
����������
�������

Citation: Yuan, Y.; Zhao, P.; Guo, T.;

Jiang, H. Counterfactual-Based

Action Evaluation Algorithm in

Multi-Agent Reinforcement Learning.

Appl. Sci. 2022, 12, 3439. https://

doi.org/10.3390/app12073439

Academic Editors: Vicent Botti and

Vicente Julian

Received: 13 March 2022

Accepted: 25 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Counterfactual-Based Action Evaluation Algorithm in
Multi-Agent Reinforcement Learning
Yuyu Yuan *, Pengqian Zhao, Ting Guo and Hongpu Jiang

Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, School of Computer
Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications,
Beijing 100876, China; pengqian.zhao@g-mail.com (P.Z.); guo.ting@bupt.edu.cn (T.G.);
jianghongpu1029@bupt.edu.cn (H.J.)
* Correspondence: yuanyuyu@bupt.edu.cn

Featured Application: This work can be applied in multi-agent tasks to achieve cooperation be-
tween agents. For example multi-agent games, robotic mining, UAV cooperation, social behavior
simulation, etc.

Abstract: Multi-agent reinforcement learning (MARL) algorithms have made great achievements in
various scenarios, but there are still many problems in solving sequential social dilemmas (SSDs). In
SSDs, the agent’s actions not only change the instantaneous state of the environment but also affect the
latent state which will, in turn, affect all agents. However, most of the current reinforcement learning
algorithms focus on analyzing the value of instantaneous environment state while ignoring the study
of the latent state, which is very important for establishing cooperation. Therefore, we propose
a novel counterfactual reasoning-based multi-agent reinforcement learning algorithm to evaluate
the continuous contribution of agent actions on the latent state. We compute that using simulation
reasoning and building an action evaluation network. Then through counterfactual reasoning, we can
get a single agent’s influence on the environment. Using this continuous contribution as an intrinsic
reward enables the agent to consider the collective, thereby promoting cooperation. We conduct
experiments in the SSDs environment, and the results show that the collective reward is increased by
at least 25% which demonstrates the excellent performance of our proposed algorithm compared to
the state-of-the-art algorithms.

Keywords: multi-agent reinforcement learning; multi-agent system; counterfactual reasoning; intrin-
sic reward; social dilemmas; actor-critic

1. Introduction

Reinforcement learning is able to solve the serialized decision-making problem when
the agent interacts with the environment [1]. The single-agent reinforcement learning
algorithm shows good performance in many scenarios like video games [2], robot con-
trol [3], autonomous driving [4,5], etc. However, single-agent reinforcement learning is
insufficient to deal with the complex realistic environment containing multiple agents.
In multi-agent systems, the agents not only interact with the environment but also need to
consider the game relationship with other agents [6]. The involvement of cooperation and
competition makes reinforcement learning more complex and interesting [7,8]. Therefore,
more researchers have begun to pay attention to the application of reinforcement learning
in multi-agent systems.

Early multi-agent reinforcement learning (MARL) was just an extension of single-
agent algorithms in multi-agent systems [9–11]. According to the different reward function
settings, the MARL can divide into two categories. First, in a multi-agent system, all
agents are considered as a collective to interact with the environment and get only one total
reward [12]. All agents use this reward to update their policies. Thereby, the policy can

Appl. Sci. 2022, 12, 3439. https://doi.org/10.3390/app12073439 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073439
https://doi.org/10.3390/app12073439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12073439
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073439?type=check_update&version=2

Appl. Sci. 2022, 12, 3439 2 of 14

directly obtain the optimal joint action according to the environment state. However in the
face of the dimensional explosion of state space and action space, the policy is difficult to
converge and hard to address the credit assignment problem [13]. Another method is that
each agent has its own reward function and updates its policy independently [14]. This
solves the problems of slow convergence and exploding input space in joint learning. How-
ever, ignoring the actions of other agents will lead to the separation between the individual
and the collective. Simply applying the single-agent algorithm will make each agent adopt
a greedy strategy, resulting in the inability to establish effective cooperation. In conclusion,
joint learning and independent learning have their own advantages and disadvantages.
However, more scenarios [15,16] require agents to be responsible for different tasks to
achieve collaboration, which requires them to learn and make decisions independently.

In independent learning, each agent has its own reward function, and the sum of the
rewards of all agents constitutes the collective reward. At this point, for each agent, its
contribution to the collective is its own reward. However, some scenarios like Cleanup
in SSDs [17] need to be more considerate. In Cleanup, the agent can obtain a reward by
collecting apples, and it can also increase the probability of apple generation by clearing
the river (however, this action will reduce the agent’s reward). For the latter, we believe
that the action, although not immediately rewarding, still contributes to the collective.
Therefore, the contribution made by the agent to the environment can be divided into
instantaneous contribution and continuous contribution. The former is reflected in the
instantaneous reward, and the latter is reflected in the subsequent state. This paper will
examine how to assess the often overlooked continuous contribution which is important
for establishing agent cooperation. We propose to use the latent state with historical
information to evaluate it.

