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Abstract: With the explosive growth of multimedia services and the continuous emergence of
new space tasks, the spatial task scheduling timeliness problem is of great concern. The high
computational cost of existing task scheduling methods is not suitable for the time-varying scenarios
of space-based networks. This paper proposes a scheduling optimization method containing an
atomic task offloading model based on maximum flow theory and a dynamic caching model. Firstly,
the model calculates the task offloading upper limit in the satellite network based on the maximum
flow theory to achieve the maximum volume of offloaded tasks to improve the resource utilization of
idle satellites. Then, we design onboard task offloading and buffer optimization algorithms to reduce
the request load of single-satellite atomic tasks. The method improves the overall computational
performance and timeliness of the satellite network and reduces the waiting time of atomic tasks
competing for resources. Finally, we analyze the time complexity of the proposed method and
construct a simulation experiment scenario. The performance comparison results with various
baseline models show that the proposed method has certain time complexity and task execution
timeliness advantages.

Keywords: task offload; task cache; maximum flow; satellite network; atomic task

1. Introduction

Space-Terrestrial integration [1] is one of the basic national defense strategies for all
countries in the future. As an important national information infrastructure, the integration
of heaven and earth can realize the real-time interconnection of multifunctional satellites
or satellite groups and closely integrate the resources of the sky, air, earth, ships, and
islands. The future development of the Space-Terrestrial information network will need
to cross the sky and earth platforms to realize the integrated management of space and
earth resources. The existing Space-Terrestrial network management system is mainly
completed on ground control center [2]. The ground control center mainly focuses on
situational awareness, navigation, positioning, and satellite communication. The spacecraft
are networked through various satellite networks with different functions to achieve global
coverage of information interaction and mission processing capabilities [3]. As shown in
Figure 1, the network control center is the pivot for directing the work of the satellites.
The control center uses multiple computers to command and monitor the operation of the
satellite, which responds to various commands from the satellite, arranging satellite work
procedures, controlling satellite operating attitude, directing sensor work and information
transmission, controlling onboard instruments and ground receiving stations to work
cooperatively, etc. The various tasks on the space-based network are first broken down
and calculated at the control center [4,5]. The instructions are sent to the satellite through
the ground base station when there exists a visible time window between the satellite and
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the ground base station, then the satellite performs the relevant operations after receiving
the instructions to complete the tasks. As shown in Figure 1, blocks with different colors
represent the different tasks in the request queue received by satellite. With the explosive
growth of multimedia services and the emergence of new space missions, many requests
can in turn be sent to the satellite when there is a visible time window between the satellite
and the ground base station [5]. Therefore, it is difficult to guarantee the efficiency and
real-time performance of existing space-based management methods.

Figure 1. Overview of the task offloading method.

With the gradual increase in reliance on space-based information network services
across industries and escalating and increasing commercial and military demands, “rapid
response” and “efficient service” are fundamental aspects that require attention [5]. In spa-
tial information networks, it is challenging to achieve fast resource allocation and high
resource utilization with scarce dynamic satellite resources without reliable technical sup-
port for resource management [6]. With the explosive growth of multimedia services and
the emergence of new space missions, the existing spatial information system management
methods can no longer satisfy the high efficiency and real-time multitasking requirements
for improving the response speed of satellite networks and increasing inter-satellite re-
source utilization [7]. With the rapid development of edge computing and the gradual
maturity of related methods, most researchers are increasingly applying the ideas of edge
computing to satellite networks.

Task offloading is a crucial technology for edge computing. Task offloading trans-
fers terminal tasks to the edge cloud environment and provides resources for resource-
constrained devices. Task offloading can be summarized in two phases. First, tasks with
high resource requirements are reasonably assigned to proxy satellites with sufficient re-
sources for processing [8]. Then the computation results are retrieved from the proxy
satellites. Different factors can affect the whole process, such as radio channel communi-
cation, backhaul connection quality, device performance, cloud server availability, etc. [9].
Therefore, the key to resolving the task offloading problem is to specify appropriate of-
floading decisions that measure the performance of the approach through time delay and
energy consumption. The merit metrics of the offloading strategy can be determined
based on the time consumption metrics of the scheme, which we call the minimizing cost
offloading decision.

There are still three challenges in solving the optimization problem of atomic task
offloading in spatial information networks:
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1. Although the time cost consumption of the traditional method is low, its performance
cannot satisfy the high time-effective requirements for offloading atomic tasks in
Spatio-temporal dynamic characteristics network environments.

2. The traditional satellite task offloading method does not consider the concept of inter-
satellite collaborative computing, the inter-satellite resource coordination capability
is low.

3. There is no optimization method for on-board task cache.

This paper proposes an optimization model to address the Offloading and Caching of
satellite atomic tasks based on the Maximum Flow method (OCMF) to address the above
problems. The method mainly includes three sub-models: the maximum task flow transmis-
sion model, the task offload optimization model, and the task cache optimization model.

To solve the problem of calculating the maximum number of unloaded atomic tasks
for the joint transmission of multiple low-medium orbit satellites, the maximum task flow
buffer model limits the atomic tasks scale upper limit that can be unloaded per satellite,
ensuring the maximum number of unloaded tasks in the local satellite network. Task
offloading optimization mainly includes two aspects: the optimization of task offloading
from low-medium orbit satellites to high-orbit satellites, and the other is the optimization
of task offloading from high-orbit satellites to low-orbit and medium-orbit satellites with
idle resources. The model reduces the long-term waiting of atomic tasks so that when the
satellite network benefits the most, the waiting time is consumed in the least. The task
cache optimization model avoids the repeated calculation of many repeated atomic tasks
and reduces the atomic task calculation time. Therefore, this paper mainly considers the
maximum unloading of satellite atomic tasks and the full utilization of satellite resources,
the reduction of the atomic tasks waiting time, and the reduction of atomic task calculation
time, which provide new ideas for improving the efficiency and real-time performance of
atomic tasks in satellite networks.

Our contributions can be briefly summarized as follows:

1. We propose the OCMF model, which divides the original problem into three parts and de-
signs the maximum flow transmission, task offload, and task cache optimization models.

2. We introduce the maximum flow calculation method to increase the number of un-
loaded atomic calculation tasks in the satellite network.

