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Abstract: Sentiment is a high-level abstraction, and it is a challenging task to accurately extract
sentimental features from visual contents due to the “affective gap”. Previous works focus on
extracting more concrete sentimental features of individual objects by introducing saliency detection
or instance segmentation into their models, neglecting the interaction among objects. Inspired by
the observation that interaction among objects can impact the sentiment of images, we propose
the Sentiment Interaction Distillation (SID) Network, which utilizes object sentimental interaction
to guide feature learning. Specifically, we first utilize a panoptic segmentation method to obtain
objects in images; then, we propose a sentiment-related edge generation method and employ Graph
Convolution Network to aggregate and propagate object relation representation. In addition, we
propose a knowledge distillation framework to utilize interaction information guiding global context
feature learning, which can avoid noisy features introduced by error propagation and a varying
number of objects. Experimental results show that our method outperforms the state-of-the-art
algorithm, e.g., about 1.2% improvement on the Flickr dataset and 1.7% on the most challenging
subset of Twitter I. It is demonstrated that the reasonable use of interaction features can improve the
performance of sentiment analysis.

Keywords: sentiment classification; knowledge distillation; visual sentiment analysis; convolutional
neural networks

1. Introduction

Psychological research has proved that visual content (such as images and videos)
can evoke various sentimental responses in human observers [1]. Therefore, with the
potential applications on sentiment image retrieval and opinion mining, understanding the
sentiment of a given image is of great significance [2–4].

Sentiment analysis is a challenging task because of the diverse set of objects involved
and the complex interactions among them. Some researchers have attempted to explore
human visual principles using multimodal information and made progress [5,6], but single-
modal image emotional classification tasks have developed less. As shown in Figure 1,
images that express the same sentiment contain entirely different entities. Simultaneously,
as shown in Figure 1, images containing similar objects such as “Teddy bear” express
opposite sentiment due to differences in other objects. This indicates that the interaction
among objects plays a vital role in visual sentiment. Previous studies focused on how to
extract the sentimental features effectively but neglected the interactions. Yang et al. [7] put
forward the “Affective Regions”, which are components that convey significant sentiments
information, and utilized three fusion strategies for the features from the global context
and “Affective Regions”. Alternatively, Wu et al. [8] enhanced the local features of images,
employed a saliency detection model, and improved the classification performance by no
small margin.

Local objects effectively enrich the fine-grained features, but they treat the objects as
individuals and may see the forest trees. Meanwhile, to supplement the missing global
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context in local features, most of the study merges the local branch with a global feature
branch by feature concatenation or pool [7]. However, as a high-level abstraction, sentiment
contains various objects, and mapping local object features directly to sentiment may
generate noise, limiting the performance improvement of the model.

Person, sand, sea, treeDog, car, tree Teddy bear, dirtTeddy bear, toy, blanket

Figure 1. Examples of image sentiment. The blue border represents positive sentiment, while
the green border represents negative. We show the categories of objects obtained by panoramic
segmentation under the images.

To solve these problems, we proposed a Sentiment Interaction Distillation Network
with two branches to exploit the sentimental interaction and transformation of objects.
An object branch captures sentimental object interaction as relational knowledge. Then,
we employ knowledge distillation [9] strategy to merge it with a global context branch.
More effective than directly merging, the sentimental relationships provide more sufficient
and general information of the feature distribution and make the distilled knowledge
guide the global branch with a different architecture from its teacher, which can use the
feature extraction ability of convolution neural network to suppress noise in sentimental
relationship information. Compared with the previous study, knowledge distillation
achieves a smooth regularization on logits, which means the model can learn robust
features [10]. In the test step, only the global context branch is used to generate the
predicted sentiment.

This paper introduces the “sentimental graph” to model the object interaction in
sentiment space. Specifically, with instance segmentation, we build a graph on the input
image, where nodes represent objects and edges describe the sentimental correlations
among them. To accurately and appropriately describe the sentimental relationships
among objects, we design the adjacency matrices on the base of SentiWordNet [11], which
is commonly used in natural language sentiment analysis tasks, and annotation the polarity
and strength of words. Then, we employ Graph Convolution Networks to update and
aggregate the graph representation, which is used as the distilled knowledge to improve
the performance of the context branch. We conduct experiments on five public affective
datasets, and our model achieves a better result than the state-of-the-art approaches.

