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Abstract: The U.S. Environmental Protection Agency (USEPA) provides databases that agglomerate
data provided by companies or states reporting emissions, releases, wastes generated, and other
activities to meet statutory requirements. These databases, often referred to as inventories, can be
used for a wide variety of environmental reporting and modeling purposes to characterize conditions
in the United States. Yet, users are often challenged to find, retrieve, and interpret these data due to
the unique schemes employed for data management, which could result in erroneous estimations or
double-counting of emissions. To address these challenges, a system called Standardized Emission
and Waste Inventories (StEWI) has been created. The system consists of four python modules
that provide rapid access to USEPA inventory data in standard formats and permit filtering and
combination of these inventory data. When accessed through StEWI, reported emissions of carbon
dioxide to air and ammonia to water are reduced approximately two- and four-fold, respectively, to
avoid duplicate reporting. StEWI will greatly facilitate the use of USEPA inventory data in chemical
release and exposure modeling and life cycle assessment tools, among other things. To date, StEWI
has been used to build the recent USEEIO model and the baseline electricity life cycle inventory
database for the Federal LCA Commons.

Keywords: National Emissions Inventory; Toxics Release Inventory; substance registry service;
facility registry service; eGRID; RCRAInfo; biennial hazardous waste report; discharge monitoring
report; EPA data; greenhouse gas reporting program; python; tool ecosystem

1. Introduction

The U.S Environmental Protection Agency (USEPA) administers national programs
for collection, verification, and distribution of information on individual facility generation
of waste and releases as well as areal (e.g., U.S.) and sector-based emissions. Together, these
programs compile data on releases of various types of pollutants as well as generation and
management of hazardous and toxic wastes. In general, these programs publish public
inventories of release and waste data that are national in scope and issued on an annual,
biannual, or triennial basis [1]. The Emissions & Generation Resource Integrated Database
(eGRID) [2], the Toxics Release Inventory (TRI) [3], and the National Emissions Inventory
(NEI) [4] are all examples of these inventories.

These inventories are each compiled independently to meet the requirements of
different programs. For example, the Air Emissions Reporting Requirements (AERR) Rule
in 40 CFR §51 requires states to report criteria air pollutants (CAPs) (e.g., carbon monoxide)
every year for large “Type A” sources and every three years for “Type B” sources. If a
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facility qualifies as a Type A or Type B source under the AERR, it will be incorporated in the
NEI as a point source. The NEI contains specific reporting thresholds for Type A and Type
B sources (details can be found in the supporting information). Reporting of hazardous
air pollutants (HAPs) (e.g., acetaldehyde) is optional in the NEI. The reporting process in
the NEI varies by state due to budget and by category of facility. The NEI is different from
other inventories such as the TRI as the emissions are not necessarily reported directly by
facilities. Emissions in the NEI can also be compiled by states, tribes, or the USEPA. The
TRI covers facilities that manufacture, processes, or otherwise use any of the Emergency
Planning and Community Right-to-Know Act (EPCRA) Section 313 chemicals. Facilities
that have 10 or more full-time employees (as defined in 40 CFR §372.3) and are in a TRI-
covered sector, as defined by the North American Industry Classification System (NAICS)
code, or are a federal facility must report TRI chemical releases. Almost all HAPs reported
within the NEI are also TRI chemicals. However, the TRI also includes toxic chemicals that
may not be considered HAPs, and therefore are not assessed in the NEI. Unlike the NEI,
TRI data are based on facility self-reporting, and facilities report on an annual basis. While
there may be overlap in TRI and NEI air emissions, the TRI also reports chemical releases to
other media such as land and water. In some cases, the NEI may use the TRI to supplement
HAP information. However, the common air emission values between the NEI and the TRI
may not always match due to differences in the reporting such as threshold values and the
reporting process itself. States, tribes, and the USEPA have more discretion to modify NEI
facility-level data during the reporting process as compared with the TRI reporting process.
While each inventory adheres to relevant regulations, the differences in the coverage and
reporting process can lead to complexities when using the databases together.