3. We propose a method for high-orbit satellites to offload tasks to idle medium-earth
satellites, which reduces the computational pressure of high-orbit satellites and makes
full use of the remaining idle satellite resources.

4. We have analyzed and compared the performance of various algorithms. The OCMF
method has certain advantages in terms of time complexity and task execution timeliness.

2. Related Work

With the rapid development of edge computing technology, task offloading has become
a widely studied problem. Research on task offloading decisions can be divided into three
categories. Task prediction decision methods based on deep learning, task decision methods
based on reinforcement learning and task decision methods based on deep reinforcement
learning. However, the task decision based on the deep learning method can predict the task
state change in period and update the decision of task unloading plan in time. However,
these method requires a large amount of computing power and more training data and the
computation is time-consuming. The method obviously cannot satisfy the requirements for
some scenarios with real-time requirements. Researchers have proposed a reinforcement
learning method for scenarios with high requirements on timeliness. The reinforcement
learning method can solve the problem of long computation time, but it requires a long
training time and a relatively long excitation function. It is challenging to initiate the
values of the parameters and local optima can quickly appear. In addition, reinforcement
learning methods do not learn new data well as the scene changes rapidly. To address these
problems, researchers have proposed a deep reinforcement learning model by combining
the advantages of the above methods. The deep reinforcement learning model solves the
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problems of excessive time consumption and low accuracy to a certain extent, but the
algorithm still has some drawbacks in time consumption for those sensitive to timeliness
and real-time scenes.

To explore the effective offloading decision and resource allocation methods of mobile
edge computing, Wang et al. [10] developed a collaborative computing system and designed
a new computing offloading strategy based on Q-learning to achieve the optimal resource
allocation and offloading scheme. Gao et al. [11] Use Lyapunov optimization technology to
transform time slots and propose an online algorithm in each time slot to determine the
task offloading strategy. Liu et al. [12] proposed an online energy-saving task allocation
and computing offloading strategy, taking into account service delay constraints, etc.,
adaptively determining task allocation and computing resource allocation. Sun et al. [13]
Proposed an efficient Lyapunov online algorithm to perform joint task offloading and
dynamic data caching strategies for computing tasks, reducing-edge computing latency,
and energy consumption. Zhang et al. [14] proposed deep reinforcement learning to solve
the offloading problem of cluster multi-service nodes and multi-dependency of mobile
tasks in a large-scale heterogeneous mobile edge computing environment. Lu et al. [15]
proposed a device-level and edge-level task offloading joint optimization scheme based
on deep reinforcement learning, which achieved a good balance between task delay and
task energy consumption. Yan et al. [16] taking the choice of the target server and the
amount of data unloading as learning goals, a deep reinforcement learning strategy based
on multi-agents to solve the problem of multi-agent environment instability.

Due to the strong coupling between combined offloading decision and task execution,
the efficiency is very low when the numerical scale is large. Lu et al. [17] proposed a deep
reinforcement learning framework based on the deep reinforcement learning structure.
Yan et al. [18] proposed a random mixed integer nonlinear programming problem to
optimize task offloading decisions, flexible computing resource scheduling, and wireless
resource allocation. From the perspective of offloading decisions to maximize revenue.
Zhang et al. [19] proposed a mobile carrier-based IoT edge cloud computing offloading
scheme. Use the sensing device to generate tasks and transfer the tasks to the device,
and then the device can decide to calculate the task locally on the MEC server or in the
cloud center. In order to solve the problem of the rapid increase of vehicles and the in-
vehicle terminal can not achieve efficient calculation, Gavras et al. [20] proposes a task
offloading strategy for an edge-computing architecture based on reinforcement learning to
compute for vehicular networking. Wang et al. [21] proposed task offloading algorithm
effectively optimizes task latency and computational resource consumption in a multi-user
and multi-server airborne edge computing scenario. Sun et al. [22] proposes a mobile
computing edge-based offload solution for Telematics tasks from a global perspective to
minimize the average time to complete a task. Yang et al. [23] achieves efficient unloading
of vehicle tasks from a game-theoretic perspective and considering the time delay con-
straint of task unloading. Xiao et al. [24] proposed a mobile-aware partial task offloading
algorithm to improve the utilization of vehicle computing resources. Raza et al. [25] A
introduces an emerging IoT architecture in the blockchain and implements algorithms for
task offloading and resource allocation in the form of smart contracts in the blockchain,
ultimately optimizing resource allocation in the IoT. Xiaoa et al. [26] verifies that task
offloading optimization is a potential game problem and solves it with a distributed algo-
rithm of Lagrange multipliers. Lan et al. [27] considers the limited computational resources
and battery capacity of existing mobile devices resulting in the inability to meet the demand
of low computational power and latency, the authors use a potential game model to solve
the distributed task offloading problem. Li et al. [28] proposes to describe task offloading
as an integer for network load and transmission interference problems. The nonlinear
programming problem is a task offloading algorithm based on a differential evolution-
ary algorithm. Chen et al. [29] proposes an algorithm that considers completion time
constraints and task dependency requirements and schedules all tasks from different appli-
cations in a priority queue. The aim is to protect low-energy mobile devices and keep them
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alive for as long as possible during the allocation process to establish an offloading policy.
Fan et al. [30] considers quantitative user experience as an optimization goal for offloading
decisions and develops an efficiency-based offloading decision algorithm. Feng et al. [31]
proposes two computational offloading algorithms, namely binary offloading and partial
offloading. Binary offloading offloads the task as a whole to the mobile edge computing
server, and the server selects only the best offload location, thus reducing the total latency
cost and energy consumption. Liu et al. [32] proposes an efficient and low-complexity
offloading scheme. A series of reconfigurations based on reconfiguration linearization tech-
niques are performed and then programmed by further utilizing the product alternating
direction method (ADMM) and the convex function difference method (DC). The authors
propose a parallel optimization framework and obtain a more favorable TN with two
orders of magnitude time complexity lower than the centralized optimization algorithm.
Wang et al. [33] investigates a potential game called multitasking pair offloading (POMT).
Liu et al. [34] proposes a two-step method that aims to satisfy the delay constraint while
minimizing the energy consumption of IoT devices, ultimately reducing the offloading
energy for a given set of delay-constrained offloading tasks. Shan et al. [35] focuses on
offloading tasks on a two-tier mobile edge computing environment to minimize the total
energy consumed by users; Mazouzi et al. Pham et al. [36] proposes an energy-efficient
and deadline-aware task offloading strategy based on channel constraints. It is to minimize
the energy consumption of mobile devices while satisfying the constraints of mobile cloud
workflow; Liu et al. [37] proposes an algorithm called JOBCA to obtain a feasible solution
to the original problem by iteratively solving the urban road and winding road problems.
Li et al. [38] investigates task offloading from a matching perspective, aiming to optimize
the total network latency. Tucker et al. [39] proposes a load-aware MEC offloading method.