Our contributions are as follows:

• We propose the SID network, which makes comprehensive use of the sentiment inter-
action among objects rather than directly integrating the visual features. To accurately
describe the sentimental interaction, we design a “sentiment graph” to convert images
to graph and demonstrate the effectiveness of sentiment relation knowledge.

• We put forward a knowledge distillation method to enhance the global context feature
learning. Scene feature learning can obtain better supervision with object interaction
constraint by knowledge distillation from sentiment relation.

2. Related Work
2.1. Image Sentiment Prediction

Existing image sentiment analysis methods can be summarized as two groups: dimen-
sional emotion spaces (DES) and categorical emotion states (CES). DES methods usually
employ valence–arousal–dominance space [12] or activity–weight–heat space [13] to repre-
sent human emotion. On the contrary, CES methods model emotions with categories [14,15],
which is more intuitive, and our work falls into categorical states.
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Some researchers have devoted themselves to discovering sentimental features in
the images and bridging the “affective gap”, which can be defined as a lack of strong
connection between visual features and sentiment [16]. On the basis of psychological
research, Machajdik and Hanbury [15] proposed to utilize the low-level features of images,
such as texture, color, and composition, to achieve the image sentiment classification.

With the development of deep learning, You et al. [17] employed AlexNet to achieve
the classification of emotions. Sun et al. [18] proposed sentimental regions based on
object proposal method and employed the corresponding features to achieve emotion
classification. With the help of attention mechanism, You et al. [19] achieved a higher
performance by enhancing the local features in the image, which proves that local features
have a promoting effect on image sentiment classification.

Further, Yang et al. [7] proposed the “Affective Region” and designed three fusion
strategies to utilize the features of “Affective Region”. Wu et al. [8] proposed to leverage
the salient region of images and made efforts to fuse the features of local and global,
which achieve a large performance improvement. Recently, through the use of multimodal
information, some researchers have proposed more methods combined with the attention
mechanism [20–22], which further promote the development of emotion analysis tasks.
These methods make efforts in extracting visual features to improve performance while
ignoring the interaction information among objects. In contrast, we propose utilizing the
sentimental interaction information and realize the sentiment analysis task.

2.2. Graph Convolutional Network (GCN)

Gori et al. [23] proposed the idea of graph neural networks, which is further developed
by Scarselli et al. [24]. However, due to the limitation of computing power, it is prohibitively
expensive to realize these methods on massive datasets. Further, Bruna et al. [25] proposed
the GCN, which attracted a lot of attention from researchers, and many articles have been
published [26,27].

Different to the CNN model, the graph virtually describes the interactions among
nodes by modeling the relationship. Based on this, Chen et al. [28] utilized GCN with a
multilabel image recognition task to mine object relations from labels. They constructed the
correlation matrix by calculating the co-occurrence probability of the labels and obtained
a better performance than previous works. However, this method relies on the human-
annotated object information.

In this paper, we utilize GCN to capture and explore sentimental interaction informa-
tion. Specifically, we designed a method to build the sentiment graph for existing image
sentiment datasets automatically and extract interaction information among objects in the
sentimental space.

2.3. Knowledge Distillation

Knowledge distillation is proposed by Hinton et al. [9] to transfer knowledge from
a large model into a smaller, distilled model by minimizing the KL divergence between
their logit distributions. The main idea is utilizing soft targets (i.e., the logits distribution of
large model) to optimize the small model, as it contains more label distribution information
than the one-hot label. Later, Lopez-Paz et al. [29] introduced privileged information in
distillation learning, which is additional information available during the training period
but not available during testing.

In this paper, local interaction feature learning may capture a fine-grained but biased
representation. In contrast, global context feature learning can capture rounded repre-
sentation over the entire image and produce credible label distribution knowledge. We
regard local interaction features as privileged information and exploit this information by
distilling it into the global context branch during the training period. During testing, only
the global context branch needs to be executed.
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3. Methods

An overview of our proposed network architecture is shown in Figure 2. The upper
network in blue is the teacher network, while the lower orange one is the student network.
Given an image, we aim to condense it into a representation that genuinely captures
the sentimental object interaction, which is completed via the object interaction branch.
The interaction information is then distilled into another global context branch through a
knowledge distillation mechanism. During testing, only the global context branch is kept
to generate textual descriptions. We will describe each part in detail as follows.

