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Abstract: Online customer review classification and analysis have been recognized as an important
problem in many domains, such as business intelligence, marketing, and e-governance. To solve this
problem, a variety of machine learning methods was developed in the past decade. Existing methods,
however, either rely on human labeling or have high computing cost, or both. This makes them a poor
fit to deal with dynamic and ever-growing collections of short but semantically noisy texts of customer
reviews. In the present study, the problem of multi-topic online review clustering is addressed by
generating high quality bronze-standard labeled sets for training efficient classifier models. A novel
unsupervised algorithm is developed to break reviews into sequential semantically homogeneous
segments. Segment data is then used to fine-tune a Latent Dirichlet Allocation (LDA) model obtained
for the reviews, and to classify them along categories detected through topic modeling. After testing
the segmentation algorithm on a benchmark text collection, it was successfully applied in a case study
of tourism review classification. In all experiments conducted, the proposed approach produced
results similar to or better than baseline methods. The paper critically discusses the main findings
and paves ways for future work.

Keywords: text segmentation; automated multiple-label annotation; online review analysis

1. Introduction and Literature Survey
1.1. Background

Since its invention a couple of decades ago, topic modeling–a technique based on
co-occurrence data–has routinely been applied to reveal thematic patterns “hidden” in
diverse and ever-growing collections of texts [1,2]. Besides text documents, topic models
were built to classify image [3], video [4], audio [5], and time-series [6] data, and have
become an indispensable tool of business intelligence [7,8]. In the e-commerce industry, this
technique has been used increasingly to analyze various documents accumulated online.
For instance, topic modeling was performed on customer reviews to uncover social and
behavioral patterns but also individual experiences associated with consumer goods [9,10],
hospitality [11,12], and tourism [13,14]. The successful application of topic modeling to
solving these and many other semantic classification problems made it a popular approach
to assist or even fully automate the data annotation process [15].

Creating a set of labeled data is a common preliminary task when developing machine
learning classifier systems. At the same time, however, producing so-called “gold standard”
(i.e., by human experts) training datasets has long been a bottleneck for obtaining high
quality classification models. Expert annotations usually require a significant amount of
time to be completed and are thus also expensive. Various cost-saving approaches, such
as crowdsourcing, have been proposed. However, this approach turned out to produce
discrepant and noisy data, and is time-consuming, too [16]. Furthermore, data annotation
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relying on human intervention can quickly become infeasible when dealing with a large
amount of constantly flowing information [17] that is, however, a typical situation in the
e-commerce industry.

As a remedy, various machine learning techniques were proposed to produce “bronze
standard” labeled datasets in an unsupervised or semi-supervised manner, minimizing the
human involvement [15]. Probabilistic generative models built through topic modeling
were utilized to establish semantic membership and assign labels to images [18], social
media streaming data [19,20], or textual documents [21]. While being theoretically straight-
forward, topic model-driven annotation is prone to errors when annotated data include
multiple topic-specific segments [22]. Relying on a topic distribution to decide a single
label may prevent capturing segment-defined topics, especially in the case of short yet
seldom-focused texts, such as online reviews [23].

To break up multi-topic documents into semantically coherent, single label sections text
segmentation (TS) would be deployed (e.g., see [24,25]). TS algorithms produce segments
(not necessarily topic-bounded) without labels or other semantic information [26]. The
latter makes TS alone a poor fit for document automated annotation. While it might appear
only natural to try to combine TS with a generative topic model in a context of unsupervised
or semi-supervised data annotation, research on the joint application of these two methods
remains scarce.

The study described in this paper, therefore, proposes a joint, TS-enhanced topic
modeling approach to automated annotation, allowing one to deal with documents which
potentially belong to multiple topics. A novel TS algorithm called TopicDiff-LDA is de-
veloped to identify topic-bounded segments within a text, based on the topic probability
distribution generated with LDA. While breaking multi-topic texts into semantically co-
herent units, the algorithm works to accommodate for the corresponding changes in
class-membership assignments and, consequently, to fine-tune the LDA model. As a result,
the updated model provides for a more accurate classification of the segments than with
baseline unsupervised methods. The latter makes the developed approach a sound solu-
tion to annotate and automatically classify customer-generated texts–requests, feedback,
product reviews, etc.–accumulated by online e-commerce systems.

The main contributions of the presented study are as follows:

• TopicDiff-LDA, an original text segmentation method has been developed. The
method was experimentally evaluated on a benchmark dataset. Performance was
better (p < 0.001) than other popular unsupervised TS algorithms tested on the
same data.

• A new TS-enhanced topic modeling approach to automated multiple-label text annota-
tion has been proposed. The approach was evaluated in classifier model development
experiments. Overall, it demonstrated a better performance than a state-of-the-art
semi-supervised annotation method powered by Multilabel Topic Model (MLTM).

The rest of this paper is organized as follows. The next subsection briefly surveys
related studies. Section 2 provides for an overview of the proposed approach to data
annotation and introduces TopicDiff-LDA, a method for unsupervised text segmentation.
Text segmentation experiments are described in Section 3. Section 4 presents a case study of
a classifier model for tourism reviews, in which TopicDiff-LDA is deployed to classify and
label the training dataset. Experimental results obtained and limitations of the approach
are discussed in Section 5. Finally, Section 6 formulates the conclusions.