The latent state with more environmental information can be extracted from multiple
consecutive observations [18]. Using such a latent state can realize different needs, such
as realizing a single agent’s multi-step prediction [19], solving the uncertainty problem
in reinforcement learning [20], realizing the prediction of the following environmental
state [21], etc. All of these demonstrate that the latent states can be used in solving
serialization decision problems in reinforcement learning.

In a multi-agent system, the problem related to determining the contribution of agents
is credit assignment [22]. This problem mainly occurs in the centralized reward function
setting to determine the contribution of each agent to the team. A common solution is
counterfactual reasoning. COMA [23] proposes to train a centralized critic network using
a counterfactual baseline. The core idea is “what would happen if I did another action”.
However, in COMA, all agents share a reward function, which is not the same as the setting
in SSDs. We would prefer to conduct research using a more realistic independent setting.

However, independent learning will also bring many problems. In a multi-agent
system, agents attempt to improve their policies based on other agents, whose policies also
change over time during training. Such simultaneous changing makes the environment
non-stationary [24]. When the agent uses a simple reward function to face a complex
environment, most actions do not bring reward. This useful reward for policy updates is
sparse across all data [25]. Another very important problem is the competition between
agents caused by greedy policies. In order to solve these problems, researchers proposed to
divide the original reward into extrinsic reward and intrinsic reward [26]. The extrinsic
reward is used to measure agent performance and usually cannot be changed. The intrinsic
reward is internal to the agent and is designed to store human knowledge. We use the
continuous contribution as the intrinsic reward, allowing the agent to maximize its own
reward while considering a greater contribution to the collective.

In this paper, we propose a novel counterfactual reasoning-based multi-agent rein-
forcement learning algorithm to evaluate the continuous contribution of agent actions to
the latent state. A simple approach is simulation reasoning (SR). Using counterfactual
reasoning, we replicate the environment at a certain step in the task. We replace the agent’s
action with default action in the simulated environment and keep other agents’ policies

Appl. Sci. 2022, 12, 3439 3 of 14

unchanged. Then we run the simulation environment for K steps and record the data.
Comparing the result between real and simulation environment, the continuous contribu-
tion of the agent on the environment can be obtained. The second approach is to build a
centralized action evaluation network (AEN) to get the continuous contribution. According
to counterfactual reasoning, the action of an agent is replaced by the default action and is
re-evaluated. The difference between the two is the continuous contribution of the agent
to the environment. We take the obtained continuous contribution as an intrinsic reward,
and combine it with the extrinsic reward to obtain a reward function that takes into account
both the instantaneous contribution and the continuous contribution. By learning through
such a reward function, the agent can contribute to the collective while maximizing its
own reward.

The main contributions of this article are as follows: First, we discuss the limitations
of the current MARL and propose a new counterfactual-based multi-agent reinforcement
learning algorithm to obtain the continuous contribution of agent actions on the latent
state of the environment. Second, we use the simulation reasoning approach to achieve
counterfactual reasoning by replicating the environment and substituting actions. Further,
we build a centralized action evaluation network to get the impact of joint actions on the
latent states. Finally, we set up experiments on sequential social dilemmas (SSDs) to verify
the performance advantages of our proposed methods over the state-of-the-art algorithms.

The rest of this paper is structured as follows: Section 2 describes the basic knowledge
of multi-agent reinforcement learning. Section 3 elaborates on the counterfactual-based
multi-agent reinforcement learning algorithm with simulation reasoning and action evalua-
tion network. Section 4 introduces the environment and compares the experimental results.
Section 5 summarizes and looks forward to the future.

2. Background

We use the Markov decision process (MDP) [27] to represent the process of serialized
interaction between the agent and the environment in reinforcement learning. In a multi-
agent system, MDP can be represented by a five-tuple M = (S, A, R, T, γ), where S is the state
space, A is the action space, R : S× A× S→ R is reward function, T : S× A× S→ [0, 1]
is state transition function, and γ ∈ [0, 1] is the discount factor. Agent choose action
according to its policy πθ : S→ A, and receives a reward r. Afterward, the environment
will transfer to the next state by T. In a partially observable multi-agent environment [28],
O = O1 × ...×ON represent the joint local observation for N agents. A = A1 × ...× AN
represent the joint action. Meanwhile, the reward function and transition function change to
R = R1 × ...× RN , T = O× A× S→ [0, 1]. The discount reward is Rt = ∑∞

l=0 γlrt+l . Our
goal is to find a policy that maximizes the expected collective reward Rθ = Eτ∼pθ(τ)

[R(τ)].
Classical reinforcement learning methods are divided into two categories, one is based

on Q-learning [29], and the other is based on policy gradient [30]. Q-learning calculates the
value of state-action pair called Q-value:

Qπ(s, a) = Er,s′(R|st = s, at = a) (1)

Based on the Bellman equation Qπ(s, a) = Eπ [r+γQ(s′, a′)] the Q-value can update by

Q(s, a)← Q(s, a) + α[(r + γmaxa′Q(s′, a′))−Q(s, a)] (2)

Silver proposed the DQN [31] based on Q-learning, which uses a neural network to
fetch Q-function. The loss function is

L(θi) = Es,a,r,s′ [(r + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2] (3)

The policy gradient algorithm use a neural network to fit policy directly. The gradient
is computed by