Public versions of these inventories are housed in various locations, are encoded in
various data formats, and use various vocabularies to describe their contents. For example,
eGRID data are released as Microsoft Excel workbook (xlsx) files for all facilities, while
TRI data are hosted as a series of comma separated value (csv) files and are modified
with updates regularly. Furthermore, several USEPA inventories are available through
Envirofacts, a RESTful web service. As the facility-level inventory data files are generally
very large (millions of records), accessing and working with them can require specialized
knowledge. Over time, these inventories have also been changing to meet programmatic
demands and are also stored and provisioned with new technologies.

These inventories provide critical information that helps to paint a national picture of
environmental health and identify sources of potential environmental and human health
issues related to pollution in the United States. They are widely used for modeling envi-
ronmental conditions to assess environmental compliance (e.g., air quality modeling for
meeting air quality standards) [5], determining needed capacity [6], developing bench-
marks [7–10], evaluating time trends [11], and many other purposes [12,13]. Making these
inventories easily usable may facilitate data compilation and modeling efforts.

The Standardized Emission and Waste Inventories (StEWI) tool is a set of Python
packages written to support rapid and transparent processing of these inventories. More
broadly, StEWI is one tool within an ecosystem developed by the USEPA to support
modeling in the realm of industrial ecology [14]. StEWI performs consistent, reproducible
processing and combination of USEPA emissions, releases, and waste inventories and
adheres to principles used and developed in various modeling efforts such as the U.S.
Environmentally Extended Input–Output (USEEIO) model [15] and the USEPA rapid life
cycle inventory (LCI) [1]. While some of these inventories contain additional information,
such as data aggregated by region, StEWI solely compiles the facility-based release and
waste generation data from the inventories. Additionally, StEWI compiles and harmonizes
metadata for the facilities and the pollutants or wastes.

StEWI is the first application of its kind known to the authors for rapid environmental
data retrieval and combination from public sources for use in environmental modeling.
Without StEWI, retrieving, processing, and understanding these inventories can be time
consuming and prone to misinterpretation, particularly when applications require the
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use of multiple inventories. In this regard, StEWI fills an important gap to enable further
applications of these valuable data sources. This may be directly useful to reconcile and
harmonize emissions from common U.S. inventory sources, but the approach that StEWI
embodies may also be valuable for other regions in which reconciling multi-sector, multi-
pollutant inventories is also a challenge [16].

Furthermore, StEWI adds value to individual inventory data in a number of ways. For
example, StEWI can remove overlapping releases when more than one inventory reports
the same release type. StEWI generates metadata such as flow reliability scores based on the
quality of the data described in the original source using methods previously developed by
Edelen and Ingwersen [17]. StEWI also provides a resource that other entities can easily use
to generate facility-level environmental information. The modeling effort used here may be
instructive for other integrated modeling efforts that compile large environmental datasets.
StEWI is actively maintained as an open-source tool on GitHub and will be updated as new
inventory years are released or data are revised.

The purpose of this article is to describe the structure of and data sources behind
StEWI and to demonstrate the benefits of applying this novel package for analysis of a suite
of facility-level emissions.

2. Materials and Methods

In this section, a general overview of StEWI’s organization is given, followed by an
in-depth explanation of the structure and function of each of the constituent libraries.

2.1. Organization and Dependencies

StEWI is designed as a semi-interdependent set of Python libraries (stewi, chemical-
matcher, facilitymatcher, and stewicombo). Each library performs unique tasks in providing
a standardized output or harmonization (Figure 1). Some libraries have dependencies
on other libraries; all have a common structure and analogous Application Programming
Interfaces (APIs). Like the other tools in the ecosystem, StEWI draws heavily on the pandas
library [18] and uses the pandas dataframe as its basic structure for data storage, import,
reshaping, and aggregation. Pandas is an extremely powerful data manipulation framework
that has enabled the rapid rise of the data science field [19,20] The requests library is used
generally to pull data from APIs when they are available [21]. Source data contained in
Microsoft Excel files are read using the openpyxl engine (for .xlsx files) [22] or the xlrd engine
(for .xls files) [23]. Outputs are stored in Apache parquet format [24], which enables efficient
processing and retrieval of large datasets via the pyarrow library. Configurable elements for
data retrieval and processing are generally stored in relevant .yaml files. YAML is a simple
text-based format that is used to store configuration data across the tool ecosystem [14].
StEWI relies on the PyYAML package to parse these files [25]. Finally, StEWI relies on
the USEPA LCA Ecosystem support package esupy for local file management, metadata
processing, and path management.