To improve task offloading timeliness and maximize revenue in the spatial informa-
tion networks with time-varying characteristics, we propose a secondary task offloading
and caching model based on maximum flow allocation. Firstly, the model calculates the
maximum flow that can circulate on the time-varying network. Moreover, the satellite
nodes in the network calculate the task cache based on the high-orbit satellite atoms and
transfer the tasks that need to be uploaded to the high-orbit satellite based on the maximum
flow limit. When the satellite task load is high, the task will be offloaded and the execution
results are cached. When a high-orbiting satellite exceeds the computational tasks that
can be loaded, the tasks are offloaded from the high-orbiting satellite to a low-orbiting or
medium-orbiting satellite. Meanwhile, the high-orbiting satellite can quickly complete the
task computation and response, improving the overall resource utilization.

3. Task Offloading Model

Future space-based network systems will face many resource request tasks. During the
mission planning process, all missions are decomposed into indivisible atomic missions,
which means that satellites will receive many atomic mission requests. As a result, a single
satellite receives more resource requests for atomic tasks than it can provide. Most atomic
missions would need to wait for other atomic missions to be executed, which causes high
latency and low timeliness. High orbiting satellites have a wide coverage area and the
use of inter-layer link technology allows high orbiting satellites to exchange data with
targets within their coverage area. Therefore, this paper proposes to transfer individual
satellite missions to high-orbiting satellites and use the powerful computing and storage
capabilities of high-orbiting satellites to help individual satellites accomplish coordinated
resource allocation to solve the problem of inefficient traditional mission execution.

Therefore, the critical problem to be solved in this paper is how to quickly offload
the tasks to high-orbit satellites when the satellite receives multiple tasks. Although the
resources and capabilities of high-orbit satellites are higher than those of medium-orbit
and low-orbit satellites, the number of high-orbit satellites is relatively rare. If the number
of missions exceeds the upper limit that the high-orbit satellites can accept, the high-



Appl. Sci. 2022, 12, 3319 6 of 20

orbit satellites need to offload the mission to the medium or low-orbit satellites with
free resources.

Satellite tasks can be decomposed into atomic tasks. The so-called atomic tasks
are the smallest executable tasks that cannot be decomposed any further. Atomic tasks
include resource requirements and task execution time. If a high-orbiting satellite has
already offloaded the corresponding atomic task, then there is no need for a low-orbiting
or medium-orbiting satellite to repeatedly offload the corresponding atomic task.

3.1. Traffic Model

Suppose a given satellite network G = (V, E, T), V denotes all satellites, E denotes
the visible time window that can be established between satellite nodes in the network
G at time t. If satellite nodes u and v can establish a time window, then this implies
that an edge (u, v) exists between two satellites. Otherwise, it is considered that no edge
exists. Suppose the task Q = {1, 2, . . . , q}. To describe the problem easily, we assume
that the number of satellite antennas is 1. That is, only one communication link can be
established between satellites at a certain time. After the inter-satellite visible time window
is successfully established, an atomic task needs to continue to occupy the time window,
and other tasks cannot interrupt the existing atomic task until the atomic task is completed.
Let Psi represent the data transmission power of satellite si, and the data transmission rate
ru,v between satellite u and satellite v in slot t can be defined as follows,

ru,v = wu,v log2

(
1 +

Pshu,v

σ2

)
(1)

Among them, σ2 represents noise power, wu,v represents the channel bandwidth
between satellite u and satellite v, hu,v is a constant which denotes the channel gain be-
tween satellites.

3.2. Local Calculation Model

Satellites generally have a certain degree of computing power. We define the time
consumption of low-medium orbit satellites as follows,

Tlm
s,q =

nq

alm
s

. (2)

As shown in Equation (2), Tlm
s,q denotes the time required for the atomic mission

to calculate locally on the satellite s, nq denotes the number of computing resources re-
quired for atomic tasks, alm

s denotes the computing power of the low-medium orbit satel-
lite’s CPU. Similarly, the time consumption of high-orbit satellites can be defined as the
following formula,

Th
s,q =

sq

ru,v
+

nk

ah
s

(3)

where Th
s,q denotes the time required to calculate task q on the high-orbit satellite s, nq

denotes the number of computing resources required for task q, ah
s denotes the computing

power of high-orbit satellites, sq denotes the data volume of task q.

3.3. Atomic Task Cache Model

We mainly cache atomic tasks received by satellites. The atomic task cache stores
the calculation results of high-frequency atomic tasks on high-orbit satellites. The low-
medium orbit satellite issues an atomic calculation task offload request. If the atomic
calculation task on the low-medium orbit satellite has been cached to the high-orbit satellite,
the low-medium orbit satellite does not need to offload the atomic calculation task to
the high-orbit satellite repeatedly. We only need to transmit the cached result to the
low-medium orbit satellite.
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In Definition 1, We define computing task cache decision variables to determine
whether to cache an atomic task to a high-orbit satellite.

Definition 1. Given a satellite network G = (V, E, T), the atomic task request queue Q received
by the satellite s, s ∈ V, and qi indicates a atomic task requests. Then at a certain moment t, ρs

qi
(t)

denotes that whether the calculation result of qi has been cached, it has a value range in {0, 1}.

The Definition 1 is about the cached decision variable range, where ρs
qi
(t) = 1 means

that the calculation result of atomic task qi has been cached, on the contrary, ρs
qi
(t) = 0

means that the atomic task qi is not cached and needs to be calculated locally. There-
fore, the atomic calculation task cache variable on the satellite s can be expressed as
ρs

Q(t) = {ρs
q1

, ρs
q2

, · · · , ρs
q}.