∇φ J(πφ) = E[∇φ log π(a|s)Qπ(s, a)] (4)

Appl. Sci. 2022, 12, 3439 4 of 14

The proximal policy optimization (PPO) [32] algorithm uses clip function to limit
the magnitude of the gradient update while ensuring the effective update of the policy,
and uses experience replay buffer to increase data utilization efficiency. The gradient is
computed by:

Jθk
(θ) = ∑

st ,at

min (
pθ(at|st)

pθk (at|st)
Aθk

(st, at), clip(
pθ(at|st)

pθk (at|st)
, 1− ε, 1 + ε)Aθk

(st, at)) (5)

clip(a, a_min, a_max) =

a_min if a <= a_min
a_max if a >= a_max
a otherwise

(6)

The above algorithms are classic single-agent reinforcement learning algorithms. In a
multi-agent system, a simpler algorithm is to assign each agent an A3C [33] or Q-learning
algorithm, like IAC and IQL. However in this way, each agent regards other agents as part
of the environment, and does not consider the behavior of other agents when updating,
which leads to instability. Therefore, Ref. [34] proposed the MADDPG algorithm and
established a centralized critic network to calculate the joint Q value and then update the
policy. The gradient formula is:

∇θi J(µi) = Ex,a∼D [∇θi µi(ai|oi)∇ai Q
µ
i (x, a1, ..., aN)|ai=µi(oi)

] (7)

The centralized action-value function Qµ
i is update as:

L(θi) = Ex,a,r,x‘[(Q
µ
i (x, a1, ..., aN)− y)2], y = ri + γQµ

i (x‘, a‘1, ..., a‘N)|a‘j=µ‘j(oj)
(8)

Intrinsic reward improves the performance of the RL algorithm and solves the problem
of sparse reward [35]. Its general expression is R = αre + βrc. The former is called
extrinsic reward, which represents feedback from the environment. The latter is called
intrinsic reward, which contains prior human knowledge that enables the agent to learn
faster. Ref. [35] propose to use the influence between agents as an intrinsic reward:

rk
c,t =

N

∑
j=0,j 6=k

[DKL p(aj
t|a

k
t , sj

t)||p(aj
t|s

j
t)]] (9)

Counterfactual reasoning can be used in multi-agent systems to perform causal reason-
ing on certain characteristics. At each step, the agent takes turns to simulate counterfactual
actions to compare with the real situation. In this way, the agent’s response to the environ-
ment or the agent’s response to other agents can be obtained. Counterfactuals can also be
used in reward reshaping to solve the problem of credit assignment.

3. Method

In this section, we will introduce the counterfactual reasoning-based multi-agent
reinforcement learning algorithm in detail. First, instead of explicitly extracting the latent
state of the environment, we compute the continuous contribution by duplicating the
environment based on simulation reasoning (SR). Second, we extract latent states from
successive environmental states and build an action evaluation network (AEN) to evaluate
the continuous contribution of joint actions on the latent state. After getting the continuous
contribution, we use it as an intrinsic reward to participate in the update of the policy.
The following is the detailed introduction of SR and AEN.

3.1. Simulation Reasoning

In reinforcement learning, the agent updates its policy according to the reward signal
feedback from the environment. In MARL, in order to make agents consider the impact of
actions on the collective, we give each agent additional intrinsic rewards. Moreover, agents’

Appl. Sci. 2022, 12, 3439 5 of 14

observations are not comprehensive in the partially observable Markov decision process
(POMDP) [36] so we cannot just use the historical observation to make judgments.

To make that, we replicate the environment E to Ec. The agent selects action a according
to policy π in E. We replace a to default action ac and submit the joint action A = a1...ac

i ...aN
to Ec. Then continue to run the environment Ec for K steps while maintaining the policies
of all agents unchanged. The operation of the simulated environment implies changes in
the latent state of the environment. Performing a counterfactual action, in this case, can get
the influence of that action on the latent state.

Counting the data of these K steps, we get the phased collective reward Rc
t =

∑N
i=0 ∑K

l=0 rc
i,t+l . At the same time, the phased collective reward in the real environment

is Re
t . Then rc

t = Re
t − Rc

t represents the difference between the two results when agent
i execute action a and does not execute action a. The main procedure of SR is shown in
Algorithm 1.

Algorithm 1 Simulation reasoning

1: Initialize actor network θi and critic network φi for each agent i ∈ (1, N) with random
parameters θ, φ. Initialize hyperparameter predict step K, learning rate α, intrinsic
factor β.