𝐹

Sentiment 
Prediction

Global Context Network

Distillation

Object Interaction Network 𝐹

…

GC

Figure 2. Overview of the Sentiment Interaction Distillation Network. During training, the object
branch captures sentiment interaction information through the sentiment graph model, while the
global context branch provides the context information. Then, the object information is distilled into
the context feature. For testing, only the global context branch is needed for sentiment prediction.

3.1. Sentiment Graph

Sentiment is a intricate logical response, and the sentimental interactions among
objects have a vital contribution to it. To accurately describe the sentimental interactions,
we constructed a unique undirected sentiment graph (the sentimental relationships among
objects) to define the interaction features. The goal of the sentiment graph is to capture
interactions among sentiment-related objects, and the relationships are formulated as an
adjacent matrix of sentiments. Figure 3 shows an example of a sentimental graph. Inspired
by [7], we employed the panoptic segmentation algorithm as an object detector and took
the objects as nodes. However, it is challenging to properly describe sentimental relations
without annotation because of the gap between object semantics and sentiment. We propose
utilizing the objects’ semantic relationship in sentimental space as the edges.

Given the nodes, we employ SentiWordNet [11] to label each node with sentimental
polarity and strength. SentiWordNet is a lexical resource that annotates three sentiment
scores: positivity, objectivity, and negativity to each synset of WordNet. We retrieved nouns
and adjectives related to the node of SentiWordNet and determined the strength with the
average value of related words. In particular, we defined sentimental polarity in terms of
the strength of positive and negative sentiments. For example, the strength of the word
“cat” is (0.8, 0.5), and the sentiment polarity is positive of 0.3.
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(a) (b)

Figure 3. An example of sentiment graph: (a) An object segmentation result, where the objects are
distinguished by different color overlay. (b) A sentiment graph structure, where the nodes represent
objects of corresponding color and edges reflect the similarity of nodes in the sentiment space.

Based on this, we quantified the relationships among objects in terms of differences
in sentimental strength. As shown in Equation (1), we took the absolute value of the
difference in sentimental strength as the relationship between nodes. When the two nodes
have opposite sentimental polarities, we set a greater sentimental distance to reflect the
difference in sentimental relationships.

Aij =


∣∣|Si| −

∣∣Sj
∣∣∣∣+ 1, i f Si ∗ Sj > 0

0.5, i f Si = 0, Sj = 0∣∣|Si| −
∣∣Sj
∣∣∣∣, otherwise

(1)

On the basis of describing interactive information in the graph model, nodes in the
graph model correspond to the visual features of each object. We selected handcrafted
features, containing texture features and the brightness distribution chart, as the represen-
tation of objects. Inspired by [15], we observed the image intensity characteristics on the
EmotionROI and the Flickr and Instagram (FI) datasets. Specifically, we quantified the
brightness values of the HSI color space to 0–10 and obtained the brightness distribution
chart. As shown in Figure 4, the brightness distribution can distinguish the sentimental
polarity in some degree. In particular, positive sentiment has a higher distribution than
negative when the brightness is 4–6, and negative sentiment is higher at 1–2. At the same
time, to supplement details of the image, we utilized the Gray Level Co-occurrence Matrix
(GLCM) to describe the texture feature of all objects.

3.2. Convolutions on the Sentiment Graph

To simulate sentimental interactions, we select GCN to propagate and converge repre-
sentation of objects by the supervised of sentimental relationships. Specifically, we employ
a stacked GCN, in which the input of all layers of Hl is the output from the previous layer
and the output is a new node feature Hl+1.

For example, Equation (2) shows the feature update process of layer l, where Ã
describes the relationship among nodes. The previous layer’s output is Hl , and the current
layer’s is Hl+1. The current layer is formed as a weight matrix W l , and σ is the nonlinear
activation function.

Hl+1 = σ(D̃−
1
2 ÃD̃−

1
2 HlW l) (2)
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In addition, D̃ is the degree matrix of Ã, which is obtained by Equation (3). H0 is the
input of the first layer, which has 512 dimensions generated from the GLCM introduced
above and the brightness histogram.