The use of inter-satellite links can achieve near-real-time data transmission between
high-orbit satellites and low-medium orbit satellites. Therefore, we do not consider the
time consumption of data transmission between high-orbit satellites and low-medium orbit
satellites. In addition, we do not consider packet loss in the task queue, because our goal is
to achieve minimal time cost consumption while completing all tasks.

3.4. Atomic Task Offloading Model

To avoid the repetition of the same tasks throughout the satellite network, we design
an offloading model for the atomic task queues on the satellite.

As shown in Definition 2, We first define the offloading decision variable on the satellite s.

Definition 2. Given a satellite network G = (V, E, T), the atomic task request queue Q received
by satellite s, s ∈ V, qi represents one of the atomic task requests. At a slot t, decision variable ϕs

qi
(t)

will be offloading to the high-orbit satellite or not have a value range in {0, 1}.

There are two main stages in the offloading decision of satellite tasks. ϕs
qi
(t) = 0

denotes that the current task is calculated locally. ϕs
qi
(t) = 1 means that the task will be

offloaded to the high-orbit satellite for execution. Therefore,the decision variable on the
satellite s can be expressed as ϕs

Q(t) = {ϕs
q1

, ϕs
q2

, · · · , ϕs
q}.

Then we describe the calculation of the number of tasks remaining in the on-star task
queue, taking into account the unloading of duplicate tasks in the task.Assuming that the
atomic task request queue received by satellite s is Qs = {q1, q2, . . . , qi}, some atomic task
requests set ξ that processed by satellite s at time t is expressed as Qξ

s (t), then the remaining
atomic tasks waiting to be executed can be expressed as

Qrest(t) = Qs(t)−Qξ
s (t) (4)

If an atomic mission already exists on a high-orbiting satellite, then the same atomic
mission on a low- orbiting or medium-orbiting satellite does not need to be repeatedly
offloaded, so the atomic computing mission to be offloaded is represented as follows,

Qo f f loading(t) = Qrest(t)−Qrepeat(t), (5)

where Qo f f loading(t) denotes the atomic task queue that needs to be offloaded at time t,
Qrest(t) indicates the atomic task queue waiting at time t, Qrepeat(t) denotes the atomic task
queue that has been buffered on the high-orbit satellite at time t.

Equations (4) and (5) give the process and calculation for updating the on-satellite task
queue when a task is unloaded in the paper. The task queue remaining to be executed on
the satellite is the original task queue minus the task queue that has already been executed
on the satellite. Meanwhile, the tasks need to be calculated before they can be offloaded to
ensure that all pending tasks have been executed and that the calculation results are kept.
If there are tasks that have already been executed and the computation results have been
retained, these tasks will not be offloaded.
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3.5. Problem Formulation

To simplify the overly complex problem, we assume that the transfer rates are the same
between all low-orbiting and medium-orbiting satellites and the transfer rates are the same
between all high-orbiting and low-medium orbiting satellites. Furthermore, all atomic
computing tasks on the low-orbiting and medium-orbiting satellites can be transferred
to the high-orbiting satellites. Meanwhile, we assume that there are no atomic tasks that
cannot be handled by high-orbiting satellites.

Meanwhile, we suppose that satellite networks can perceive each other and there is a
visible time window between low-orbit and medium-orbit satellites, which links can be
successfully established. Then, the time required to complete the task q execution on the
satellite with the atomic task request in the initial state can be expressed as,

cs(t) = ϕs
q(t)T

lm
s,q +

(
1− ϕs

q(t)
)(

1− ρs
q(t)

)
Th

s,q (6)

where cs(t) denotes the time required for the task execution on the satellite s at time t.
Among them, 1− ϕs

q(t) indicates that the task is offloaded and needs to be executed on a
high-orbit satellite. Similarly, 1− ρs

q(t) indicates that the task has been cached.
The paper aims to scheme the execution order of all tasks and the satellite resource

allocation scheme so that the time consumed by the execution of all tasks is minimized.
The problem can be formally formulated as

min
s,q ∑

s∈S
∑

q∈Qs

cs(t)

s.t.

C1 : Tlm
s,q ≤ Ds, ∀s ∈ S, q ∈ Qs,

C2 : ρs
qi
(t) ∈ {0, 1},

C3 : ϕs
qi
(t) ∈ {0, 1},

(7)

As shown in Formula (7), C1 indicates that the atomic task needs to be computed by
the deadline Ds, C2 indicates the range of values for the atomic task caching decision, C3
indicates the range of values for the atomic task unloading decision.

4. Method

To achieve the overall goal of time consumed by the execution of all tasks is minimized,
we further consider the actual task planning process. When faced with multimedia and new
space tasks, satellites will receive many computational tasks, which are broken down into
more atomic tasks. The existing satellite computing power cannot cover all the atomic tasks.
Therefore, it is necessary to offload some computational tasks to high-orbiting satellites with
solid computational capabilities to reduce the single-satellite computational load, improve
the efficiency of mission execution, and speed up the response time to computational tasks.

4.1. Problem Conversion

High orbit satellites have comprehensive coverage and better performance than that
of low-medium orbit satellites. However, the number of high-orbiting satellites is sparse
in practice. Therefore, if many atomic calculations are offloaded to high-orbiting satellites
for execution, the processing capacity of high-orbiting satellites may not receive all the
offloaded tasks. Therefore, we propose a re-offloading method for high-orbiting satellites
considering the practical situation.

As shown in the Figure 2, the satellites s1, s2, s5 and s6 are all medium and low orbit
satellites, where s1 and s2 are satellites with atomic missions in the initial state. s1 and s2
first consider whether the computational tasks need to be offloaded in the received atomic
missions. If the atomic mission needs to be offloaded, a data transfer link is established
with the high-orbiting satellites to offload the mission to the high-orbiting satellites s3 and
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s4. If the number of computational tasks on the high-orbiting satellites s3 and s4 exceeds
the limit and cannot continue to receive task offload requests from low- and medium-
orbiting satellites, then the advantage of the task offload function will no longer exist.
The computational tasks requiring task offloading need to wait for local computational
resources to become available before they can be executed, as in the traditional case. In order
to keep the advantages of mission offloading always available and to efficiently use idle
satellite resources, we offload atomic tasks that can no longer be processed by high-orbiting
satellites to other idle satellites for execution, as shown in Figure 2. The in-orbit satellites s3
and s4 offload computational tasks that they cannot process to other idle satellites s5 and s6.