2: for each episodes do
3: for t=1,T do
4: Copy the environment get Ec

5: Sample actions A = (a1, a2, . . . , aN) from policies π1...N
6: Execute actions in E and get reward re

t
7: for each agents do
8: Replace action ai, execute A′ in simulation environment Ec, get reward rc

i,0
9: for j=1,K do

10: Repeat 5,6 in Ec and get reward rc
i,j

11: end for
12: end for
13: Compute phased simulation collective reward Rc

i,t = ∑N
i=1 ∑K

j=0 rc
i,j

14: Compute phased collective reward Re
t = ∑N

i=0 ∑K
j=0 re

t+j
15: Compute intrinsic reward rc

t = Re
t − Rc

t for each agent
16: Rewrite reward rt = (1− β)re

t + βrc
t

17: Compute gradient ∇θ ,∇φ.
18: Update policy and network θt+1 ← θt − α∇θ , φt+1 ← φt − α∇φ

19: end for
20: end for

We know that part of the current training difficulties in reinforcement learning comes
from the collection of samples. In a complex environment, the agent needs to continuously
interact with the environment, including action decision-making and environmental state
transition. This takes a lot of time and resources to collect and store the sample. Actually, our
proposed simulation reasoning method is more time-intensive. Each simulation reasoning
step takes extra time to replicate the environment and run additional K steps to collect
simulation data. Nevertheless, the final collective reward is still a sufficient improvement
compared to the baseline in Section 4. It is acceptable to trade efficiency for performance
under the circumstance of sufficient hardware resources today.

3.2. Action Evaluation Network

To address the existing problems in SR and to use latent states explicitly, we propose
to use an action evaluation network (AEN) to compute continuous contribution. In the
mainstream reinforcement learning algorithms, the input of most models is the agent’s
observation of the environment. This observation is generally expressed in the form of
images. We think that simple images cannot provide complete environmental information

Appl. Sci. 2022, 12, 3439 6 of 14

and there is a more important latent state that cannot be displayed with single-image.
Therefore, we want to extract the latent state from multiple consecutive images and use the
latent state to complete the environmental information. Moreover, the agent’s action will
not only change the state of the environment but also affect the latent state. The feedback
result of the former is the environmental reward re, and the feedback result of the latter can
be regarded as intrinsic reward rc.

In a partially observable environment, the agent can only observe its surrounding
environment and obtain local observation oi. Meanwhile, the extraction of the latent
state requires sufficient environmental information. Therefore, we first combine the joint
observation (o1, o2 . . . oN) and input it into the convolutional neural network (CNN) to
extract the complete environment information O.

Then according to the continuity of the environmental state in time, our network adds
a recurrent neural network with memory capabilities. We input this series of states into
the long short-term memory (LSTM) network. Perceived changes in the environment are
stated through remembering and forgetting, the LSTM outputs the latent state L of the
environment Lt, ht = fL(ht−1, Ot; θl).

The latent state extracted from the observation sequence (Ot, Ot+1, . . . , Ot+k) reflects
the change of the environmental state from t to t + k. The influence of the joint action at
timestep t on the latent state at timestep t+ k can be regarded as its continuous contribution
to the future collective. Therefore, the timestep t of the green part in Figure 1 corresponds
to timestep t + k of the red part. Finally, we propose a novel evaluation network that takes
latent state and joint action as input and outputs the continuous contribution of action
during this time C = fa(Ot+k, At; ψa).

Figure 1. The architecture of action evaluation network. The red part is used to process the input
images and extract latent state L. The green part is responsible for evaluating the continuous
contribution C of agent actions in the latent state.

We expect to use the AEN to get the effect of a joint action At on the latent state Lt.
Then an intuitive evaluation method is to calculate the difference between the state value
during this period. So we use TargetVt = v(st)− v(st+k) as target to AEN. The loss function
can be written as:

Lθ = E[(TargetVt − Ct)
2] (10)

Appl. Sci. 2022, 12, 3439 7 of 14

In multi-agent reinforcement learning, the state value can be represented by the
collective reward

v(st) = ∑
s′∈S+

p(s′|s, π(s))(Rt + γv(s′)) (11)

The continuous contribution Ct represents the influence of the joint action on the latent
state at time t, and evaluates the change of state value from t to t + k. However, this is
the contribution of the joint action and cannot be precisely assigned to a specific agent.
Therefore, we use counterfactual reasoning to replace the action of agent i in the joint action.
The joint action after the replacement is re-input into the network for evaluation, and a new
evaluation value is obtained Ci,t. Similar to the method in the previous section, we make a
difference between the two contribution values to obtain the continuous contribution of the
agent’s action on the environment rc

i,t = Ct − Ci,t. In this way, replace the actions of each
agent and get their contribution. The algorithm can be summarized in Algorithm 2.

Algorithm 2 Action evaluation

1: Initialize actor network and critic network for each agent i ∈ (1, N) with random
parameters θ, φ. Initialize action evaluation network with ψ. Initialize predict step K,
learning rate α, intrinsic factor β.

2: for each episodes do
3: Initialize observation o from state S
4: for t=1,T do
5: Sample actions A = (a1, a2, . . . , aN) from policies π1...N
6: Execute actions in E, get reward Re

t = ∑N
i=1 ri

t and next observation ot+1
7: end for
8: for t=1,T in this episode do
9: Extract latent state Lt

10: Compute the influence of joint action Ct
11: Replace action ai get Ci,t
12: Compute agent’s continuous contribution rc

i,t
13: end for
14: Rewrite reward rt = (1− β)re

t + βrc
t

15: Compute gradient ∇θ ,∇φ,∇ψ.
16: Update policy and network θt+1 ← θt − α∇θ , φt+1 ← φt − α∇φ, ψt+1 ← ψt − α∇ψ

17: end for

Therefore, we can add rc as an intrinsic reward to the update and optimization of the
individual network. In this way, when the agent’s policy selects actions, it considers a single
step to obtain the largest environment reward and can obtain more future rewards. It makes
the agent not only carry out its own greedy policy but also consider how to contribute to the
whole environment. By balancing these two, agents can effectively achieve collaboration.

