or feature extraction/selection methodologies.

Casilari-Pérez et al. [37] 2019

Split methods based on the features that are used to feed the neural network
classifiers into three categories: (1) Raw data obtained, (2) Features derived

from the sensor readings, and (3) Combination of the raw data and other
derived features.

Ribeiro et al. [39] 2022
Using IoT framework, human fall classification was achieved by using ANNs

model and a mathematical model of the Morlet wavelet, based on
measurements of two accelerometers, a microphone and a doppler sensor.

3.2. Fall Detection Sensor Types

Lapierre et al. [40] enumerate 10 various technologies, including inertial sensors
and locating systems, vision sensors, sound and infrared sensors, pressure sensors, etc.
These technologies are divided into three main classes based on the hardware resources:
wearable technologies, ambient technologies, and a mix between wearable and ambi-
ent technologies together. Inertial sensors (e.g., accelerometers) and locating systems
(e.g., Global Positioning Systems) are two forms of hardware that are used in wearable
technology. Vision sensors and sound sensors like cameras and microphones, respectively,
are examples of ambient technology.

Sensors that assist fall prediction and detection are divided into three categories by
Mozaffari et al. [41]: motion sensors, physiological sensors, and environmental sensors. The
accelerometer is the key sensor in the motion sensors group for detecting falls by detecting
the variation in body acceleration [42]. The accelerometer measures the rate at which an
object’s velocity changes with respect to time in m/s2 or G unit in three dimensions: x, y
and z, i.e., acceleration. In case of the body acceleration exceeding the predefined threshold
value for the fall, there is a possibility of a fall. It is a straightforward approach to detecting
a fall using threshold values of the measured acceleration. The gyroscope, on the other
hand, is a mechanical device, which monitors angular motion around x, y, and z-axes.
The gyroscope detects falls forward/backward or left/right by measuring orientation in
pitch, roll, and yaw. Magnetometers detect the direction of a fall event by measuring the
geomagnetic field. Physiological sensors monitor the body’s vital indicators [43].

In the aftermath of a fall, vital signs are usually altered quickly due to shock. The
physiological changes can be used to establish the likelihood of a fall. Electrocardiography
is a technique for recording electrical signals generated by the heart muscle and displaying
the state of the heart in various scenarios [44]. The procedure of measuring blood volume
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changes is known as photoplethysmography. Spirometers are diagnostic tools that measure
lung capacity and airflow. Galvanic skin response is a component of the human sympathetic
nervous system that reveals electrical features of the skin. Blood pressure is measured in
systolic and diastolic units, with systolic being the highest and diastolic being the lowest.
Furthermore, sensors can track the blood’s oxygen saturation. Electrooculography is a
technique that uses the retina’s resting potential to quantify eye movement. Physiological
signals can be easily recognized, such as body temperature, or they can be detected more
complexly, as indicated above. A system of smart environmental sensors is used in smart
environments to detect falls by voice, light intensity changes, and distance between the body
and the floor. In [45], this study proposed radio signals of Wi-Fi connections for detecting
falls from the physical components in the environment. In addition, environmental sensors
are categorized as vision-based sensors. A fall event can be identified by analyzing RGB
images and video streams from 2D and 3D cameras [46–49], based on color and/or thermal
postures processing.

Sensor positioning is still an important topic, as mentioned in previous research [50].
For body position [51], body area sensors are placed in a predetermined area such as the
chest, hands, and pocket of a shirt. Environmental positions for sensor placement include
the bed, the floor, the walls, and event items such as a tap or a handhold. Some integrated
sensors can be embedded in platforms like smartphones [52–57] or wristwatches [58,59].
Wi-Fi, Bluetooth [60–62], ZigBee [63,64], and other communication channels [65,66] are
used to connect with the sensors.

4. Fall Detection Machine Learning Techniques

Machine learning is usually classified into unsupervised learning and supervised
learning. Supervised learning is increasingly being utilized for fall detection in two stages:
training and validation. The following are some of the most popular machine learning
methods to detect a fall:

• Artificial Neural Network (ANN): Its general architecture includes three main layers,
namely inputs, a hidden layer, and outputs. The hidden layer links between the inputs
and outputs layers. It consists of multi-internal layers. Training of this algorithm is
complex due to the nature of hidden layers as a black box. It becomes unobvious
to clarify how a fall event occurred [67,68]. The ANNs have a high tolerance for
heterogeneous data with precise results, making them suitable for detecting falls,
particularly in the fog-computing layer used on smart devices to save the required
high computing resources, e.g., graphical processing units (GPUs).

• Support vector machines (SVMs) are algorithms that divide multidimensional data into
two categories. SVM is simpler than ANN for small and high dimensionality datasets.
It is recommended for the edge-computing layer, specifically on fall postures [67,69,70].

• Decision Trees: This algorithm divides data into two classes of either fall or non-fall,
according to the path taken through a tree-like graph according to a set of conditions.
Learning is clear and simple in this algorithm, making it suitable for investigating
the causes of falls, particularly the physiological data to classify the patterns and
possible risk of falls [71,72]. For instance, changes in blood pressure or oxygen levels
are correlated to the falling.