2.2. Stewi

The stewi library consists of inventory-specific modules as well as common support
modules that select, obtain, clean, and transform raw inventory data into standard output
formats. (Note that StEWI is used to refer to the entire collection of libraries described
herein, while stewi describes the individual library that directly accesses the raw inven-
tory data). Each inventory module includes code used to process original sources into
four standard outputs (flowbyfacility, flowbyprocess, facility, and flow) and record meta-
data. The formats are defined in the GitHub documentation under format specs, while
the field names and data types associated with each format are defined in the formats.py
module for use by stewi. Each standard file is processed for each inventory and for each year.
URLs, file names, and other identifier information for retrieving inventory data sources are
centrally stored as key–value pairs in config.yaml. Core functions in stewi for processing
and retrieving processed data are highlighted in Table 1.
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Table 1. Core stewi functions for processing and accessing inventories.

Function Method

Get Available Inventories and Years

Returns a dictionary of processed inventory sources,
where each key is a source and each dictionary value is
a list of available processed data years. Uses
flowbyfacility format by default.

Get Inventory
Returns a processed inventory as a dataframe in the
standard output format. If that inventory does not
exist locally, it will be generated.

Get Inventory Flows
Returns a processed flow inventory as a dataframe in
the standard output format. If that inventory does not
exist locally, it will be generated.

Get Inventory Facilities
Returns a processed facility inventory as a dataframe
in the standard output format. If that inventory does
not exist locally, it will be generated.

Get Metadata Returns the metadata file from the local
processed inventory.

Data processed in stewi may include not just pollutant emissions but also inputs of
resources and outputs of products or wastes. Therefore, the term ‘flow’ is adopted from
the field of life cycle assessment [26] and is used to describe either a product, emission, or
release of waste that is generated by an entity and enters into the environment or will be
used or processed (e.g., waste treatment) by a downstream activity or entity. Each flow is
assigned to a compartment, which reflects the media to which that flow is released (e.g., air,
water, soil). The names and capitalization for flows given in the original inventory data are
maintained. Additional metadata on the flows, such as the inventory ID for the flow and
CAS number, if applicable, are stored in the unique set of flows for a given inventory and
given year in the flow output file. All flow amounts are transformed from standard into
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metric units, using kilograms (kg) for all mass flows and megaJoules (MJ) for energy flows.
Conversation factors and conversion functions are stored in the globals.py module.

Data reliability scores are assigned to each flowbyfacility record using a method
previously developed in Edelen et al. [17]. Meyer et al. [27] and Cashman et al. [1] describe
the use of this method in the context of facility-level inventories. Upon processing, stewi
assigns a data reliability score based on the method for deriving the flow value in the
original inventory, with a flow reliability score of 1 representing a verified measurement,
and a score of 5 representing the lowest data quality.

For each inventory processed, the flowbyfacility data totals are validated against
reports of flow totals derived independently from the same inventory. The selected reports
used as data sources for validation are called validation datasets. Depending on the reports
available for each inventory, the flows are aggregated nationally or by state from the
flowbyfacility outputs in order to compare these to the validation data. The totals by flows
are compared against a calculated percent difference used as a tolerance level, where the
default tolerance level is 5%. The result for each flow comparison is reported using the
interpretations given in Table 2 and stored locally in a csv file. Comparisons where a data
point is not found in either the processed inventory or the validation dataset are indicated
as such. The code for the validation checks is contained in the validation.py module.

Table 2. Tolerance levels for validation. By default, the tolerance level (tl) is set to 0.05.

Percent difference Interpretation

0.0 identical
≤tl statistically similar
>tl Percent difference exceeds tolerance

stewi captures and records metadata on inventory sources, validation sources, and the
output datasets. For inventory and validation source data, stewi records the filename, the
URL the data were retrieved from, the date the data were retrieved, the file version, and
the version of StEWI used to record the data. For output data, a standard class of source
metadata defined in the esupy library is used, including fields for filename, output format
(e.g., flowbyfacility), version of StEWI, git hash, and date created. Functions and defaults
for metadata records are in the globals.py module.