S1

S5 S6

S4S3

S2

Figure 2. Mission offloading and re-offloading process of all the satellites.

Due to the frequent dynamic changes in the space-based network, the location of
satellites also changes dynamically, while the number of mission requests from satellites
also changes over time. Therefore, we have to solve the problem of offloading atomic
missions from satellites in dynamic network environments. According to the analysis in
the above chapters, we can divide the minimum time optimization problem of atomic
missions into two parts. The first part is the offloading of atomic missions. Offload some of
the atomic missions from the medium and low orbit satellites to the high orbit satellites.
This reduces the computational pressure on the low-medium orbiting satellites and makes
full use of the high-orbiting satellites’ large amount of computational power. The second
part is the caching of atomic tasks, which means that there will be more duplication of
atomic computing tasks on the medium and low orbiting satellites. Suppose that an atomic
computing task on a low-medium orbiting satellite is offloaded to a high-orbiting satellite.
In this case, we only need to wait for the high orbiting satellite to return the computation
results to the medium and low orbiting satellites, avoiding duplicate buffering and reducing
duplicate offloads to save data transfer time.

At the same time, we observe that multiple Low Earth Orbit (LEO) satellites need to
offload some of their atomic tasks to the High Elliptical Orbit (HEO) satellites, which is
caused by the number of antennas in the HEO satellites. The antennas can only match the
communication links established by one or a few satellites, which causes other satellites to
wait until the other satellites end their occupation of the high-orbiting satellite links. Waiting
for link resources in this way is unwise and a waste of resources in a spatial information
network that changes dynamically in space and time. Therefore, we re-decompose the
problem into three parts.

In summary, this paper aims at the low utilization of spatial information network
resources, poor timeliness, and long waiting time for atomic tasks problems. The paper
proposes the idea of solving resource contention based on secondary task offloading.
The problem is to improve the overall resource utilization rate and achieve the goal of
quickly responding to many atomic tasks and assigning specified computing resources.
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As shown in the Figure 3, the blue satellites in the middle and low orbit satellites on the
left represent the initial state of the satellites at a specific time t. Meanwhile, these blue
satellites have received many atomic computing task requests. Link resources between
low-medium orbit satellites and high-orbit satellites are limited, and it is not advisable to
establish links between many low-medium orbit satellites and a specific high-orbit satellite
simultaneously. Therefore, allocating the offloading tasks is crucial if multiple satellites
need to offload a certain number of atomic tasks to high-orbit satellites at time t. As shown
in Figure 3, we consider the satellites as nodes and the links between them as edges to
create a small directed network. By calculating the maximum traffic of the network, we can
observe the satellite network in red in the virtual box on the left.

original node of atomic computing task queue

Low-medium orbit satellite Low-medium orbit satelliteHigh orbit satellite

Task offloading and caching Task offloading 

Maximum flow

Figure 3. Mission offloading of low-medium orbit satellites and re-offloading process of high-
orbit satellites.

Meanwhile, we can know the maximum amount of data transmitted on each edge
according to the solution result of the maximum flow. According to the edge source
node, we can obtain the maximum tasks that the node can unload at the current time
t. The calculation tasks that need to be offloaded on other satellites are transmitted to
a low-medium orbit satellite that establishes a communication link with the high-orbit
satellite. Then the satellite transmits the atomic calculation task request to the high-orbit
satellite. As shown in Figure 3, the green node in the middle is the high-orbit satellite.
After receiving numerous computing tasks on the high-orbit satellite, if the number of
tasks reaches the threshold of tasks acceptable to the high-orbit satellite, then unload the
remaining computing tasks that cannot be received by high-orbit satellites to the yellow
low-medium orbit satellites in the idle state. Therefore, the above process includes a
one-time task cache and two-time task offloads.

4.2. Algorithm Design
4.2.1. Maximum Task Flow Transmission

Satellites change with time and space, so the visible time window between satellites is
limited, which leads to precious link resources between satellites. If multiple satellites need
to offload unquantized missions to high-orbiting satellites, the time window limitation can
make it difficult. Therefore, we would need to calculate the maximum amount of data to
be transferred on a network consisting of satellites that currently need to offload atomic
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missions. We transform part of the problem into the problem of calculating the maximum
flow in a dynamic network, which can be expressed as follows,

max ∑
(u,v)∈E

f (u, v)

s.t.

C1 : ∑
(u,v)∈E

f (u, v)− f (v, u) = 0, (u 6= s, t),

C2 : ∑
(u,v)∈E

f (i, v)− f (v, j) = v( f ), (i = s),

C3 : ∑
(u,v)∈E

f (u, v)− f (v, u) =− v( f ), (u = t),

(8)

As shown in the Formula (8) f denotes a feasible flow of a link in a satellite network,
u and v denote the satellite nodes in the network which can establish a time window, s
denotes the only source node with indegree zero, and t denotes the only sink node with
outdegree zero. The Formula (8), which solves a feasible flow in the network to maximize
the flow v( f ) on the network, where the constraint C1 represents the conservation of flow,
and the so-called conservation of flow refers to the intermediate node no flow is stored.
When initially dividing the number of satellite tasks to unload, we can assume that the node
does not store the flow in solving the maximum flow, and the task is unloaded after the
maximum flow is solved. C2 and C3 indicate the need to meet traffic demand. In addition,
the bandwidth constraints of the link need to be satisfied.

As shown in Figure 4, it describes the process of calculating the maximum flow on
a given instantaneous satellite network. The result of the maximum flow calculation can
be used to determine the maximum number of task offloads that can be transmitted on a
satellite. As shown in Subfigure (a) represents a small satellite network consisting of low-
medium orbiting satellites at t time. There is a visible time window between the satellites,
and each satellite has an atom that needs to be offloaded. During the task offloading
process, sources, and sinks are not unique in the network. Subfigure (b) represents the
computational process of the maximum flow. First, we create two virtual nodes as unique
sources and sinks in the satellite network. We can use the single source and single sink
maximum flow calculation method to solve the satellite network. The maximum traffic
that can be transmitted on the subgraph Subfigure (c) is the number of missions that
can be offloaded from each satellite based on the result of the maximum traffic solution.
The missions to be transmitted are then transferred to the specific satellite and the offloaded
mission data is transmitted by the satellite to the high-orbiting satellite.