D̃ii = ∑
j

Ãij (3)
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Figure 4. Distribution bar chart displaying the number of brightness pixels of different emotion
categories in the EmotionROI and FI dataset.

3.3. Global Context Branch

Similar to previous works [7,8,17–19], we also employed the CNN model to capture the
deep visual features of images. To highlight the effect of sentiment interaction information
and make a fair comparison with previous works, we keep the scene branch as simple as
possible. Previous studies have demonstrated the sentimental feature extraction capability
of VGGNet with 16 layers [30]; we selected this as the backbone to supplement the global
context information missing in the interactive features. Besides, to effectively extract visual
features, we retained the FC layer and changed the last fully connected layer from 4096
to 2048.

3.4. Sentimental Interaction Knowledge Distillation

The problem of merging two branches by concatenating features or pooling [7] is that
images contain a variable number of objects, which interferes with the feature learning.
This is caused by direct merging, which imposes hard constraints on features from two
essentially different spaces. We applied soft regularization only to affective responses,
which are essentially interactive knowledge, thus ensuring a robust feature learning process
and exploiting object information simultaneously. We aligned sentiment by knowledge
distilling, and not just fusion as in direct feature merging. Concretely, we minimized the L1
normalization between feature vectors from the two branches. Let Fo(i) be the interaction
feature across the objects from the object branch and Fg(i) be the global context branch. We
minimized the distillation loss, as shown in Equation (4), where N is the scale of training set.

Ldistill =
∑N

i=1
(

Fo(i)− Fg(i)
)

N
(4)

After distillation, the scene feature is sent into the FC layer to achieve the mapping
between sentimental polarity and features. The cross entropy function is taken as the
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supervision, which is shown in Equation (5), N is the scale of training set, yi is the labels,
and ŷi is the prediction value of yi.

Lclass = −
1
N

N

∑
i=1

(yi ∗ logŷi + (1− yi) ∗ log(1− log(1− ŷi))) (5)

The overall loss function consists of two parts:

L = λLdistill + Lclass (6)

4. Experiment
4.1. Datasets

We evaluated our method on five public datasets: FI [17], Flickr [31], EmotionROI [32],
Twitter I [33], and Twitter II [31]. FI was collected from Flickr and Instagram. By query-
ing with eight emotion categories (i.e., amusement, anger, awe, contentment, disgust,
excitement, fear, sadness) as keywords, researchers obtained a raw dataset containing ap-
proximately 90,000 noisy images. Then, the researchers employed 225 Amazon Mechanical
Turk (AMT) workers to label the images, which resulted in 23,308 images receiving more
than three agrees and each emotion category having at least 1000 images. The Flickr dataset
contains 484,258 images in total, which are labeled by corresponding ANP automatically,
meaning its labels are weak. EmotionROI has 1980 sentiment images with six emotions (i.e.,
joy, surprise, anger, disgust, fear, and sadness), which were collected from Flickr and anno-
tated manually with 15 regions that can evoke emotions. Twitter I was annotated with two
sentiment categories (positive and negative) by AMT workers, consisting of 1296 images.
Besides, following [34], we implemented the three subsets of Twitter I separately, including
“At least three agree”, “At least four agree” and “Five agree”, which are divided by the
number of agrees. For example, “Three agree” refers to obtaining three same sentiment
labels from AMT workers. Twitter II contains 603 images that are annotated as positive
or negative.

4.2. Baselines

To demonstrate the validity of our proposed method, we first compared our approach
against several previous works, including methods using handcrafted features, the CNN-
based methods, and deep-learning-based methods with local feature branch.

• Researchers extracted the low-level features from some small-scale datasets, including
the local color histogram features (LCH)), which comprise the 64-bin RGB histogram
after first dividing into 16 blocks, and the global color histograms (GCH), which
comprise the 64-bin RGB histogram [35].

• SentiBank was proposed by Borth et al. [31], and can use 1200 adjective–noun pairs
(ANPs) to describe the sentiment concept and performs better for images that have
rich semantics.

• DeepSentibank [36] employs CNN to achieve visual sentiment classification and
discovering ANPs. We employed the pretrained DeepSentiBank to obtain the 2089
dimension features as mid-level representations from the last FC layer and applied
LIBSVM to realize sentiment image classification.