1.2. Related Work

Multiple-label data annotation has long attracted significant attention from the ma-
chine learning research community. Zhang and Zhou [27] gave a comprehensive survey
of early work in this direction. The authors stayed short of experimental comparison of
different methods. They mainly discuss systems built around learning models, such as
Support Vector Machine (SVM), k-nearest neighbor, logistic regression, and the like. In a
related study, Rubin et al. [28] demonstrated that LDA-based approaches generally outper-
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form discriminative methods in the case of datasets with many labels. Subsequent studies
resulted in an array of probabilistic generative models (e.g., MLTM [29], SMTM [30]), allow-
ing for data annotation in a semi- or “weakly”-supervised mode. As a rule, the developed
LDA-based approaches require label-topics or seed keywords to be manually selected
in the beginning of the annotation process. The latter may be non-trivial, if feasible at
all, in the case of e-commerce data, as multiple-topic manual labeling of large volumes
of short texts was shown to produce highly subjective and contradictory results (e.g.,
see [31]). Wang et al. [32] proposed an optimization algorithm called Adaptive Labeled
LDA (AL-LDA) to deal with label disparity. The developed system outperformed many
other state-of-the-art multiple-label classification models and worked satisfactory even
under massive label noise. An obvious drawback of this approach is its computational
cost that would grow enormously in the case of processing large volumes of constantly
flowing data.

It should be noted that over the years, several classifier-based systems to assist or
automate multiple-label annotation have been developed as well. Largely acceptable results
were obtained by applying reinforcement learning (sentence-level labeling of dialogs [33]),
deep learning (in combination with LDA [34]) and embedding learning [35]. However, all
of these discriminative approaches suffer from drawbacks not unlike the ones pointed to
earlier: relying on taken-for-granted human expertise and relatively high computational
cost in the case of multiple-label classification. Furthermore, differently from generative
models, classifier-based methods provide little, if any, facilities to accommodate for new,
previously unseen topics. The latter makes these methods a poor fit for processing dynamic
data volumes of, for instance, online customer reviews.

Text segmentation has been used to identify boundaries of semantic units, such as
sentences, paragraphs, and news, to mine opinions and emotions, evaluate sentiment,
determine language, etc. See [26] for a representative survey of TS applications. Early text
segmentation algorithms had a low complexity and often were data- or task-specific, com-
puting segment boundaries based on text similarity metrics (e.g., see [36]). Tagarelli and
Karypis [24] developed a method to break a document into coherent segments correspond-
ing to document themes, thus allowing for multi-topic document clustering. Identifying
segment topics was left unaddressed. Lu et al. [37] proposed a recursive soft clustering
algorithm with built-in topic segmentation for legal document processing. Performance
was evaluated in comparison with legal experts. The algorithm utilizes document metadata
and requires human involvement to define clusters. In a recent study, Li et al. [38] applied
LDA for text segmentation, determining segment boundaries by topic coherence score.
As an alternative, Koshorek et al. [39] suggested to learn segment bounds directly from
labeled data. The authors used a model pre-trained on Wikipedia texts to break data
into semantically consistent pieces. Manchanda and Karypis [25] proposed an iterative
algorithm built around a trained classifier to perform text segmentation on multiple-label
documents. In each iteration, the algorithm works to refine the segmentation of training
data to obtain a more accurate classification model. The authors demonstrated that the
approach, while being computationally efficient, achieves similar or better results than
popular LDA-based multiple-label classification systems.

Based on the literature reviewed, one would conclude that the high computational
cost is the most notable drawback of the existing generative approaches to automated
text annotation. On the other hand, the inability to deal with new topics is the most
serious limitation of the discriminative approaches. The next section presents an attempt
to overcome these problems by deploying classifiers trained on bronze-standard sets. To
generate the training data, an LDA model fine-tuned with a novel text segmentation
algorithm is used. The proposed approach is partly inspired by the ideas formulated
in [32,38], and by the success of the iterative algorithm [25].
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2. Segmentation-Enhanced Topic Modeling for Automated Text Annotation
2.1. Overview

Figure 1 gives an overview of the approach developed in this study. Text documents
(e.g., tourism reviews) received for the input are first preprocessed to remove “meaningless”
elements, such as stop words, numerals, proper names and pronouns, etc. The text is sliced
into words (tokenized), followed by lemmatization of each token to obtain its dictionary
form. Part of Speech (POS) selection is performed, with all POS but nouns, verbs, and adjec-
tives being removed. Search for and tokenization of multiword concepts is also performed.
All lexical units thus prepared are considered candidate features of topic aspects. The
preprocessed tokens are stored in a bag-of-words (BOW) model for training purposes. LDA
works with the BOW model to cluster the input documents in an unsupervised manner,
assuming that documents with similar content should be grouped together, regardless of
their structure. The clusters discovered are interpreted by human experts, using the top 10
to 15 high-probability words in each topic, and class labels are termed. The labels will later
be assigned to the documents, based on their class-membership probabilities. Next, the
documents get broken into segments by the TopicDiff-LDA algorithm (described in detail
in the next subsection). The resulting texts are used to update the topic model, keeping the
original labels and the number of clusters intact but re-computing the class-membership
probabilities. A set of categorized documents is then produced with labels being assigned,
based on segment topicality (i.e., one or more labels per document). Finally, the bronze
standard labeled texts obtained with TopicDiff-LDA are used to train a classifier. The
classifier model is evaluated and, if found acceptable, is deployed to analyze (classify, sort,
label, etc.) other (previously unseen) documents.
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2.2. Text Segmentation with TopicDiff-LDA