(a) Initial state of the satellite network (b) The maximum flow computational process (c) The tasks offloading solution

Figure 4. Maximum flow calculation method for task offloading quantity allocation of dynamic
satellite network.
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The solving process of the maximum tasks offloaded on each satellite in the satellite
network composed of low-medium orbit satellites is shown in the Algorithm 1. It mainly
calculates the maximum traffic path of the network composed of all low-medium orbit
satellites that receive the atomic task request queue and the maximum allowable transmis-
sion traffic. Considering the satellite network has time-varying characteristics, we calculate
the task offloading plan in satellite networks over time. First, given a fixed period and a
graph composed of satellites and communication links G

′
(lines 1–2). We first obtain the

number of tasks that need to be unloaded on each satellite (line 5) and then use the classic
Ford-Fulkerson [40] algorithm to calculate the maximum traffic path and traffic distribution
on the graph G

′
at the current moment (line 6). If the number of unloadable tasks on a

satellite s is greater than the maximum number of tasks allowed in the maximum stream
result, only the number of tasks allowed in the maximum stream result will be allowed
to be transmitted. Conversely, the number of tasks to be offloaded on the transmission
satellite is allowed (lines 7–11). Finally, the results of all task offloading assignments during
the period are returned.

Algorithm 1 Optimal allocation of task offloading quantity
Input: Given a directed graph G = (V, E, T), Given time range τ, Given the atomic task

request queue vq on each satellite.
Output: The number of atomic tasks that can be unloaded by each satellite in a certain

period OtimeRange(V).
1: set timeRange = τ

2: set G
′
= G(V, E)

3: repeat
4: repeat
5: Calculate the number of tasks that need to be unloaded by the satellites Ot(V);
6: [route, f ]=FordFulkerson(G

′
);

7: if task(s) > f (s, v) then
8: Ot(s) = f (s, v)
9: else

10: Ot(s) = task(s)
11: end if
12: until V
13: until timeRange
14: return OtimeRange(V)

4.2.2. Optimal Task Offloading

Through the above calculation, we can get the maximum number of tasks that can be
offloaded on the satellite, so the Formula (7) needs to meet the constraint of the maximum
task offload. From the task offloading optimization problem proved in the literature [41],
the task offloading problem can be transformed into a convex optimization problem.

Given ρ = ρ0, the Formula (7) can be transformed into a convex optimization problem.
It can be regarded as a function of ρ and redefined as a function of f (ϕs), which denotes
as follows,

f (ϕs) = ϕsTlm
s,q + (1− ϕs)

(
1− ρ0

)
Th

s,q

s.t.

C1 : Tlm
s,q ≤ Ds, ∀s ∈ V, q ∈ Q,

C2 : ϕs ∈ {0, 1}, ∀s ∈ V,

C3 :
Q

∑
q=1

ϕ
q
s ≤ O(s), ∀s ∈ V, q ∈ Q,

(9)
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As shown in Equation (9), f (ϕs) denotes the task offloading decision objective function
with ϕ as the variable, where C1 indicates that the task execution cannot exceed the time
threshold. C2 indicates that the value range of the decision variable is 0 or 1, and C3
indicates the task of satellite offloading. The quantity cannot exceed the amount of data
that can be accommodated by the transmission link’s maximum bandwidth and cannot
exceed the amount of task data transferred by the maximum stream scheme.

As shown in Algorithm 2, according to the calculation result of the maximum flow
calculation, obtain the upper limit of the task that the satellite can unload at the current
moment (line 5). The number of buffers for a mission is constant, so a constant value is
assigned to the number of buffers available for each satellite (line 6). According to the
Formula (9), use the Lagrangian expansion to solve and return the result of task offloading
quantity (lines 7–11).

Algorithm 2 Satellite mission offloading optimization calculation
Input: Given a directed graph G = (V, E, T), Given time range τ, Given the

atomic task request queue vq on each satellite. Output: An array of offloading tasks
arr(V)

1: set timeRange = τ

2: set G
′
= G(V, E)

3: repeat
4: repeat
5: Calculate the maximum number of tasks that can be uninstalled O(V)
6: set ρv = cache(v)
7: set ϕ(v) = Lagrange(v)
8: set arr(v).add(ϕ(v))
9: until V

10: until timeRange
11: return arr(V)

4.2.3. Optimal Task Cache

In solving the task cache problem, we can treat the task offload variable as a constant.
Meanwhile, the Formula (7) can be transformed into a function with ρ as the independent
variable. The formula as shown in the follows,

f (ρs) =
(

1− ϕ0
)
(1− ρs)Th

s,q

s.t.

C1 : Tlm
s,q ≤ Ds, ∀s ∈ V, q ∈ Q,

C2 : ρs ∈ {0, 1}, ∀s ∈ V.

(10)

As shown in (10), C1 denotes that the task needs to be completed within the deadline,
and C2 indicates the value range of the task cache state.

The Formula (10) can be transformed into a linear programming problem about ϕ.
This problem can be solved using the branch and bound method to solve the optimal
value [41–43]. The specific process of the algorithm is shown as follows.

As shown in Algorithm 3, the satellite’s task set is converted into a tree, which repre-
sents all possible combinations of tasks that need to be cached locally (line 5). The abound-
ing function prunes some non-optimal branches in the tree structure. Each branch uses the
depth-first rule DFS to calculate its cost. When all branches are searched, the algorithm
returns the optimal solution [41].
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Algorithm 3 Satellite mission buffer calculation method
Input: Given a directed graph G = (V, E, T), Given time range τ, Given the

atomic task request queue vq on each satellite. Output: An array of offloading tasks
C(V)

set timeRange = τ

set G
′
= G(V, E)

repeat
repeat

set tree(s) = tranToTree(O(V))
until V
repeat

C(V) = search(tree)
until tree

until timeRange
return C(V)

As for the influence of the cache size on the offloading decision, the cache of tasks is
realized by using the storage and communication capabilities of high orbit satellites. High
orbiting satellite resources are precious, so they can not occupy too much space for caching.
The cache size depends on the frequency of similar tasks, and tasks with high frequency
can be cached. We cache the task calculation results that occur many times to the satellite.
The larger the cache space, the fewer tasks to offload, and the greater the total revenue of
the satellite network.