• You et al. [33] proposed a potentially cleaner dataset and designed the PCNN, which
is a progressive framework based on CNN. They used large volumes of weakly
supervised images to train the model and achieved a generalization improvement.

• Yang et al. [7] utilized an object detection algorithm to label the “Affective Regions”
and employed three different fusion strategies to complete the final classification.

• Wu et al. [8] employ a saliency detection method to improve the salient features,
and achieved a significant performance boost. Besides, they used an ensemble strategy,
which may help improve performance.
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4.3. Implementation Details

Following [7], we selected the VGG16 [32] as the backbone and initialized it with the
parameters pretrained on the ImageNet. Specifically, the input images were randomly
cropped and resized into 224 × 224. During the training period, the images were also
flipped random horizontal for data enhancement. We chose SGD as the optimizer on the
FI dataset and set the momentum to 0.9. The initial learning rate was set to 0.01, which is
0.1 times per 20 epochs.

We employed two stacked GCN layers in the sentiment interaction branch whose
dimensions of output are 1024 and 2048. We expressed the features of each input node
in the graph using a 512-dimensional vector. To extract object features, we applied the
panoptic segmentation model (Resnet-101 with FPN) [37] pretrained by Detectron2 to
detect object boundary and category. The confidence score threshold of detection was set to
0.6. Given the boundaries of output, we applied intensity and GLCM to obtain features
from the corresponding regions. Specifically, we quantized the brightness to 0–255 and
obtained a 256-dimensional intensity distribution chart. Then, we computed GLCM at 45◦,
which was reshaped to 256. Finally, we concatenated the intensity features and texture
features, which result an object feature of 1 × 512.

Referring to previous work [7], we applied the same split and test strategy for these
datasets without specific division. Specifically, the multilabel datasets, FI and EmotionROI,
need to be divided into positive and negative to execute the sentiment polarity classification.
The EmotionROI dataset has six emotion categories: joy, surprise, anger, disgust, fear,
and sadness. We relabel the joy and surprise as positive and relabel the anger, disgust,
fear, and sadness as negative. In FI dataset, eight emotion categories are divided into
binary labels based on Mikel’s emotion wheel model [38]—amusement, awe, contentment,
and excitement are labeled as positive, and anger, disgust, fear, and sadness are labeled
as negative. For small-scale datasets, including EmotionROI, Twitter I, and Twitter II, we
referred to the commonly used strategy in sentiment analysis [7,8,34] and set the initial
weights with the model parameters trained on FI, then fine-tuned the model on small
datasets.

For the trade-off parameter in the loss function, we set λ to 0.1, which is tuned on the
FI validation set.

4.4. Results

We compared our approach with previous works from published papers [7,8,33].
As shown in Table 1, on four of the five datasets, our method obtains the best outperform,
e.g., about 1.2% improvement on the Flickr dataset, 0.97% on EmotionROI, and 1.7% on the
most challenging subset of Twitter I. On the FI, however, the performance of our method
is second place by only 0.33% difference. We summarize in the following reasons: (1) As
the most extensive dataset manually annotated among the five datasets, FI contains more
image styles, object types, and contents compared with small-scale datasets. This leads to
more frequent classification errors and region division errors in the panoptic segmentation
model. Consequently, in our proposed sentiment map, it is more difficult to capture the
emotional interaction information between objects. (2) Wu et al. employed a strategy
similar to ensemble, which may improve the performance and make it unfair to compare
directly with them.
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Table 1. Sentiment classification performance on the FI, Flickr, EmotionROI, Twitter I, and Twitter II
datasets. The best results are indicated in bold.