• Naive Bayes: It is a relatively straightforward algorithm with high accuracy and
performance. It needs less memory and time requirements to train the classifier. As a
result, it can be used to detect falls directly on edge devices [73].

• Deep Learning: The Internet of Things (IoT) includes several sensors that can continu-
ously generate big data with velocity, volume, and variety [74]. The ANN with many
hidden layers was developed as a deep learning method to process large amounts
of data [75]. Unlike traditional machine learning algorithms, deep learning does not
require external feature extractors. However, it takes a long time to train a big dataset,
while a short time for the process of prediction. Similar to neural networks, processing
still appears to be a black box and is difficult to comprehend [76].
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5. Discussions

In this section, we highlight the current benefits, obstacles and limitations related to
fall detection systems based on machine learning methods and IoT technologies, providing
suggested solutions and relevant future trends in this field as follow.

5.1. Public Fall Datasets

The perceptron was fed using extracted features of the obtained data in prior Multi-
Layer Perceptron (MLP) investigations. Recent research has suggested that raw data
acquired from wearable sensors be fed directly into neural network classifiers [37]. This
eliminates the challenge of selecting a suitable feature extractor or the need for additional
preprocessing steps before utilizing machine learning models to detect falls. As a result, no
computing expense is required to identify data features, and smart detector implementation
can be simplified by using inexpensive wearable devices, such as smartwatches.

Raw data, on the other hand, is not necessarily the greatest place to start when
building intelligent classification systems. The use of public and open access datasets as
benchmarking tools for evaluating algorithms is on the rise. In any event, it is important to
emphasize the lack of an internationally agreed benchmarking dataset for evaluating and
comparing FDSs. With only four studies employing it, the SisFall repository [77], one of
the largest datasets for the evaluation of FDSs, is the most popular dataset.

Only five of the 15 studies use several repositories to validate their findings, with
Khojasteh et al. [78] being the only one to use three public datasets to assess their suggested
architecture: DaLiaC [79], UMAFall [80], and Epilepsy [81]. However, a proper evaluation
of such systems is still questionable with experimental difficulties. The majority of previous
studies are systematically tested on falling volunteers because of the inherent difficulty of
justifying detection systems with real falls by elderly people (the main target individuals of
these studies). A study [82] showed significant differences between the mobility patterns
of real-life falls and those of simulated falls.

In [83], the authors demonstrated how person-specific information like gender and
age may be used to improve the modelling process of a deep neural network classifier for
increasing the overall system’s fall prediction effectiveness. In [84], the effect of weight
and age on the accuracy of the detection system of falls event is explored, and the results
showed that the detecting efficacy improves with age. Falls are merely imitated by the
young subjects, like in previous circumstances. As a result, the ANN is trained on falls
caused by teenagers only. The results demonstrated that if the network is trained using
daily activities acquired from the elderly, young participants’ falls may be distinguished
more effectively. This is simply explained by the fact that the daily activities carried out
by youth people are often faster and/or more effective than those carried out by older
persons [37]. As a result, it is more difficult to separate the dynamics of juvenile ADLs from
those connected with a fall. This finding demonstrated the difficulties of extending results
from healthy and young volunteers to the elderly people. However, it also suggested
that fall detection in the younger volunteers may be viewed as a worst-case scenario for
evaluating a particular detection method of falls.

5.2. Fall Detection Sensors and Devices

The great majority of the proposals surveyed in this review research rely solely on
accelerometer readings for detection. Only in ten of the studies does the system employ
the information produced from the gyroscope measurements (as additional inputs) [37].
Given that inertial measurement units (IMUs) have a combination of accelerometers and
gyroscopes as standard, the computational times based on hardware resources should be
minimal, especially the signals from the gyroscopes in the detection decision. The system-
atic examination of the benefits brought by integrating the gyroscope and accelerometer
readings is still an open question in the research field. Recent research with CNNs has
shown that using gyroscope signals can improve discrimination reliability when compared
to solely using accelerometer measures [69].
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One of the current problems with portable fall detection sensors is the long delay
time for getting the appropriate assistance to arrive at the site where the fall happens [85].
The injured person’s life may be lost as a result of this delay before getting the necessary
assistance or medical treatment. Therefore, there is a trend to develop a reliable video-based
fall detection sensor that will eventually exceed existing portable fall detection sensors
as follows. The video-based sensor will be cost-effective and more accurate in detecting
falls to provide fast response detection of a fall; consequently, the delay time to provide
the necessary assistance to the injured person will be reduced. Moreover, it will protect
people’s privacy by using only the binary image of the person. Furthermore, older people
will be more comfortable without wearing portable fall detection devices all the time during
their daily activities [85]. However, it is not always the ideal case, especially for elderly
people with cardiac and breathing disorders, because there is always a need to monitor all
their vital signs via wearable sensors.