Output files of type flowbyfacility and flowbyprocess can be filtered to remove records
using a set of embedded filters when retrieved with getInventory. Filter names and in-
structions are stored in filter.yaml and implemented in functions in the filter.py module.
Table 3 lists the filter, the inventories they apply to, and their functions. Embedded filters
were created to generate StEWI output files for specific applications. Additionally, a fil-
ter_for_LCI parameter is available in getInventory that, when set to True, applies all the
filters given in Table 3. All available filters can be printed to the console using see available
inventory filters.

Table 3. Filters available for stewi outputs.

Filter Inventory Function

US_States_only All Removes data not assigned to facilities in one of the 50 U.S.
States or D.C.

flows_for_LCI TRI, DMR, NEI Removes data for specific named flows that are not relevant
for the LCI or would represent double counting

remove_duplicate_organic_enrichment DMR

Removes overlapping organic enrichment reports. Facilities
can report multiple forms of organic enrichment (BOD and
COD), which represent duplicate reports of oxygen
depletion (see Meyer et al. [27])
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Table 3. Cont.

Filter Inventory Function

National_Biennial_Report RCRAInfo Removes waste codes and facilities not associated with the
National Biennial Report

imported_wastes RCRAInfo Removes imported wastes based on source code

The following USEPA inventory sources are available for processing in stewi: the NEI
(point source data only from the Emission Inventory System), the TRI, the eGRID, the Green-
house Gas Reporting Program (GHGRP), Discharge Monitoring Reports (DMRs) based
on reporting to the National Pollutant Discharge Elimination System, and the Resources
Conservation and Recycling Act’s Biennial Report generated from the RCRAInfo system
(RCRAInfo). The processing of each of the inventory sources is described further below.

2.2.1. Discharge Monitoring Reports

Facilities report annual and sub-annual discharges to water under the Clean Water
Act through the National Pollutant Discharge Elimination System (NPDES). The USEPA’s
DMR compiles data submitted by NPDES permit holders. The USEPA updates DMR flow
quantities for facilities on an annual basis.

In the DMR.py module, stewi accesses DMR data via the Water Pollutant Loading
Tool [28], a RESTful web service. Data for facilities are queried by state using the following
query parameters:

• Flows are aggregated as “parameter groupings” to avoid double counting of flows that
represent the same pollutant; this is especially relevant when facilities may be required
to report multiple versions of the same release (e.g., different types of Chemical
Oxygen Demand);

• The default setting for estimation is set to true; this setting estimates pollutant loads
when no data are reported for a particular time period; and

• Non-detects are set to 50% of the detection limit.

Subsequently, aggregated nutrient quantities for nitrogen and phosphorous are queried
by state with the Nutrient Aggregation feature on. With this feature, all nitrogen and
phosphorus compounds are converted to N and P, respectively, equivalents based on a hier-
archical evaluation in the Loading Tool to avoid double counting of reported nutrients [28].

Facility emissions are aggregated by state and validated against the State Statistics
reported by the USEPA. The State Statistics only report emissions from NPDES Individual
Permits and do not consider aggregated nutrients. So, the validation is performed prior to
incorporating aggregated nutrients, and emissions captured by stewi from facilities with
General Permits are excluded from the validation.

2.2.2. Emissions and Generation Resource Integrated Database

Through the eGRID, the USEPA compiles generation and emissions data for electricity-
generating units in the United States [2]. These data are sourced from USEPA compiled
statistics as well as facility-reported information to the Energy Information Administration
(EIA). eGRID data are released semi-regularly, often every other year, in the form of Excel
files. The specific emissions tracked by the eGRID are carbon dioxide (CO2), nitrogen
oxides (NOX), sulfur dioxide (SO2), methane (CH4), and nitrous oxide (N2O).

In the egrid.py module, stewi utilizes data from both the unit and plant-level datasets
to parse the eGRID inventory. Plant level data tracked by stewi include annual emissions,
heat input, and net generation. Where applicable, stewi also tracks the combined heat and
power thermal output as steam. The unit level data supply the necessary information
to characterize data reliability scores. Plant reliability scores for specific flows reflect the
emission-weighted average of all units. While the eGRID reports generation mix by fuel
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type, the emissions are reported as plant totals. As such, emissions are reported by facility
in stewi, but the generation resource mix is maintained as additional facility metadata.