For its input, TopicDiff-LDA is fed ND preprocessed documents, one document of
n sentences a time. The algorithm utilizes the LDA model trained on the whole set of
documents, as described in the previous section. The number of segments NS in the
collection is initially equal to ND. To identify topic-specific segments in the document, a
sliding window with a minimum segment length of h sentences is implemented. Figure 2
illustrates the application of the window with h set at 3, where rectangles stand for sentences
si, i = 1, . . . , n, and shades indicate the scope of LDA model-based computing in each
iteration. The vertical dotted line shows a candidate boundary b (set equal to h in the
beginning) of two adjacent segments segA = [s1, sb] (the darker shade) and segB =
[sb+1, sb+h] (the lighter shade). The size of segA grows (potentially reaching n− h) as b is
incremented. The size of segB remains fixed (equal to h), with its left and right boundaries
sliding to the right. Topic probability distributions of segA and segB are generated with the
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LDA model, and stored in vectors X and Y, respectively. To assess the semantic similarity
of segA and segB, the Manhattan distance dist = ∑ m

i=1|Xi −Yi| is calculated (see [40] for a
justification of the selected metric). The vector size m is equal to the number of topics in
the trained LDA model (determined by the optimal coherence score copt

v obtained with an
elbow method during the model development; see [41] but also [42]). When dist exceeds
threshold topt = argmin

t
perplexityNS(t), b is set as the boundary of a new topic-specific

segment (i.e., segA) and NS is incremented. The perplexity score for NS segments in the
whole document collection corresponding to a given distance threshold t is computed as

perplexityNS = exp
{
−∑

NS
i=1 log p(wi)

∑
NS
i=1 Nwi

}
, where Nwi denotes the number of words in segment

i, and log p(wi) is the log-likelihood of words in the segment. The document processing is
terminated when there are not enough sentences left to construct segB. The algorithm is
run recursively, as specified in Algorithm 1.
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In each iteration, b sets the candidate segment boundary, so that segments segA and segB (to the left
and right of b, respectively) can be constructed.

Algorithm 1: TopicDiff-LDA

Input: documents, minimum segment size (h), LDA topic probability distribution
Output: document segments (DS)
Objective function: Perplexity(DSt), subject to

{
t ∈ R+, t 6= 0

}
1: Initialize tseed
2: DStopt = Search(tseed) //call Search function
3: store the best solution: DStopt

4: function Search(tseed) //returns DStopt

5: initialize δ = rand()
6: perplmin = Perplexity(Segmentation(tseed)) //call Segmentation function
7: for (i = 1 to max_iterations) do
8: ti = ti−1 + δ

9: perpli = Perplexity(Segmentation(ti)) //call Segmentation function
10: if (perpli < perplmin) then
11: topt = ti
12: perplmin = perpli
13: update δ //determined by the specific optimization algorithm deployed
14: return (DStopt )
15: function Segmentation(t) //returns segmented documents
16: initialize array DSt
17: for each document do
18: s = Sentence_tokenize(document) //split document into sentences
19: DSt = TS(s, t, DSt) //call TS function
20: return (DSt)
21: function TS(s, t, DSt) //returns segmented text
22: n = Length(s) //number of sentences
23: for (i = 1 to n) do
24: b = i + h− 1
25: if (b ≤ n− h) then
26: segA = [s1, sb] //define segA
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27: segB = [sb+1, sb+h] //define segB
28: X = LDA_infer(segA) //compute the topic probab. distr. for segA
29: Y = LDA_infer(segB) //compute the topic probab. distr. for segB
30: dist = Manhattan(X, Y) //Manhattan distance
31: if (dist > t) then
32: append segA to DSt
33: DSt = TS([sb+1, sn], t, DSt)
34: break
35: else
36: append [s1, sn] to DSt
37: break
38: return (DSt)

3. Text Segmentation Experiments
3.1. Data

To evaluate the performance of the proposed topic segmentation algorithm, experi-
ments have been conducted, using the Choi dataset [43]. The set was compiled by the author
for benchmarking purposes. It contains 700 synthetic documents created by concatenating
sentences from different text samples of the Brown corpus. The Brown corpus comprises
374 “informative prose” and 126 “imaginative prose” English documents published in
1961. The Choi dataset is structured into four subsets, depending upon the number of
sentences in a segment. Segments were created by randomly choosing a document from
the Brown corpus, followed by selecting first N sentences from that document (N selected
at random from a predefined range). Each synthetic document consists of exactly ten
segments. Segment length varies, as specified in Table 1. Segments are unlabeled, and only
segment boundaries are provided in the set description.

Table 1. Summary of the data used in the segmentation experiments (document and segment lengths
are given in sentences).

Number of documents 700
Number of unique tokens 5210
Average document length 83 (1910 tokens)
Number of segments per document 10
Segment length (number of documents) 3–11 (400), 3–5 (100), 6–8 (100), 9–11 (100)

3.2. Experiments

Eleven LDA models, each with a different number of topics m, were trained over
1000 iterations on the Choi dataset. The Tomotopy toolkit was used (https://github.com/
bab2min/tomotopy, last accessed on 26 April 2021). The Dirichlet priors were set to
α = 50/m and β = 0.01, as suggested in [44]. With m being incremented from 20 to
220, the optimal coherence score copt

v was located at m = 140 (see Figure 3). The sliding
window width h was set at 3, corresponding to the shortest known (or estimated) segment
length. Through preliminary experiments it was found that selecting an initial seed value
tseed ∼ 2× (1− µ), where µ is the average highest topic probability of the generated LDA
model, results in an improved performance when topt is searched. For segmentation of the
Choi data, tseed = 1.85 was used.

https://github.com/bab2min/tomotopy
https://github.com/bab2min/tomotopy
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The TopicDiff-LDA algorithm was run on the 700 documents. The obtained segment
quality was evaluated using the Pk metric [45]. Pk is a probabilistic measure computed
by running a sliding window over sentences in the hypothesis (hyp) and reference (re f )
segments. It counts the number of disagreements in sentences being in the same or different
sections. Formally:

Pk(re f , hyp) =
1

n− k ∑ n−k
i=1

(
δ(re fi, re fi+k)

⊕
δ(hyp, hypi+k)

)
where n is the number of sentences, and k sets a fixed window size calculated as half of the
average gold-standard segment size. In a single window, the disagreement of re f segment
relative to hyp segment is calculated as an exclusive disjunction (denoted with ⊕) of the
sentence separation δ

(
si, sj

)
:

δ
(
si, sj

)
=

{
1, if sentences si and sj are assigned to the same segment;
0, otherwise.