5.3. Smart Detection Methodologies

Fall signals are simply measured by body sensors, e.g., accelerometers, and sent to an
external device for intelligent decision-making processing, like a PC with a wireless module
such as Bluetooth, as presented in [86]. This external device is responsible for analyzing
the acquired signals of the accelerometer sensors and, with a developed neural network
classifier, the decision of fall detection is taken. In [87], the authors built a framework using
a field-programmable gate array (FPGA) kit to apply the ANNs classifier to develop an
embedded vision-based detection system of falls. A digital signal processor (DSP) was
utilized to accelerate the ANNs functionality in the context-aware system, as described
in [88]. A bio-inspired optical sensor has been used in this study. However, embedded
wearable detection systems and solutions based on FPGAs and DSPs are still under de-
velopment and not implemented as realized commercial systems yet. In most previous
studies, wearables are just utilized for sensing and collecting data in the experiments.
After finalizing the experimental phase, the recorded sample signals are extracted from the
datasets for training and testing the proposed algorithm, either in a hardware or a software
form using MATLAB and/or other programing languages like C++.

Comparing neural network models with other machine learning and/or thresholding
techniques is usually focused on the performance of the discrimination function only,
while other technological features are ignored [37]. Therefore, physical characteristics of
operation, e.g., memory size, consumption of energy and processor capacity, and running
time/speed may affect the outcome performance metrics to evaluate these smart algorithms
successfully. The execution time for the training phase of ANN models was estimated to be
higher than other methods in a comparative study of six machine learning algorithms [89].
In contrast, the computational time of the testing phase for ANN models can have the same
value as, or be even lower than, other methods to obtain the detection decision.

5.4. Challenges and Future Research

In our daily lives, a fall might occur while doing complex tasks like cycling, therefore
it is not as straightforward as a fall while walking. The dataset of complicated activities is
multi-dimensional, containing dependent and independent information in many dimen-
sions with different formats. The edge, fog, and cloud layers of an IoT architecture provide
processing, storage, data management, and decision for fall cases. Three steps have been
proposed for a diagnostic system of falls [46]: prediction, prevention, and detection mode,
with each stage determining which layer is appropriate. Stages should be implemented
on each layer utilizing protocols, energy efficiency, and device-to-device and layer-to-
layer transmission techniques, as well as specialized learning algorithms for each layer. A
smartphone, for example, can detect falls on the edge and in the fog computing layers.

Because a wearable processor, such as a wristwatch, is currently too weak to execute
advanced learning algorithms effectively, data are sent to another device situated in fog.
Without the need of additional layers, high-performance processors could be proposed to
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identify the falls by processing measured data and authenticating fall occurrences at the
edge. Smart sensors are more complicated than regular sensors because they contain small
microprocessors, noise filters, transducers, and amplifiers. Thousands or millions of them
are spread in an IoT environment, and they must be logically connected in order to supply
energy, communicate with one another, increase sensor lifetime, and overcome the shortage
of processing and storage capacities. Even though many research studies have been carried
out on sensor placement, which might be static or dynamic, this aspect still remains one of
the most difficult subjects in the field.

Another method for monitoring is the implanted sensor that is static and within
the body [89]. Sensors should be protected from unexpected impact, have a network
connection, and be pleasant to wear in both static and dynamic environments. Prediction is
crucial in determining when a fall event will occur. The importance of abnormal trunk, leg
standing duration, and body histograms in predicting fall occurrences has been examined.
Future studies might look into dizziness, epilepsy, hypertension, and cramping (muscle
contraction). The most significant component of the prediction system is understanding
fall risks, based on physiological parameters such as heart rates and blood pressure of
elderly population [21,40]. The predictions stage’s outputs are utilized to create smarter
IoT-based settings.

6. Conclusions and Outlook

In this article, we demonstrated many fall detection algorithms, methods and systems
based on IoT technology in previous studies. These proposed fall detection systems
(FDSs) mainly used artificial neural networks as automated decision-making algorithms to
identify fall situations using the measured readings of sensing devices. The advantage of
smartphones and/or smart watches has been widely exploited to build a wearable FDS,
because they already have the required built-in hardware resources, such as accelerometers
and gyroscopes with wireless mobile communications, e.g., Wi-Fi and 5G networks. Other
physiological signals, namely heart rate, electromyogram (EMG) and blood pressure have
been also applied for FDSs in some particular research works.

Smart devices like smart phones and watches provide a good opportunity to realize
the developed FDSs based on the available hardware resources and wireless sensors in IoT
environments. Evaluating fall datasets generated by different sources and accelerometers
may contribute to the robustness capabilities of the proposed detection algorithm, because it
can deal with variable resolution and sampling rates, verifying its generality. Furthermore,
employing artificial intelligence techniques presents the main module of current FDSs.
Nevertheless, a pre-processing stage of sensing data, such as thresholding, is needed to
reduce error possibilities in identifying fall cases by machine learning algorithms. The
computational and power costs of implementing machine learning techniques for fall
detection should be kept at minimum levels during the design and implementation stages
of practical FDSs.

Moreover, there is a new trend for applying deep learning techniques and convolu-
tional neural network (CNN) architectures [90] as fall detection algorithms, because of their
advantages over classical machine learning methods such as automated feature extraction
at different levels with external extractors. Additionally, lightweight deep models have
been proposed [91] for mobile-based applications. That presents potentially a new version
of smart IoT-based classifiers for detecting fall accidents of elderly patients.
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