5. Numerical Experiments
5.1. Time Complexity

We divide the offloading of satellite atomic tasks into three parts: the maximum stream
transmission calculation, the optimization of atomic task offloading, and the optimization
of task cache. This paper designs corresponding optimization solutions for these three
problems. As shown in the Algorithm 1, the algorithm mainly uses the Ford-Fulkerson
algorithm to calculate the maximum flow value and path of the network. The algorithm’s
time complexity is O(E f ), where E is the edges, and f is the maximum flow in the graph.
Each expansion path can be found within the time of O(E) and increase the traffic by
at least the entire amount of 1, with an upper limit of f . According to the time range
and the calculation of each satellite, the algorithm includes period traversal and satellite
nested traversal. The total time complexity of the algorithm is O(TEV f ). The atomic task
offloading optimization Algorithm 2 mainly uses the Lagrangian expansion and Karush-
Kuhn-Tucker (KKT) conditions to solve the optimization problem. The algorithm also
considers the traversal of satellites in discrete time and the traversal of tasks on each
satellite, so the algorithm time complexity is O(TV). The task cache optimization algorithm
mainly involves constructing and searching the node tree. The algorithm’s time complexity
in discrete time is O(T(V + VE)). In summary, the algorithm time complexity of the
model OCMF proposed in this paper is O(TV(E f + 1 + E + 1)), which can be simplified to
O(TEV f ). In the whole process of computing task offloading algorithm, f is constant, so
the time complexity of OMD algorithm can be expressed as O(TEV).

In space information networks, the location of satellites changes continuously with
time, and the visible time window between satellites also changes dynamically. The com-
munication cost between low-orbiting satellites is different from that between high-orbiting
satellites, which can be found in the Formulas (2) and (3). The link resources between
satellites are valuable, and most satellites have weak storage and computational capabilities.
Therefore, if an algorithm has excellent time complexity, it can save a lot of waiting time,
optimize the mission execution efficiency in general, reduce the mission waiting time,
and improve resource utilization. Research on task offloading is increasingly inclined to use
deep reinforcement learning methods. However, the learning time of deep reinforcement
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learning methods is long and cannot meet the low latency requirements for task offloading
in time-varying satellite networks.

5.2. Experimental Fundamentals

To study the key problems of mission scheduling, link optimization, collaborative com-
puting, and network topology discovery in spatial information networks. We independently
developed a Chinese Satellite Tool Kit (CSTK) based on actual satellites and common mis-
sion data in spatial information networks, which is based on the Java Agent DEvelopment
Framework (JADE) (accessed on 20 October 2021 for link https://jade-project.gitlab.io/)
framework, using the two-line element (TLE) set for the satellite and calculates satellite
positions based on the Sgp4 and sdp4 packages [44]. The system simulates satellite data,
including satellite payload data, satellite orbit data, inter-satellite visible time window and
satellite ground visible time window data, satellite resource capacity, and satellite resource
quantity. In addition, we simulated data for common Earth observation application scenar-
ios, including Earth observation area, mission execution time demand, mission resource
type, and mission resource demand. In addition, we developed various computational
libraries required for the CSTK system. The experiments in this paper are done based on
the CSTK experimental simulation platform, coded in Python. CSTK calculates the orbits
of subsatellite points in the two-dimensional plane using the satellite orbit parameter data
provided by celestrak (https://celestrak.com/, accessed on 20 October 2021). The main
software interface of CSTK is shown in the Figure 5.

(a) Satellite management (b) Observation scene

Figure 5. Spatial information network computing environment simulation platform.

We complete the performance validation of the numerical experiment based on the
simulation capabilities of satellite and mission data provided by the CSTK platform. In this
experiment, we use multiple datasets to validate the performance of different algorithms.
Each dataset contains satellite and task data of varying sizes. We observe the effectiveness
of our algorithm and baseline model approach by the running results on each dataset.
The experimental data details are shown in Table 1.

Table 1. Multi-scale experimental datasets.

ID
Scale

Tasks Satellites

D1 50 10
D2 100 20
D3 500 50
D4 1000 100
D5 1500 200
D6 5000 500

As shown in Table 1, where ‘ID’ denotes the dataset number, ‘Scale’ denotes the
satellite and task scales. From the above table, it can be observed that our experiment uses
six datasets with increasing size of the dataset. The minimum number of missions is 50,

https://jade-project.gitlab.io/
https://celestrak.com/
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the maximum is 5000, the minimum number of satellites is 10, the maximum number is
500. With the increase of data set size, the satellite network needs to deal with more tasks,
and the interaction between satellites is more complex, which requires higher timeliness
of task processing algorithm. And this is also closer to the explosive growth trend of
multimedia services and the continuous emergence of new space tasks.

5.3. Parameter Setting

As shown in Table 2, where the parameter ‘gamma’ denotes the kernel coefficient and
its values are selected in the range of 0.01, 0.1, 1, 10, the parameter ‘n_clusters’ denotes the
dimension of the projection subspace and its values are selected in the range of 2, 3, 4, 5, 6,
the parameter ‘n_neighbours’ denotes the number of neighbors to use when constructing
the affinity matrix using the nearest neighbors method and its value is 10, the parameter
‘degree’ denotes the degree of the polynomial kernel and its value is 3. We select the optimal
aggregation result from the above set by training, and the set of three categories after the
clustering is completed selected by default. The default minimum start time for all tasks
should be greater than 0.

Table 2. Spectral clustering parameters setting in OCMF process.

gamma n_clusters n_neighbors Degree

0.01, 0.1, 1, 10 2, 3, 4, 5, 6 10 3

As shown in Table 3, where the parameter lb denotes the minimum value of each
independent variable, ub denotes the maximum value of each independent variable, and the
maximum value of each variable comes online as the number of resources currently owned
by the satellite. prob_mut denotes the variance probability, w denotes the inertia weight
of algorithm PSO, c1 denotes the individual memory of algorithm PSO, c2 denotes the
collective memory of algorithm PSO, F denotes the variance coefficient of algorithm DE,
size_pop denotes the population size.