Table 2 provides Pk obtained for TopicDiff-LDA in comparison with results reported
in the literature for the same data (lower scores correspond to better performance).

Table 2. Segmentation results on the Choi dataset (unless noted otherwise, text segmentation in an
unsupervised mode is assumed).

Algorithm Reference Pk

C99 [43] 0.105
U00 [46] 0.078
M09 [47] 0.027 *
TSM [48] 0.009 **

GraphSeg [49] 0.066
SegBot [50] 0.003 ***

TopicDiff-LDA 0.029
* The algorithm requires pre-training on an external dataset. ** Requires gold-standard set -derived parameter
setting. *** A supervised algorithm.

4. Case Study

Experiments described in the previous section have demonstrated that the proposed
algorithm outperforms other unsupervised approaches but lags behind the supervised and
distant-supervised TS methods when run on the artificially created data. However, in a real-
life setting of document labeling and classification, there would be little to no opportunity
to pre- or re-train algorithms manually every time the processed data is updated. On the
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other hand, the latter is a typical situation when dealing with online customer reviews–
dynamic and noisy, semantically open-ended yet continually growing collections of texts
accumulated by various e-commerce platforms. In [51], the authors presented an attempt
to build a knowledge model for tourism recommender systems to automatically classify
online reviews. It was found that, while providing for acceptable-quality results on average,
LDA-driven single-label annotation often results in multi-topic reviews being misclassified.
To address this problem, the TopicDiff-LDA algorithm can be applied, as it was proposed
in Section 2.

4.1. Training Data and The Knowledge Model Used

Online reviews written in English were crawled from an Indonesian tourism website
(https://www.indonesia-tourism.com/forum, last accessed on 31 January 2022). The
reviews were manually filtered to exclude uninformative texts (i.e., with fewer than three
sentences, written in languages other than English, etc.) A text document collection was
thus created, as specified in Table 3.

Table 3. The tourism online review collection used to build classifier models.

Number of documents 2685 (filtered from 2807 crawled)
Number of unique tokens 31,781
Average document length, sentences 12 (278 tokens)

After preprocessing, an LDA model was built on the review data with a total of 9
topics. The number of topics was decided by observing the coherence score computed for
different LDA models but also taking into account general ontology considerations (for
more detail, see [51]). By interpreting the top 10 most probable words in each topic, class
labels were termed as follows (the topic top-10 tokens are listed after each label):

TOPIC 1. Historical Sites: museum, building, build, house, palace, dutch, mosque, time,
collection, old.

TOPIC 2. Protected Area: forest, park, animal, national_park, species, bird, include, plant,
conservation, type.

TOPIC 3. Natural Place: cave, river, location, district, road, hill, reach, tree, tourism, meter.

TOPIC 4. Temple: statue, build, stone, side, meter, wall, king, find, roof, base.

TOPIC 5. Mountain: mountain, mount, crater, sea_level, hill, high, peak, regency, view, scenery.

TOPIC 6. Beach: sea, fish, wave, boat, coast, small, beauty, white_sand, reach, sand.

TOPIC 7. General Information: park, travel, tour, want, facility, get, provide, activity,
good, offer.

TOPIC 8. Things to Buy: market, batik, food, tourism, product, traditional, plantation,
fruit, sell, find.

TOPIC 9. Cultural Heritage: traditional, dance, name, come, hold, become, call, ceremony,
day, culture.

Below, this is an example of a review from the processed collection:

“Watu Dodol Tourism Object in Banyuwangi is located in Kalipuro district, Banyuwangi
regency. The location is on Bypass Banyuwangi to Situbondo. The distance from
Banyuwangi to Watudodol is 14 km, and from Ketapang port is only 5 km. Watudodol
beach usually is full of local tourists for weekends or holidays. The visitors can enjoy
the panoramic ocean or stroll to the hill located across the road. From the top of the
hill, a beautiful panorama of the Bali strait can be seen. Culinary activities are another
interesting thing to do here. Souvenirs made of shells and also stones are on sale in
small shops. Arriving at Watudodol from the north route, the Gandrung statue welcomes
visitors. This statue is the icon of Banyuwangi; Gandrung is a traditional dance from this

https://www.indonesia-tourism.com/forum
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city. Located close to Gandrung Statue, there is a big rock that looks like dodol (food made
of fruits); probably because of this, the area is called Watudodol. Watu is a Javanese word
for rock or stones. There was a mystical story about this rock. The Japanese occupied
this area during World War 2, and the Japanese considered this rock distracting their
activities. They tried to remove the rock by ordering men to cut the stones, but it did not
work. The Japanese then decided to pull it with a boat, and still, it did not work; instead,
the boat was drawn. Balinese and also truck drivers are said to put offerings on the rock
until today.”

Table 4 presents the topic probability distribution generated with the LDA model for
the example. As one can see from the table, there are five topics (3, 4, 6, 8, and 9) with
considerably high probabilities. While the narrative goes from “Natural Place” through
“Things to Buy” to “Historical Sites,” the most likely single label for this text is “Beach” (6),
followed by “Natural Place” (3) and “Things to Buy” (8). Assigning (any) one label would
obviously be misleading in this case.

Table 4. Topic probability distribution of the unsegmented review example.