4. Experiments and Results

In this section, we first introduce the virtual environment used in the experiment,
and then list the classic baseline algorithms we used. In addition, we explained hyperpa-
rameter settings used in the experiment. The last and most important thing is to display
and analyze the experiment results.

4.1. Environment Setting

The serialize social dilemma is a multi-agent game environment proposed by Deep-
Mind. The environment includes two partially observable games: Cleanup and Harvest.

The basic elements in these two environments are agent and resource (apple). Each
time the agent collects an apple, its reward will increase by one. Our goal is to train a policy
to make agents get more apples. Below is a detailed introduction of the two games.

Cleanup: This environment is a rectangular area (18× 24), shown in Figure 2, which
includes rivers and flat ground. Among them, the river will produce waste according to a

Appl. Sci. 2022, 12, 3439 8 of 14

probability, and the amount of waste determines the probability of apples being generated
on flat ground. Multiple agents can perform operations on the river and flat ground,
including moving (up, down, left, right, and stay), cleaning up the river, and attacking.
Apples at the destination will be automatically collected. Cleaning up and attacking
operations will make one’s own reward −1. When an agent is attacked, its reward is −50.
Therefore, the environment has the following characteristics: apples as the main source
of reward, its generation rate is affected by the waste in the river. If we want to get more
apples, we must have some agents to clean up the river at the cost of reward −1.

Figure 2. The Cleanup environment in social dilemmas. The green pixels are apples and other
colorful pixels are agents. The gray pixels at the top of the image represent the waste in the river that
needs to be cleaned up.

The cost of the agent attacking others (−1) is very small compared to the loss of the
attacked agent (−50). However, in a multi-agent system, under the setting of partially
observable and independent learning, the agent cannot understand the connection between
attacking and being attacked. In order to obtain a higher collective reward, it is necessary
to reduce aggressive behavior.

Harvest: This environment is also a rectangular area (38× 15), shown in Figure 3,
composed entirely of flat ground. Apples will be produced on flat ground, and the apple’s
generation probability is determined by the number of apples around a cell. Agents in this
environment behave the same as those in Cleanup, except for cleaning up. The characteristics
of this environment are as follows: apples as the main source of reward, their generation
rate in a cell is affected by the number of apples around them. The more apples around,
the more likely it is to produce apples. Therefore, if the agent collects apples without
restriction, no new apples will be produced in the later stage.

Figure 3. The Harvest environment in social dilemmas. The green pixels are apples and other colorful
pixels are agents.

Both of these environments reflect social dilemmas: Scenarios when individual in-
terests conflict with collective interests. In order to obtain a higher collective reward in
Cleanup, there should be an agent to clean up the river. The same purpose in Harvest, all
agents must collect apples in a limited manner. It means that they will understand the huge
loss caused by the aggressive behavior and unlimited behavior to the collective reward.
Our article tries to realize these targets.

Appl. Sci. 2022, 12, 3439 9 of 14

4.2. Baseline

The main algorithms used in this work include IAC, IPPO, and MADDPG. In SSDs,
the agent has its own reward function for independent learning. Therefore, we assign the
A3C algorithm and PPO algorithm to each agent as a baseline for comparison. Moreover,
global information is used in both SR and AEN, so we conducted a control experiment
with MADDPG which also applies global information.

The A3C algorithm is an excellent reinforcement learning algorithm that combines the
PG algorithm (actor network) and the Q-learning-based algorithm (critic network). There-
fore, A3C greatly improves the efficiency of policy learning. Additionally, through multi-
environment parallel processing, the sampling rate, and the running speed is increased.

The PPO algorithm is based on the AC architecture (each agent has an actor network
and a critic network). However the algorithm realizes the reuse of data through importance
sampling. Another innovative point of the algorithm is that it limits the update range of
the policy. The PPO determines whether to optimize or not by calculating the relationship
between the new policy and the old policy. This idea ensures that each gradient update is
in an optimal direction.

MADDPG algorithms are extensions of DDPG in multi-agent systems. The algorithm
trains a critical network using global information based on the settings of centralized critic
and decentralized policy and predicts their next actions by modeling the policies of other
agents. It uses the predicted action to find a self-action that maximizes the joint Q-value.
The algorithm has an excellent performance in a multi-agent environment, and has been
compared to most RL algorithms as a baseline.

4.3. Experiment Setup

We introduce various hyperparameters settings in detail in this section. In simulation
reasoning, the predict length K is 15. There is a CNN network, LSTM network, and fully
connected network in the AEN. In the CNN, the convolution kernel size is 6 and the
dimensional of the fully connected layer is 64. The times of recurrence is 15 in LSTM.
The action contribution evaluation part is a fully connected neural network with two
hidden layers of size 128× 64. The agent model includes actor network and critic network,
and they are also fully connected neural networks. In partial observable environments,
the agent’s observation range is 5× 5. The discount factor is 0.95. In parallel processing,
the batch size is 8000.