Facility emissions and generation are aggregated across all facilities and validated
against national totals reported in the eGRID.

2.2.3. Greenhouse Gas Reporting Program

The GHGRP provides an inventory of greenhouse gases (GHG) at the facility and,
in some cases, unit level [29]. Facilities with GHG emissions from covered sources that
exceed 25,000 metric tons of CO2 equivalent (eq.) per year must report to the GHGRP.
Covered sources are listed by GHGRP subpart as documented in the Mandatory Green-
house Gas Reporting rule in 40 CFR §98, Mandatory Greenhouse Gas Reporting. Example
subparts include general stationary fuel combustion sources, electricity generation, ammo-
nia production, aluminum manufacturing, ethanol production, petroleum refineries, and
pulp and paper manufacturing. GHGRP reports for covered facilities are prepared on an
annual basis.

Within the GHGRP.py module, stewi downloads a series of data tables containing
GHGRP emissions data organized by subpart from the USEPA’s Envirofacts API. Data
from each subpart table are parsed to ensure a standardized format and concatenated into
a master data table. With the GHGRP, emissions from stationary combustion sources (i.e.,
subpart C) can be estimated using one of four calculation methodologies, referred to as
“tiers”, plus one alternative methodology:

• The Tier 1 methodology uses default emission factors and high heating values to
calculate mass emissions based on company records of fuel consumption;

• The Tier 2 methodology uses default emission factors to calculate mass emissions
based on measured high heating values and company records of fuel consumption;

• The Tier 3 methodology calculates mass emissions based on measured fuel character-
istics (e.g., carbon content, molecular weight) and measured fuel consumption;

• The Tier 4 methodology relies on a continuous emission monitoring system (CEMS)
to calculate mass emissions from the stack gas concentrations and the stack gas flow
rates; and

• In addition to these four methodologies, a small number of stationary combustion
units may rely on 40 CFR §75 calculation methods based on monitoring data already
collected under §75 (e.g., heat input, fuel use).

The emissions data from these five estimation methodologies are combined and
organized into a standardized table categorized by gas. In some cases, data are reported
at the unit level and must be aggregated to the facility level. Certain subparts (including
subparts E, BB, CC, LL, L, and O) do not have their own standalone subpart tables and must
be extracted from other data tables and parsed separately. After concatenating all subpart
data into a master table, data are aggregated into standardized outputs that report GHG
emissions by GHG flow (gas) and facility ID. Subpart data are maintained such that GHG
data can be accessed in flowbyprocess format, which maintains total emissions by facility
from each subpart. Data are validated against national-level data reported by the USEPA.

2.2.4. National Emissions Inventory

The NEI provides facility-level information on CAP and HAP emissions [4]. The
AERR Rule in 40 CFR §51 requires States (via State, local, or tribal (S/L/T) entities) to
report CAPs every year for large (Type A) point sources and every three years for other
(Type B) point sources (Table S1). While facility reporting of HAPs is optional, the USEPA
will augment facility-reported emissions with estimates based on speciation profiles or
from the TRI. Table S2 provides the share of each method used for facilities reporting HAPs.
Facilities report emissions data by source classification code (SCC), which corresponds to a
standardized list of specific processes or emissions sources. NEI point sources may include
large industrial facilities, electric power plants, and smaller industrial, non-industrial, and
commercial facilities.
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The NEI point source data are processed within the NEI.py module. stewi imports
NEI data exported from the USEPA’s Emissions Inventory System (EIS) Gateway. NEI data
files are read into stewi, concatenated into a single data table, and parsed into a standard-
ized format. Data reliability scores are assigned. Data are aggregated into standardized
outputs that report emissions by flow and facility ID. Data in the NEI are also compiled in
flowbyprocess format, which maintains reported emissions by facility for each unique SCC.
Data are validated against national-level data reported by the USEPA.

2.2.5. Resource Conservation and Recovery Act Biennial Report

The Resource Conservation and Recovery Act Information (RCRAInfo) provides the
type, disposition, and quantity of hazardous waste generated at the facility level. Facilities
that treat, store, or dispose of hazardous waste must submit a Biennial Report [30] to
RCRAInfo every two years.