Table 3. Experimental parameter setting of baseline model.

Algorithms lb ub prob_mut w c1 c2 F size_pop

PSO 0 - - 0.8 0.5 0.5 - 200
GA 0 - 0.001 - - - - 200
DE 0 - 0.001 - - - 0.5 200

5.4. Results Analysis

The time cost consumption of task c(qi) includes the task waiting time w(qi) and the
task execution time e(qi). Ideally, if the resources are sufficient, then the task does not
need to wait and the time cost of the task only includes the task execution time. However,
the Ideal Scenario of Sufficient Resources (ISSR) is extremely difficult to occur on spatial
information networks. In this experiment, the approach that approximates the time cost
consumption of ISSR is more effective. In addition, the First Come, First Service (FCFS)
scheduling method executes the task queues on the satellite according to the task order.
Therefore, the waiting time of the current task includes the sum of the execution time of the
previous tasks and the waiting time, i.e., w(qi+1) = c(qi), then c(qi+1) = c(qi)+ e(qi+1). We
analyze the task time cost incurred by the method OCMF with the cost consumption of ISSR,
FCFS, PSO, GA, and DE methods. The numerical results of the simulation experiments are
shown in Table 4.
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Table 4. Time cost calculation results for multiple algorithms on different datasets.

Algorithm
Time Consumption (s)

D1 D2 D3 D4 D5 D6

ISSR 18.94 31.82 157.46 294.19 471.91 1530.55
OCMF 14.23 30.55 158.28 292.76 452.11 1523.86
FCFS 48.53 92.22 543.37 976.78 1422.89 5019.90
PSO 65.07 116.07 3635.15 17,667.49 52,237.70 113,016.89
GA 63.16 107.67 920.51 17,702.55 50,301.48 44,665.74
DE 66.04 110.88 7904.71 34,649.01 80,317.24 62,888.36

As shown in Table 4, we can observe the task time calculation results of OCMF
and multiple baseline algorithms on six datasets. The experimental results show that
the task time consumed by the OCMF approach increases with the growing datasets.
The incremental time cost of OCMF on datasets D1 and D2 are relatively small. However,
the increment of time cost increases by the increasing amount of the datasets. Moreover,
OCMF has lower time consumption than ISSR, FCFS, PSO, GA, and DE algorithms on
multiple datasets.

The ISSR time cost includes executing all tasks themselves without the waiting time
consumption. We can notice that the OCMF time consumption is slightly lower than ISSR,
which is caused by the caching mechanism in the proposed method OCMF. If a task has
been executed in the previous time and the task execution result is cached, then the same
task can be accessed without repeated execution and the result data can be obtained from
the cache of the high-orbiting satellite.

FCFS is a traditional task scheduling method that considers the task wait time and
the task execution time. The task waiting time includes the execution time of the previous
tasks and the waiting execution time. Although FCFS does not include the inter-satellite
link transmission time consumption, the algorithm has the disadvantage of large waiting
time consumption. Therefore, the FCFS scheduling method is inferior to OCMF.

Although the swarm intelligence algorithm has a good performance in various appli-
cation scenarios, the results on space-based information networks are not promising due to
the tall task offloading operations times of the group intelligence algorithm, which leading
a large time consumption for inter-satellite link transmission. As the Table 4 shows, we can
observe that the PSO, GA, and DE algorithms have more significant time cost consumption,
whereas the GA algorithm has lower time cost consumption. PSO time cost on dataset D4
is much lower than the DE time cost on dataset D4. However, PSO the time consumption
on dataset D6 is much larger than that of DE on dataset D6. As the dataset increases,
the growth rate of PSO cost consumption is greater than that of DE.

As shown in Figure 6, the horizontal coordinates indicate the six scale-up datasets and
the vertical coordinates indicate the time consumption calculated by different methods.
Subplot (a) depicts the time comparison between OCMF, ISSR, and FCFS, where the time
consumption trace of OCMF and ISSR are similar. However, ISSR is a desirable hypothetical
approach. The time cost tends of FCFS increase with the data volume increases and the
growth rate reaches the highest at dataset D6. Therefore, it is not suitable for scheduling
scenarios with high volume tasks which causes the time consumption growth rate of FCFS
to be faster with the growing datasets. Subfigure (b) depicts the OCMF, PSO, GA, and DE
methods performance comparison result, where the OCMF method has the lowest time
consumption and the growth rate does not change significantly with the dataset scale
increases. During the dataset D1 to D5, the time cost growth rate of the group wisdom
algorithm shows an increasing trend. The growth rates of GA and DE show a decreasing
trend on dataset D6. Therefore, GA and DE have advantages in dealing with large-scale
task scheduling problems. According to subfigures (a) and (b), it can be seen that the
proposed algorithm OCMF can better adapt to the growth of the task scale and has less
cost consumption.
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Figure 6. Performance comparison between OCMF and various classic methods. (a) Performance
comparison between OCMF, ISSR and FCFS approach. (b) Performance comparison between OCMF,
PSO, GA and DE approach.

6. Conclusions

This paper studies the offloading of atomic tasks in space-based networks. Aiming
at the pain points of high response latency of multi-task requests, poor task calculation
timeliness, and poor resource utilization in the spatial information network, we propose
a low time complexity algorithm based on graph-related theories and edge computing-
related ideas to achieve optimal offloading of satellite atomic tasks and cache and make full
use of satellite resources. We compared the time complexity of several baseline algorithms
for task offloading and analyzed the performance between the algorithms and found
that our method has certain advantages in terms of time complexity and task execution
timeliness. The time complexity of the algorithm designed in this paper depends mainly
on solving the maximum flow. We optimize the maximum flow algorithm for dynamic
networks to effectively improve the overall algorithm calculation efficiency so that we
improve satellites’ overall computing power and timeliness and improve the high-latency
status of task calculations. In future research, there are still some problems to be solved.
The model constraints constructed in this article are not perfect, such as power and radiation
constraints. In general, the calculation methods for the maximum number of tasks, task
offloading and caching strategies, and the second offloading of atomic tasks proposed in
this paper can provide some new ideas for improving the timeliness and resource utilization
of space-based networks.
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