4.4. Results and Analysis

The results of the experiment are shown in the figure below. The horizontal axis in
the figure represents the training timesteps and the vertical axis represents the collective
reward. We use five sets of random seeds to repeat the experiment in two environments.
The training duration is various in different environments, but they can fully demonstrate
the realization results. We add contribution incrementally based on time, which sometimes
leads to the delayed performance of the algorithm.

4.4.1. Cleanup

Figure 4 shows the performance of A3C and PPO algorithms with SR and AEN in the
Cleanup environment. The experimental curve clearly shows the improvement effect of our
proposed algorithm on the baseline algorithm.

Appl. Sci. 2022, 12, 3439 10 of 14

Figure 4. Experiment results in Cleanup. The top two figures are the results of our method applied to
A3C. The bottom two figures are the experiment results based on PPO.

The shaded part in the figure represents the fluctuation of the experimental results of
multiple groups. The baseline algorithm in the figures indicates that the collective reward
of basic agents can quickly converge to 25 by A3C and 50 by PPO. However, there is no
performance improvement after convergence. Without the help of external forces, the agent
in Cleanup is caught in a social dilemma: no agent will give up some individual interests
for the long-term collective interests. However, after applying SR, the collective reward did
not stop at the baseline level, but continued to improve with the passage of training time.
After training six million steps, the collective reward of SR-PPO reached an average of
about 400, and AEN-PPO reached 800. After training 9 million steps, the collective reward
of SR-A3C reached an average of about 125, and AEN-A3C reached about 300.

We know that in the Cleanup environment, if we want to get more resources, there
must be agents in the environment to clean up the river. This is not profitable for the
individual as they need to lose profit. Therefore, agents that use baselines rarely choose
to clean up the river, and are greedy to collect resources. However, after applying SR,
agents will choose to clean the river out of consideration for collective interests. The loss
of individual interests will be compensated by contributions, thus breaking the social
dilemma. The calculation of the contribution in SR is based only on the current trace,
which is too limited. The evaluation network in the AEN is constantly updated during the
training process.

After referring to more data, the AEN can get a more accurate contribution calculation.
Therefore, compared with SR, the performance of the collective reward using the AEN
will be superior. Experimental results show that our proposed algorithm breaks the social
dilemma by encouraging agents to contribute to the collective.

Appl. Sci. 2022, 12, 3439 11 of 14

4.4.2. Harvest

Figure 5 shows the performance of our proposed algorithm in the Harvest. There is no
need for an agent to clean up the river in the Harvest, and there are more resources on the
map. Therefore, the agent can quickly collect more apples, and the collective reward in the
baseline can reach 400. However, because the number of apples in Harvest is determined
by the number of apples around it, maintaining a reasonable amount of resources allows
one to continue to harvest more resources. The agent that applied SR-A3C and SR-PPO
got a collective reward of about 600 after stabilization. The agent that applied AEN-A3C
and AEN-PPO got a collective reward of about 800. According to the nature of the Harvest
environment, the increase in the upper limit of collective rewards reflects that the agent is
indeed acquiring resources in a controlled manner. The experimental results show that our
proposed algorithm encourages agent temperance to break social dilemmas.

Figure 5. Experiment results in Harvest. The top two figures are the results of our method applied to
A3C. The bottom two figures are the experiment results based on PPO.

4.4.3. Discussion

In addition to the comparison with the A3C and PPO algorithms, we also compared
the MADDPG algorithm using mutual information. Figure 6 shows the comparison results
of A3C-based AEN and MADDPG. In Cleanup, the AEN embodies the advantages of
the ultimate collective gain. In Harvest, although the collective returns are not much
different, the convergence speed in the early stage is still improved. This demonstrates
the effectiveness of the AEN structure for enhancing collective reward and promoting
cooperation in the SSDs environment.

Table 1 shows the maximum collective reward of our proposed algorithm in the two
environments. We can see that the PPO algorithm using SR and AEN is very significant
in the Cleanup environment. Compared to the baseline, there is also a performance im-
provement. The application of the two algorithms in the two environments also reflects the
general applicability of the method we proposed. The method we propose can be applied

Appl. Sci. 2022, 12, 3439 12 of 14

to a variety of basic algorithms. The intrinsic reward can solve the problem of conflict of
interest between individuals and collectives in a multi-agent system.

Figure 6. Experiment results in Cleanup and Harvest using AEN and MADDPG algorithms.

Table 1. Maximum collective reward in the two environments.

A3C SR-A3C AEN-A3C PPO SR-PPO AEN-PPO

Cleanup 82 152 378 144 520 1115
Harvest 527 731 813 539 708 922

5. Conclusions

This paper proposes the counterfactual reasoning-based multi-agent reinforcement
algorithm to train policy in multi-agent systems. The simulation reasoning method collects
data by simulating the environment and modifying actions, then compares with real data
to get the continuous contribution of the agent’s actions to the environment. In the action
evaluation network, we use CNN and LSTM networks to extract the latent state of the
environment. A neural network is used to fit the mapping between joint action and latent
state. It also gains a single agent’s continuous contribution to the environment by replacing
its action. The continuous contribution of the agent is used as an intrinsic reward, combined
with an environmental reward for training. The policy trained in this way will enable the
agent to balance individual and collective interests.