Topic 1 2 3 4 5 6 7 8 9

Prob. 0.002 0.001 0.252 0.129 0.001 0.318 0.013 0.150 0.130

4.2. Segmentation

TopicDiff-LDA was run on the review collection with tseed set to 1.0, producing 3562
text segments (a 33% increase from the original 2685 “one-segment” documents). Table 5
shows segmentation results of the review example. The LDA model was updated, and all
segments were automatically labeled (one label per segment), based on the re-computed
topic probability distributions. Table 6 lists topic probability distributions generated for the
example segments.

Table 5. The review example segmented and labeled.

Segment Text Label (Topic No.)

1

“Watu Dodol Tourism Object in Banyuwangi is located in
Kalipuro district, Banyuwangi regency. The location is on
Bypass Banyuwangi to Situbondo. The distance from
Banyuwangi to Watudodol is 14 km, and from Ketapang port
is only 5 km. Watudodol beach usually is full of local tourists
for weekends or holidays. The visitors can enjoy the
panoramic ocean or stroll to the hill located across the road.
From the top of the hill, a beautiful panorama of the Bali strait
can be seen.”

Natural Place (3)

2

“Culinary activities are another interesting thing to do here.
Souvenirs made of shells and also stones are on sale in small
shops. Arriving at Watudodol from the north route, the
Gandrung statue welcomes visitors. This statue is the icon of
Banyuwangi; Gandrung is a traditional dance from this city.
Located close to Gandrung Statue, there is a big rock that
looks like dodol (food made of fruits); probably because of this,
the area is called Watudodol. Watu is a Javanese word for rock
or stones.”

Things to Buy (8)

3

“There was a mystical story about this rock. The Japanese
occupied this area during World War 2, and the Japanese
considered this rock distracting their activities. They tried to
remove the rock by ordering men to cut the stones, but it did
not work. The Japanese then decided to pull it with a boat, and
still, it did not work; instead, the boat was drawn. Balinese
and also truck drivers are said to put offerings on the rock
until today.”

Historical Sites (1)
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Table 6. The updated topic probability distribution of the segmented review (bold numbers indicate
the highest probability for each segment).

Segment Topic

1 2 3 4 5 6 7 8 9

1 0.006 0.033 0.539 0.033 0.005 0.327 0.009 0.036 0.007
2 0.006 0.004 0.146 0.107 0.004 0.241 0.008 0.344 0.136
3 0.334 0.004 0.209 0.004 0.005 0.008 0.282 0.007 0.144

4.3. Reliability Assessment

To estimate the reliability of machine labeling, 269 reviews (10% of the whole set) were
sampled randomly from the data. Set A with one class-label per review was created by
classifying the sampled reviews with a baseline LDA model. This set was subsequently
used solely for reference purposes. TopicDiff-LDA was deployed to produce set B with
one or more labels per review, using the same data. TopicDiff-LDA also broke the reviews
into semantically coherent segments (341 segments in total). Therefore, the number of
distinct labels produced by this algorithm for each review can, for comparison purposes,
be considered as the number of “perplexity-justified” labels for the given document.

A state-of-the-art semi-supervised multilabel multi-instance algorithm was run to
generate an MLTM model (see [29]; the source code was obtained from https://github.
com/hsoleimani/MLTM, last accessed on 31 January 2022) that was then used to create set
C of multiple-labeled reviews. The labeling procedure assumed assigning as many MLTM
labels to each review as the number of segments found in the given text with TopicDiff-LDA.
However, the algorithm failed to produce a single label in 14 of the 269 cases.

Two gold standard sets were created. For set Ag, each of the 269 unlabeled reviews
was manually given a single label by three human annotators. The final label was decided
by majority voting. When all three assigned labels were different, one of them was selected
at random. The unlabeled reviews were also used to create a multiple-labeled set Bg. Three
annotators (other than for set Ag) were instructed to assign to each review exactly as many
not-necessarily-distinct labels as the number of segments determined for the given review
with the TopicDiff-LDA algorithm. To resolve annotator disagreements, the same policy as
in the case of set Ag was adopted to choose the final labels. Table 7 details the label-structure
of the manually annotated sets.

Table 7. Structure of the gold-standard labeled sets.

Class
Average Review
Size, Sentences

No. of Distinct Labels Assigned (Avg per Review)

Ag Bg

1 10 24 26 (1.35)
2 11 13 15 (1.53)
3 13 55 65 (1.48)
4 9 18 21 (1.29)
5 11 19 21 (1.48)
6 14 67 73 (1.42)
7 13 43 57 (1.46)
8 17 13 15 (1.40)
9 13 17 25 (1.68)

Total labels: 269 318 (1.18)

To assess the level of annotator (dis)agreement in the labeled sets, Cohen’s Kappa
statistic augmented for multiple labels (see [52]) was calculated. Its pairwise averaged value
stays at 0.658 for set Ag, and at 0.609 for set Bg. The consistency of the machine-labeled sets
in respect to human annotation was evaluated with the same statistic. Its values obtained
for sets A and Ag (LDA vs. human), B and Bg (TopicDiff-LDA vs. human), and C and Bg

https://github.com/hsoleimani/MLTM
https://github.com/hsoleimani/MLTM
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(MLTM vs. human) are 0.625, 0.615, and 0.612, respectively. Figure 4 shows the per-class
agreement in the multiple-labeled sets.
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Figure 4. Agreement for sets labeled with TopicDiff-LDA and MLTM relative to human annotation.

To compare the classification performance of the multiple-labeling algorithms, the
area under the receiver operating characteristic curve (AUROC) statistic was used [53]. The
macro (equal class-label weights) and micro (unequal class-label weights) average AUROC
values obtained with the data are 0.90 and 0.86 for TopicDiff-LDA, and 0.78 and 0.82 for
MLTM, respectively (also see Figure 5).
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Figure 5. Multiple-labeling algorithm performance comparison.