Biennial Report data are downloaded by stewi from the USEPA’s RCRAInfo Public
Extract using the RCRAInfo.py module. Handler waste code descriptions are applied as
flow names; where those waste codes are unavailable, form code descriptions are used
instead. All facility and flow information is maintained in stewi, including wastes (e.g.,
imported wastes) and handlers not covered by the National Biennial Report. However,
by default these handlers are filtered from the inventory upon accessing it via stewi. Data
are validated against flow totals reported by State in the USEPA’s Trends Analysis for the
National Biennial Report.

2.2.6. Toxics Release Inventory

The TRI provides an inventory of air, water, and waste flows at the facility level for TRI-
reportable chemicals only [3]. Facilities in the United States are required to report to the TRI
if certain conditions are satisfied (e.g., they have 10 or more full-time employees, they are a
TRI-covered sector as defined by the NAICS code, and the facility manufactures (defined
to include importing), processes, or otherwise uses any EPCRA Section 313 chemical in
quantities greater than the established threshold in the course of a calendar year). The TRI
releases new inventory reports on an annual basis.

In the TRI.py module, stewi accesses TRI data through the Basic Plus data files, specif-
ically files ‘1a: Facility, Chemical, Releases, and Other Waste Management Summary
Information’ and ‘3a: Details of Off-site Transfers’. Collectively, these files contain the
facility and flow information necessary to characterize emissions and releases to air, water,
and soil. While the TRI tracks transfers and the storage/management of covered chemicals,
currently only exchanges directly with the environment are tracked in stewi (Table 4).

Table 4. TRI release types tracked by stewi.

TRI Field Source File Compartment

ON-SITE—FUGITIVE AIR EMISSIONS 1a air
ON-SITE—STACK AIR EMISSIONS 1a air
ON-SITE—DISCHARGES TO STREAM 1a water
ON-SITE—LAND TREATMENT/APPLICATION FARMING 1a soil
ON-SITE—OTHER DISPOSAL 1a soil
OFF-SITE—LAND TREATMENT 3a soil
OFF-SITE—OTHER LAND DISPOSAL 3a soil

Releases are aggregated across all facilities by flow and compartment and validated
against national results from the TRI Explorer Release Chemical Report.

2.3. Chemical Matcher (Chemicalmatcher)

Each inventory reports a unique set of flows based on associated program require-
ments. The flows have unique nomenclatures, identifiers, and typographical conventions.
The USEPA established the Substance Registry Service (SRS) for the purpose of centralizing
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and cross-linking substances reported in USEPA inventories and other program systems.
chemicalmatcher draws upon the flow output data from inventory processing from stewi and
uses the SRS web services to gather a common identifier for the flows that can be used to
link flows across the inventories. The chemicalmatcher output is similar to the stewi flow
output, with the common identification number from the SRS (SRS_ID), formatted Chem-
ical Abstract Services (CAS) number from the SRS (SRS_CAS), and inventory acronym
(Source) added.

2.4. Facility Matcher (Facilitymatcher)

Like the flows reported by chemicalmatcher, facilitymatcher collects a unique set of data
on facilities and identifies them with internal identifiers. facilitymatcher thus performs
an analogous function to chemicalmatcher but for facilities, gathering a common facility
identifier for cross-linking facilities across the inventories. The USEPA established the
Facility Registry Service (FRS) for the purpose of providing common facility identifiers
and facility information for facilities reporting to USEPA inventories and programs. The
facilitymatcher output is in the form of the inventory facility identifier, (FacilityID), the
common facility identifier (FRS_ID), and the inventory source (Source).

2.5. Combined Standardized Emission and Waste Inventories (stewicombo)

The stewicombo module utilizes the outputs of stewi, chemicalmatcher, and facilitymatcher
to generate combined inventories that handle duplication and aggregation across inventory
sources. In particular, stewicombo:

• Identifies common facilities across datasets;
• Aggregates multiple entities into a single facility;
• Assesses potential duplicate flows from a facility when a flow is reported to be emitted

to the same compartment across more than one inventory; and
• Enables custom handling of inventories (e.g., inventory preferences for duplicate flows).

In stewicombo, users have access to three methods for combining inventories (Table 5).
These methods allow users to combine flowbyfacility data from one or more inventories.
In each case, stewicombo first aligns facilities across inventories using the FRS_ID sourced
from facilitymatcher and then aligns flows using the SRS_ID from chemicalmatcher.