Our proposed algorithm has been verified by experiments in SSDs. The comparison
with the baseline shows the performance advantage of our proposed algorithm. When
facing dilemmas, the interests between the individual and the collective can be balanced
by intrinsic rewards based on contributions. In future work, we will continue to optimize
the process of extracting latent state in the AEN to obtain a more explanatory latent state
and further optimize the evaluation network. Moreover, we will try to combine with
hierarchical reinforcement learning to solve higher-level decision-making problems.

Author Contributions: Conceptualization, Y.Y., P.Z., T.G. and H.J.; Formal analysis, P.Z.; Investiga-
tion, P.Z. and T.G.; Methodology, P.Z. and H.J.; Project administration, Y.Y.; Resources, P.Z.; Software,
P.Z.; Supervision, T.G. and H.J.; Validation, P.Z.; Visualization, P.Z. and T.G.; Writing—original draft,
P.Z.; Writing—review & editing, Y.Y. and T.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appl. Sci. 2022, 12, 3439 13 of 14

Abbreviations

The following abbreviations are used in this manuscript:
MARL Multi-Agent Reinforcement Learning
SSDs Sequential Social Dilemmas
COMA Counterfactual Multi-Agent Policy Gradients
SR Simulation Reasoning
AEN Action Evaluation Network
MDR Markov Decision Process
DQN Deep Q-Network
PPO Proximal Policy Optimization
A3C Asynchronous Advantage Actor-Critic
IAC Independent Actor-Critic
IQL Independent Q-Learning
MADDPG Multi-Agent Deep Deterministic Policy Gradient
CNN Convolutional Neural Network
LSTM Long Short-Term Memory

References
1. Aradi, S. Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans. Intell. Transp. Syst.

2020, 23, 740–759. [CrossRef]
2. Cobbe, K.; Hesse, C.; Hilton, J.; Schulman, J. Leveraging procedural generation to benchmark reinforcement learning. Int. Conf.

Mach. Learn. 2020, 119, 2048–2056.
3. Yang, Y.; Caluwaerts, K.; Iscen, A.; Zhang, T.; Tan, J.; Sindhwani, V. Data efficient reinforcement learning for legged robots. Conf.

Robot. Learn. 2020, 100, 1–10.
4. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 1–18. [CrossRef]
5. Yang, J.; Zhang, J.; Xi, M.; Lei, Y.; Sun, Y. A Deep Reinforcement Learning Algorithm Suitable for Autonomous Vehicles: Double

Bootstrapped Soft-Actor-Critic-Discrete. IEEE Trans. Cogn. Dev. Syst. 2021. [CrossRef]
6. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-Robot Path Planning Method Using Reinforcement Learning. Appl. Sci. 2019,

9, 3057. [CrossRef]
7. Gupta, T.; Mahajan, A.; Peng, B.; Böhmer, W.; Whiteson, S. Uneven: Universal value exploration for multi-agent reinforcement

learning. Int. Conf. Mach. Learn. 2021, 139, 3930–3941.
8. Zhang, K.; Sun, T.; Tao, Y.; Genc, S.; Mallya, S.; Basar, T. Robust multi-agent reinforcement learning with model uncertainty. Adv.

Neural Inf. Process. Syst. 2020, 33, 10571–10583.
9. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges,

solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [CrossRef]
10. Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; Mordatch, I. Emergent Complexity via Multi-Agent Competition. arXiv 2017,

arXiv:1710.03748.
11. Ramii, M.; Bonarini, A. Augmented Memory Replay in Reinforcement Learning With Continuous Control. IEEE Trans. Cogn. Dev.

Syst. 2021. [CrossRef]
12. Yang, Y.; Hao, J.; Chen, G.; Tang, H.; Chen, Y.; Hu, Y.; Fan, C.; Wei, Z. Q-value path decomposition for deep multiagent

reinforcement learning. Int. Conf. Mach. Learn. 2020, 119, 10706–10715.
13. Zhou, M.; Liu, Z.; Sui, P.; Li, Y.; Chung, Y.Y. Learning implicit credit assignment for cooperative multi-agent reinforcement

learning. Adv. Neural Inf. Process. Syst. 2020, 33, 11853–11864.
14. Christianos, F.; Papoudakis, G.; Rahman, M.A.; Albrecht, S.V. Scaling multi-agent reinforcement learning with selective parameter

sharing. Int. Conf. Mach. Learn. 2021, 139, 1989–1998.
15. Leibo, J.Z.; Dueñez-Guzman, E.A.; Vezhnevets, A.; Agapiou, J.P.; Sunehag, P.; Koster, R.; Matyas, J.; Beattie, C.; Mordatch, I.;

Graepel, T. Scalable evaluation of multi-agent reinforcement learning with melting pot. Int. Conf. Mach. Learn. 2021, 139,
6187–6199.

16. Su, J.; Adams, S.; Beling, P.A. Value-decomposition multi-agent actor-critics. In Proceedings of the AAAI Conference on Artificial
Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 11352–11360.