4.4. Classifier Model Selection

Two multiple-label bronze standard sets Btr and Ctr were created by running TopicDiff-
LDA and MLTM, respectively, on the 2685 reviews collected in the study. Four machine
learning methods frequently used for short-text classification (see [54])–Convolutional
Neural Network (CNN), Random Forest, Logistic Regression, and Linear Support Vector
Classification (SVC)–were tested. All the methods but CNN were implemented, using the
source code from [55], to deal with multiple-label classification. With Btr set, two different
training schemes were used, resulting in two models for each method: one model trained on
the whole review texts, and another–trained on the review text segments. (Obviously, with
Ctr, the training could only be performed on the whole review level.) Figure 6 compares the
performance of the methods evaluated through 10-fold cross-validation on sets Btr and Ctr.
It should be noted that classifiers trained with a single-labeled set were tested in a previous
study but found prone to errors in many cases of automatic review classification [51].
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trained on (I) Btr (review-level), (II) Btr (segment-level), and (III) Ctr (review-level).

Linear SVC performed significantly better (p < 0.001) than the other methods in all
cases. The averaged macro- and micro-F1 scores achieved the values of 0.78 and 0.78 for
the Btr review-level trained model, 0.78 and 0.79 for the Btr segment-level trained model,
and 0.56 and 0.60 for the Ctr trained model, respectively. Based on the evaluation, it was,
therefore, decided to deploy these Linear SVC models for automatic classification and
further analysis of tourism online reviews.

4.5. Automatic Classification

New, previously unseen tourism reviews were crawled from the same website as in
Section 4.1. Three human annotators different from those in the earlier experiments worked to
create a gold-standard labeled data set (322 reviews in total, 1.12 labels per review). The same
annotation procedure as in the case of Bg (see Section 4.3) was used. The pairwise-averaged
value of the augmented Kappa statistic is 0.633 for the new human-annotated set.

The labeled reviews were automatically classified with the three machine learning
models pre-trained on the bronze standard data, as described in the previous subsection.
To evaluate the classification performance of the models, only those labels were used, on
which all three human annotators agreed (226 labels in total). Class-aggregated F1 macro-
and micro- scores obtained for the models are as follows: 0.85 and 0.86 for Linear SVC
review-level trained on Btr, 0.87 and 0.88 for Linear SVC segment-level trained on Btr, and
0.76 and 0.78 for Linear SVC review-level trained on Ctr, respectively. Figure 7 details
results of the automatic classification experiment.
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5. Discussion
5.1. Segmentation Experiments

Results obtained in the segmentation experiments (Table 2, Section 3.2) convincingly
demonstrated the superior ability of TopicDiff-LDA, compared to other unsupervised
methods. Also, the performance of the proposed algorithm assessed in terms of Pk im-
proved as the segment length was growing. Segmentation error Pk decreased from 0.36,
the value obtained for the set with 3–5 sentences in each segment, to 0.22 for the set with
6–8 sentences per segment, and to 0.16 for when there were 9 to 11 sentences. The same
tendency was observed for the segmentation error estimated in terms of WindowDiff (WD),
a statistic reportedly less sensitive to internal segment size variance [56]: WD changed
from 0.22 to 0.21, and to 0.19 as the segment size grew. These results should, however,
be expected because longer texts allow for more accurate estimation of the multinomial
parameters in LDA [47].

As TopicDiff-LDA relies on the perplexity score to determine segment boundaries
(see Algorithm 1), the latter statistic is strongly correlated with the two measures of seg-
mentation error. Assessed with Pearson’s coefficient, the correlation ranged from 0.995 to
0.999 for Pk and perplexity score, and from 0.974 to 0.998 for WD and perplexity score on
the Choi dataset. Figure 8 illustrates the fact that a segment boundary determined by the
minimum of the perplexity score also corresponds to the minimum or near-minimum of
the segmentation errors for the data.

Furthermore, Figure 8 reveals that locations of the minimums of the perplexity score
and segmentation error measures tend to diverge as the segment size grows. This would
be explained by the sensitivity of the perplexity statistic to word likelihood that, with a
static lexicon, would be higher for longer texts. TopicDiff-LDA may, therefore, not work
well when the expected segment size is much greater than 10 sentences. While the latter is
an unlikely scenario in the case of online customer reviews (see [57]), this limitation would
hamper the application of TopicDiff-LDA to longer documents.

A well-known drawback of many unsupervised topic-level segmentation algorithms
is their high computational cost (e.g., see [47]). To explore the time-efficiency of TopicDiff-
LDA, an experiment was conducted by running the algorithm on datasets of different sizes
that were randomly sampled from the tourism review set of Table 3. Figure 9 shows results
obtained for a computer with an Intel Xeon E5-1650 3.60 GHz CPU and 128 GB DDR4
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RAM (all data was segmented, using the same LDA model; the model generation time is
not included).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 20 
 

changed from 0.22 to 0.21, and to 0.19 as the segment size grew. These results should, 

however, be expected because longer texts allow for more accurate estimation of the mul-

tinomial parameters in LDA [47]. 

As TopicDiff-LDA relies on the perplexity score to determine segment boundaries 

(see Algorithm 1), the latter statistic is strongly correlated with the two measures of seg-

mentation error. Assessed with Pearson’s coefficient, the correlation ranged from 0.995 to 

0.999 for 𝑃𝑘 and perplexity score, and from 0.974 to 0.998 for 𝑊𝐷 and perplexity score 

on the Choi dataset. Figure 8 illustrates the fact that a segment boundary determined by 

the minimum of the perplexity score also corresponds to the minimum or near-minimum 

of the segmentation errors for the data. 