Table 5. Functions for combining inventories in stewicombo.

Function Method

Combine Full Inventories Combines flowbyfacility data for all facilities in the
selected inventory(-ies)

Combine Inventories for Facilities in
Base Inventory

Combines flowbyfacility data for all facilities in the
selected inventory(-ies); maintains only those facilities
with data present in the base_inventory.

Combine Inventories for Facility List

Combines flowbyfacility data for all facilities in the
selected inventory(-ies); maintains only those facilities
with data present in the base_inventory that are
included in the facility_id_list.

The overlap handler module of stewicombo handles the core functions of aggregating
and removing overlapping flows within facilities. Under default settings, inventory records
are compiled using the following logic:

• Records that share a common compartment and SRS_ID (i.e., are the same flow) and
FRS_ID (i.e., are the same facility) within an inventory are summed. This case typically
reflects a single facility reporting to two or more facility IDs within an inventory that
need to be aggregated; and

• Records that share a common compartment and SRS_ID (i.e., are the same flow)
and FRS_ID (i.e., are the same facility) across multiple inventories are assessed by
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compartment preference (see Table 6). This case reflects double counting by reporting
of the same chemical across two or more inventories.

Table 6. Default inventory preference by compartment, as documented in the parameter INVEN-
TORY_PREFERENCE_BY_COMPARTMENT.

Compartment Inventory Preference

air (1) eGRID, (2) GHGRP, (3) NEI, (4) TRI
water (1) DMR, (2) TRI
soil (1) TRI

waste (1) RCRAInfo, (2) TRI *
* Chemical quantities of waste from the TRI are not yet handled by stewi. Note that RCRAInfo reports waste
quantities and not chemical quantities.

Additional steps are taken to avoid overlap of:

• Nutrient flow releases to water between the TRI and DMR;
• Particulate matter releases to air reflecting PM < 10 and PM < 2.5 in the NEI; and
• Volatile Organic Compound (VOC) releases to air for individually reported VOCs and

grouped VOCs.

3. Results

StEWI v1.0 was used to produce the flowbyfacility, flow, and facility files for the
inventories presented in Table 7.

Table 7. USEPA inventories accessible by StEWI.

Source 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Discharge Monitoring Reports * x x x x x x
Greenhouse Gas Reporting Program x x x x x x x x x

Emissions & Generation Resource
Integrated Database x x x x

National Emissions Inventory ** x i i x i i x i
RCRA Biennial Report * x x x x x x

Toxics Release Inventory * x x x x x x x x x x x x

* Earlier data exist and are accessible but have not been validated. ** Only point sources included at this time from
the NEI; i interim years between triennial releases, accessed through the Emissions Inventory System, have not
been validated.

StEWI provides a meaningful way to track facility-based emission, energy, and waste
flows over time and across inventories. Assessment of flows across inventories allows for a
more thorough understanding of trends that are agnostic to any particular inventory. As
an example, changes in selected flows from selected inventories since 2014 are shown in
Figure 2.

Visualizing the same flow from multiple inventories demonstrates the benefit of using
stewicombo to combine inventory data for the same or related flows. Ammonia, nitrogen
dioxide, nitrogen oxides, and nitrogen are all nitrogen-derived pollutants that can have
negative impacts on human and ecosystem health. While some of the air and ground-based
species show relative stability with annual fluctuations or a slight decline over 2014–2018,
the nitrogen released to water as reported in the DMR shows a large relative increase.