17. Leibo, J.; Zambaldi, V.; Lanctot, M.; Marecki, J.; Graepel, T. Multi-agent Reinforcement Learning in Sequential Social Dilemmas.
In Proceedings of the 16th International Conference on Autonomous Agents and Multiagent System, São Paulo, Brazil, 8–12 May
2017; Volume 16, pp. 464–473.

18. Lee, A.X.; Nagabandi, A.; Abbeel, P.; Levine, S. Stochastic latent actor-critic: Deep reinforcement learning with a latent variable
model. Adv. Neural Inf. Process. Syst. 2020, 33, 741–752.

http://doi.org/10.1109/TITS.2020.3024655
http://dx.doi.org/10.1109/TITS.2021.3054625
http://dx.doi.org/10.1109/TCDS.2021.3092715
http://dx.doi.org/10.3390/app9153057
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1109/TCDS.2021.3050723

Appl. Sci. 2022, 12, 3439 14 of 14

19. Chua, K.; Calandra, R.; McAllister, R.; Levine, S. Deep Reinforcement Learning in a Handful of Trials Using Probabilistic
Dynamics Models. Adv. Neural Inf. Process. Syst. 2018, 31. Available online: https://proceedings.neurips.cc/paper/2018/hash/
3de568f8597b94bda53149c7d7f5958c-Abstract.html (accessed on 12 March 2022).

20. Kaiser, Ł.; Babaeizadeh, M.; Miłos, P.; Osiński, B.; Campbell, R.H.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski, P.; Levine, S.;
et al. Model Based Reinforcement Learning for Atari. In Proceedings of the International Conference on Learning Representations,
NewOrleans, LA, USA, 6–9 May 2019.

21. Freeman, D.; Ha, D.; Metz, L. Learning to Predict without Looking Ahead: World Models without Forward Prediction. Adv.
Neural Inf. Process. Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper/2019/hash/15cf76466b97264765356
fcc56d801d1-Abstract.html (accessed on 12March 2022).

22. Khadka, S.; Tumer, K. Evolution-Guided Policy Gradient in Reinforcement Learning. Adv. Neural Inf. Process. Syst. 2018, 31.
Available online: https://proceedings.neurips.cc/paper/2018/hash/85fc37b18c57097425b52fc7afbb6969-Abstract.html (accessed
on 12 March 2022).

23. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

24. Padakandla, S.; Prabuchandran, K.; Bhatnagar, S. Reinforcement learning algorithm for non-stationary environments. Appl. Intell.
2020, 50, 3590–3606. [CrossRef]

25. Schoettler, G.; Nair, A.; Luo, J.; Bahl, S.; Ojea, J.A.; Solowjow, E.; Levine, S. Deep reinforcement learning for industrial insertion
tasks with visual inputs and natural rewards. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; pp. 5548–5555.

26. Dilokthanakul, N.; Kaplanis, C.; Pawlowski, N.; Shanahan, M. Feature control as intrinsic motivation for hierarchical reinforce-
ment learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3409–3418. [CrossRef] [PubMed]

27. Kallus, N.; Uehara, M. Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes. J. Mach.
Learn. Res. 2020, 21, 1–63.

28. Le, T.P.; Vien, N.A.; Chung, T. A deep hierarchical reinforcement learning algorithm in partially observable Markov decision
processes. IEEE Access 2018, 6, 49089–49102. [CrossRef]

29. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. Learn. Dyn. Control. 2020, 120, 486–489.
30. Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.; Russell, S. Robust multi-agent reinforcement learning via minimax deep deterministic

policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 8–12 October 2019;
Volume 33, pp. 4213–4220.

31. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

32. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

33. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. Int. Conf. Mach. Learn. 2016, 48, 1928–1937.

34. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper/2017/hash/68a9
750337a418a86fe06c1991a1d64c-Abstract.html (accessed on 12 March 2022).

35. Jaques, N.; Lazaridou, A.; Hughes, E.; Gulcehre, C.; Ortega, P.; Strouse, D.; Leibo, J.Z.; De Freitas, N. Social influence as intrinsic
motivation for multi-agent deep reinforcement learning. Int. Conf. Mach. Learn. 2019, 97, 3040–3049.

36. Liu, B.; Liu, Q.; Stone, P.; Garg, A.; Zhu, Y.; Anandkumar, A. Coach-Player Multi-Agent Reinforcement Learning for Dynamic
Team Composition. Int. Conf. Mach. Learn. 2021, 139, 6860–6870.

https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15cf76466b97264765356fcc56d801d1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15cf76466b97264765356fcc56d801d1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/85fc37b18c57097425b52fc7afbb6969-Abstract.html
http://dx.doi.org/10.1007/s10489-020-01758-5
http://dx.doi.org/10.1109/TNNLS.2019.2891792
http://www.ncbi.nlm.nih.gov/pubmed/30714933
http://dx.doi.org/10.1109/ACCESS.2018.2854283
http://dx.doi.org/10.1038/nature14236
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html

	Introduction
	Background
	Method
	Simulation Reasoning
	Action Evaluation Network

	Experiments and Results
	Environment Setting
	Baseline
	Experiment Setup
	Results and Analysis
	Cleanup
	Harvest
	Discussion

	Conclusions
	References