Furthermore, Figure 8 reveals that locations of the minimums of the perplexity score 

and segmentation error measures tend to diverge as the segment size grows. This would 

be explained by the sensitivity of the perplexity statistic to word likelihood that, with a 

static lexicon, would be higher for longer texts. TopicDiff-LDA may, therefore, not work 

well when the expected segment size is much greater than 10 sentences. While the latter 

is an unlikely scenario in the case of online customer reviews (see [57]), this limitation 

would hamper the application of TopicDiff-LDA to longer documents. 

A well-known drawback of many unsupervised topic-level segmentation algorithms 

is their high computational cost (e.g., see [47]). To explore the time-efficiency of TopicDiff-

LDA, an experiment was conducted by running the algorithm on datasets of different 

sizes that were randomly sampled from the tourism review set of Table 3. Figure 9 shows 

results obtained for a computer with an Intel Xeon E5-1650 3.60 GHz CPU and 128 GB 

DDR4 RAM (all data was segmented, using the same LDA model; the model generation 

time is not included). 

 

Figure 8. As segment boundary is determined by the semantic similarity threshold 𝑡 correspond-

ing to the minimum of text perplexity (black line), segmentation errors 𝑃𝑘 (blue line) and 𝑊𝐷 

(red line) are also minimized. Calculations were performed on the Choi data subsets with segment 

sizes of (I) 3–11, (II) 3–5, (III) 6–8, and (IV) 9–11 sentences. (Note that unlike the perplexity score, 

𝑃𝑘 and 𝑊𝐷, to be computed, both require gold-standard segmentation of documents.) 

Figure 8. As segment boundary is determined by the semantic similarity threshold t corresponding
to the minimum of text perplexity (black line), segmentation errors Pk (blue line) and WD (red line)
are also minimized. Calculations were performed on the Choi data subsets with segment sizes of
(I) 3–11, (II) 3–5, (III) 6–8, and (IV) 9–11 sentences. (Note that unlike the perplexity score, Pk and
WD, to be computed, both require gold-standard segmentation of documents.)Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 20 

 

 

Figure 9. TopicDiff-LDA computing time as a function of the segmented review amount. On the 

graph, each dot indicates the time averaged over 10 random samples of the given size, and the bars 

show the standard error. 

The segmentation time (and, generally, the complexity) of the proposed algorithm is 

largely determined by the specific implementation of its Search function (see Algorithm 

1). In the experiment of Figure 9, this function utilized the standard grid search of a Python 

library and the segmentation time grew linearly, as the number of reviews increased. For 

a comparison, some of the best supervised segmentation algorithms also have a linear 

time-complexity [39]. On the other hand, the runtime of GraphSeg, which is the second-

most-accurate among unsupervised algorithms examined (see Table 2), is a polynomial 

function of the data size [49]. The latter time-complexity holds for many other unsuper-

vised and semi-supervised segmentation algorithms (e.g., [46–48]). Therefore, one would 

assert that the algorithm proposed in this study has similar or better scalability than the 

existing baseline methods, whether supervised or unsupervised. 

5.2. Labeling 

The reliability analysis of the gold-standard sets conducted in Section 4.3 confirmed 

that labeling short online texts is a challenging and often confusing task for human anno-

tators (see [31] but also [58]). At the same time, the inter-annotator agreement achieved in 

this study for the 9 classes is considerably better than in many other reports which dealt 

with multiple-class annotation of short texts (e.g., [59,60]). It is understood that the better 

inter-annotator agreement would be attributed, at least in part, to the fixed (as in [29]) 

rather than open-ended (as in [59]) labels used in the experiments. The focus of the pre-

sented case study was, however, more on automatic classification than on knowledge and 

label discovery. The results obtained also indicate that for the data, the inter-coder agree-

ment remained nearly the same, regardless of whether single (Cohen’s Kappa of 0.658) or 

multiple (Kappa of 0.609) labels were selected for the reviews. This may be due to the 

semantic ambiguity associated with interpretation of short and possibly unfocused re-

views by annotators lacking contextual domain knowledge. Comparing the final labels 

with the automated classification results demonstrated that the computer methods tested 

did not disagree more with the median human assessment (Kappa in the range of 0.612 to 

0.625) than the humans disagreed among themselves (Kappa of 0.609) for the data. Fur-

thermore, results depicted in Figure 4 suggest that the human-computer disagreement is 

Figure 9. TopicDiff-LDA computing time as a function of the segmented review amount. On the
graph, each dot indicates the time averaged over 10 random samples of the given size, and the bars
show the standard error.



Appl. Sci. 2022, 12, 3412 15 of 19

The segmentation time (and, generally, the complexity) of the proposed algorithm is
largely determined by the specific implementation of its Search function (see Algorithm 1).
In the experiment of Figure 9, this function utilized the standard grid search of a Python
library and the segmentation time grew linearly, as the number of reviews increased. For
a comparison, some of the best supervised segmentation algorithms also have a linear
time-complexity [39]. On the other hand, the runtime of GraphSeg, which is the second-
most-accurate among unsupervised algorithms examined (see Table 2), is a polynomial
function of the data size [49]. The latter time-complexity holds for many other unsupervised
and semi-supervised segmentation algorithms (e.g., [46–48]). Therefore, one would assert
that the algorithm proposed in this study has similar or better scalability than the existing
baseline methods, whether supervised or unsupervised.