Similarly, three inventories report releases of carbon dioxide (CO2) from facilities
(Figure 3). The eGRID only includes emissions from electricity-generating units, which are
also covered in the GHGRP. Since 2016, facility emissions in the GHGRP have also been
included in data made available through the NEI. The use of stewicombo provides increased
certainty that these emissions are not double-counted across the inventories, while also
providing a more consistent time series, since data are not available in all inventories each
year. Under the default settings for stewicombo, emissions from facilities are sourced first
from the eGRID (i.e., for electricity-generating units), and then from the GHGRP, prior to
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including any remaining GHG emissions from the NEI not already included. With the
exception of the first year of inclusion for the NEI, all three datasets show a very similar
trend of decreasing facility emissions across the time period.
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Figure 4 highlights the reduction in total flows using stewicombo in comparison with
the data reflecting the original reformatted and harmonized totals from the inventories,
represented in the StEWI bar. The equal or lower total amounts reflected in the stewicombo
results show the effect of the removal of overlapping flows. For example, based on the
default preference of NEI data over TRI data for emissions to air, the vast majority of
TRI-sourced ammonia emissions to air are removed from the combined inventory (the first
pair of bars). However, because the TRI is the sole source of emissions data for ammonia to
ground, no data are removed from that pool of emissions through the use of stewicombo.
chemicalmatcher identifies potential overlaps in flows between nitrogen dioxide (NEI) and
ammonia (TRI) and thus some flows are removed based on inventory preferences.
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By utilizing other tools in the USEPA LCA tool ecosystem, the potential environmental
and human health impacts from reported releases can be assessed. Flows from each in-
ventory are mapped to the Federal Elementary Flow List [31] and potential environmental
and human health impacts are assessed by pairing the flows with characterization factors
from the USEPA’s Tool for Reduction and Assessment of Chemicals and Other Environ-
mental Impacts (TRACI) v2.1 from the LCIA Formatter [32]. All the releases to water, air,
and ground from each inventory, including the eGRID, GHGRP, NEI, DMR, and TRI, are
multiplied by corresponding characterization factors from each applicable impact category
and then the impacts from each flow are summed together within each impact category to
calculate a total impact for each inventory in the respective category. Figure 5 shows the
relative contribution for a subset of flows to impacts from all inventories in 2018. The bar
on the left shows the impact distribution prior to using the overlap handler in stewicombo.
For example, total global warming potential would be significantly over-estimated when
combining data from the NEI, GHGRP, and eGRID without the use of stewicombo. Likewise,
other impact categories show a significant amount of overlap across inventories, including
acidification potential and smog formation potential.
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4. Discussion

The StEWI package and data products are already being used for studies modeling
chemical releases [33] and tracking hazardous industrial wastes [34]. StEWI is also being
used to develop “rapid” or automated life-cycle inventory models and create environmental
accounts for environmentally extended input–output models. Point source releases of flows
compiled by StEWI are used to supplement emissions data for the U.S. Electricity LCI
Baseline [35] by providing emissions to air, water, and soil, as well as hazardous waste
flows for all U.S. electricity-generating units. EIA data for electricity-generating units are
readily available but typically only track a small subset of environmental flows preferred
for life cycle modeling. Data from the NEI, TRI, and RCRAInfo provide fuller coverage for
a wider range of flows, while data from the eGRID provide an alternate data source for
validation. The USEEIO model relies on StEWI for point source emissions data to better
characterize environmental impacts of U.S. industries [36]. The python package FLOWSA
compiles facility emissions data from StEWI and aggregates them based on the NAICS
code assigned for each facility in facilitymatcher [37]. The resulting industry emissions
totals are combined with emissions data from other sources to obtain broad environmental
coverage for the USEEIO model. In both cases, stewicombo helps prevent double counting
of emissions flows for data reported across inventories.

With several active applications, StEWI is expected to be further expanded to support
more advanced emissions tracking and life cycle modeling. For example, data provided
in some inventories will enable more refined processing of emission compartments. Stack
height for air emissions is relevant for air quality modeling and life cycle impact assessment.
Additionally, most inventories provide geographic coordinates for facilities, which can
be compared to maps of population density and better characterize the human health
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impacts of releases. Furthermore, while StEWI currently only supports U.S.-based inventory
sources from the USEPA, the framework and data structures could also be adapted to
inventories from other countries. These updates, as well as other expansions to emissions
compartments, are expected in future releases of StEWI.

5. Conclusions

StEWI provides a much-needed resource to enable users to access, process, and apply
USEPA inventory datasets for a wide variety of applications. The Python packages that
make up StEWI support transparent and replicable data processing without demanding
expert inventory knowledge from users. As an open-source software package available
on GitHub, and a key resource within the USEPA LCA tool ecosystem, StEWI is actively
maintained and designed to support expanded features for the broader research community.
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//www.mdpi.com/article/10.3390/app12073447/s1, Table S1: Emissions Thresholds in Tons per
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