5.2. Labeling

The reliability analysis of the gold-standard sets conducted in Section 4.3 confirmed
that labeling short online texts is a challenging and often confusing task for human anno-
tators (see [31] but also [58]). At the same time, the inter-annotator agreement achieved
in this study for the 9 classes is considerably better than in many other reports which
dealt with multiple-class annotation of short texts (e.g., [59,60]). It is understood that
the better inter-annotator agreement would be attributed, at least in part, to the fixed (as
in [29]) rather than open-ended (as in [59]) labels used in the experiments. The focus of the
presented case study was, however, more on automatic classification than on knowledge
and label discovery. The results obtained also indicate that for the data, the inter-coder
agreement remained nearly the same, regardless of whether single (Cohen’s Kappa of
0.658) or multiple (Kappa of 0.609) labels were selected for the reviews. This may be due
to the semantic ambiguity associated with interpretation of short and possibly unfocused
reviews by annotators lacking contextual domain knowledge. Comparing the final labels
with the automated classification results demonstrated that the computer methods tested
did not disagree more with the median human assessment (Kappa in the range of 0.612
to 0.625) than the humans disagreed among themselves (Kappa of 0.609) for the data.
Furthermore, results depicted in Figure 4 suggest that the human-computer disagreement
is not as much dependent on the specific label for TopicDiff-LDA as for MLTM. This may
signal that the proposed algorithm is less sensitive to inter-topic variations (in lexicon,
scope, etc.) than MLTM. Assessing the overall performances of the two multiple-labeling
algorithms (Figure 5), one could conclude that the proposed unsupervised method worked
at least as well as, or slightly better than semi-supervised MLTM on the review data. While
the considerable difference in the macro-averaged AUROC (0.90 for TopicDiff-LDA vs.
0.78 for MLTM) can be explained by the class imbalance (see Table 7), both algorithms
demonstrated “very good” [61] performance in terms of micro-averaged AUROC (0.86 and
0.82, respectively).

5.3. Automatic Classification

Results of the automatic classification of the newly collected tourism reviews obtained
in the case study suggest that the proposed approach allows for automatically generating
bronze standard training sets of an acceptable quality for many practical applications.
Performance evaluation of multi-class classification of customer reviews by state-of-the-
art application systems trained on gold standard sets typically results in F1-score values
ranging from 0.6 to 0.8, depending on the number of classes and the application domain
(e.g., see [62,63] and, more generally, [64]). The F1-scores obtained for the TopicDiff-LDA
-trained classifiers are in the upper part of this range. The proposed unsupervised approach
achieved better classification results than the MLTM semi-supervised method for all but
the “Beach” (6) label (Figure 7). By manually inspecting the gold-standard data of this class,
it was found that there are several relatively short but multiple-labeled reviews, such as,
for example, the following:
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“The Base G Beach (a former American WW2 base) is located about 10 km west of the city
of Jayapura, Papua. The beach is beautiful and from here you can look at the Pacific Ocean
which is the gateway for ships sailing by from the west. The Base G beach is quiet and
still very natural and clean. The water is clear and the beach is made of white sand. The
water is so clear you can see clearly through the underwater scenery. Besides enjoying the
scenery you can also go swimming, fishing, diving or rent a boat and sail around a bit.
Local residents have built some benches and cabins to chill and hang out if you get tired of
the sun. There are also several types of trees providing shade. While in Jayapura be sure
to visit Base G Beach as it never hurts to spend a day and enjoy this beautiful beach.”

The labels manually assigned to this text by all three annotators were “Beach” (6) and
“General Information” (7). The proposed approach failed to assign the “Beach” label as
TopicDiff-LDA could not break the review into segments and treated it as a single-label
(“General Information”) document. One possible reason for that is the minimum segment
size parameter set to 3 sentences (the sliding window size, see Section 3.2) in the presented
study that prevented the algorithm from detecting shorter segments. Another reason is
that TopicDiff-LDA works only with consecutive (i.e., linear and uninterrupted) segments.
In the case of MLTM, the minimum labeled unit is sentence, and it could have correctly
assigned both labels to the review in focus.

There was practically no impact of the training scheme on the classifier performance.
The model trained on (single-labeled) segments did work a little better than the model
trained on multiple-labeled reviews, most notably for “Natural Place” (3), “General Infor-
mation” (7), and “Things to Buy” (8) labels (see Figure 7). This may be due to the classifier
being “noised” by the label co-occurrence context in the case of whole-review training.
However, the class-aggregated difference is not statistically significant. The latter suggests
statistical independence of the classes and, in a sense, validates the choice of labels for the
review data.

It is understood that dealing with dynamic, constantly flowing volumes of customer
review data would require a transition from static to dynamic topic modeling in the pro-
posed framework. The data of the presented case study was collected for the period of
2011 to 2020–a short time for the tourism domain where knowledge and epistemological
perspectives change relatively slowly or, in many cases, not at all. This would not neces-
sarily be true in other domains, such as consumer electronics or politics and governance,
where online documents (customer feedback, political party programs, online petitions,
etc.) would include new and over-time-correlated topics. The application of the envisaged
approach in these domains would require the replacement of the basic LDA in the segmen-
tation algorithm with a method capable of handling dynamic content, e.g., as proposed
in [65,66].

6. Conclusions

In this paper, an original approach to automatic classification of online customer
reviews was proposed. The approach is built around a new text segmentation algorithm
developed in the study that is utilized to generate bronze standard multiple-labeled sets
for training multi-class classifier systems in an unsupervised manner. The algorithm was
tested in various experiments and found suitable, in terms of performance and scalability,
to solving the review segmentation problem. It was also deployed in a case study aimed at
building an efficient classifier system for tourism online reviews. Results of the case study
were scrutinized, and limitations of the approach were formulated.

The presented work offers a theoretical contribution that combines research on un-
supervised text segmentation and unsupervised multi-class classification for automated
multiple labeling of online reviews. In addition, the proposed algorithm for discovering
semantically homogeneous segments in short texts, based on a topic generative model,
constitutes a methodological and a practical contribution to the field of advanced computa-
tional and linguistic analytics.
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In a future study, it is planned to test the developed segmentation algorithm with
languages other than English. Modifications of the algorithm will also be examined
to incorporate dynamic topic modeling and extend its application to other domains of
business intelligence.
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