Method FI Flickr EmotionROI
Twitter I

Twitter II
Twitter I-5 Twitter I-4 Twitter I-3

LCH [35] - - 64.29 70.18 68.54 65.93 75.98
GCH [35] - - 66.53 67.91 97.20 65.41 77.68
SentiBank [31] - - 66.18 71.32 68.28 66.63 65.93
DeepSentiBank [36] 61.54 57.83 70.11 76.35 70.15 71.25 70.23

VGGNet [30] 70.64 61.28 72.25 83.44 78.67 75.49 71.79
PCNN [33] 75.34 70.48 73.58 82.54 76.50 76.36 77.68

Yang [7] 86.35 71.13 81.26 88.65 85.10 81.06 80.48
Wu [8] 88.84 72.39 83.04 89.50 86.97 81.65 80.97
Ours 88.71 73.59 84.01 89.86 87.04 83.31 81.11

4.5. Ablation Study

Here, we study how each design in our model influences the overall performance.
Local features enrich fine-grained features but concatenate or pool ignored object relation-
ships. Zheng et al. [39] explored the causal relationship between content and emotion in
the image. We extend this idea to study the object interaction in an image and implement
our experiment. The method we propose consists of two main components at a high level:
sentimental interaction and knowledge distillation.

To demonstrate the effectiveness of these two high-level components, we evaluate the
performance of several variants to verify the effectiveness of interaction. Firstly, we evaluate
(1) Global Branch Only, which only the global context branch is used on; (2) Full Model +
Concat, where both branches are used, we fixed the number of nodes in the graph model,
where we set the nonexistent nodes as 0 and the fusion of the two branches is completed
by concatenation of features directly before passing into a fully connected layer; (3) Full
Model + Distill, which minimizes the L1 distance between features for distillation.

Ablation study results of the five datasets are shown in Table 2. Compared with the
Global Branch Only, “Full Model + Concat” has an 4.2% average performance improvement,
which indicates the effectiveness of sentiment interaction features in image sentiment
classification tasks. Thus, “Full Model + Concat” performs worse than the “Full Model
+ Distill”; this suggests that applying hard constraints on features can exploit valuable
object-level information, but may also decrease performance by interfering with the model
with noisy features.

Table 2. The model performance comparison across image datasets.

Method FI Flickr EmotionROI
Twitter I

Twitter II
Twitter I-5 Twitter I-4 Twitter I-3

Global Branch Only 83.05 70.12 77.02 84.35 82.26 76.75 76.99
Full Model + Concat 88.12 72.31 83.62 89.24 85.19 81.25 80.59
Full Model + Distill 88.72 73.59 84.01 89.86 87.04 83.31 81.01

4.6. Qualitative Analysis

To verify that our model can indeed perform a better visual basis after distilling
knowledge from object branches, we plotted the saliency maps of the images from Emo-
tionROI. As shown in Figure 5, we observe that the “Full model + Distill” can focus on
key regions in the emotion stimulus map better than the corresponding “Global Branch
only” part. For the first image, “Full model + Distill” pays major attention to the strawberry
as well as the cat, while “Global Branch only” focuses on the strawberry only. In the
second image, “Full Model + Distill” put its attention on the lighting and surrounding
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areas, while the “Global Branch only” is attention-diffused. Similarly, “Full Model + Distill”
focuses the weights more accurately on the Ferris wheel, and “Global Branch only” only
focuses on two key regions. This further demonstrates that our proposed sentiment graph
as well as the knowledge distillation mechanism endow the model with better visual
grounding capabilities.

Input images Emotion Stimuli Map Global Branch Only Full Model + Distill

Negative

Positive

Negative

Figure 5. Qualitative results on 3 images from EmotionROI. For each image, the first column from
the left is the original input image and the second column is the Emotion Stimuli Map annotated by
person, while the third and forth columns are saliency maps from the two models: “Global Branch
only” and “Full Model + Distill”. Specifically, blue color indicates low attention weights, while red
means the opposite.

5. Conclusions

This paper deals with the problem of image sentiment analysis by utilizing sentiment
interaction information among objects. Particularly, we studied the problem from the
viewpoint of employing sentiment reasoning and relation distillation. To verify this, we
presented the Sentiment Interaction Distillation Network to model sentimental interaction
information, which consists of two branches: object branch and global context branch.
Specifically, we proposed “sentiment graph” to model the sentiment relationship among
objects without human annotation, which describes objects with their appearance feature
and defines edges with sentimental similarity. Simultaneously, we use stacked GCN models
to aggregate and update node features and obtain expressions of emotional interaction.

Further, we employ a knowledge distillation mechanism to avoid the noise caused by
segmentation error and the variable number of objects, in which the interaction information
is used to supervise global context feature learning. The experimental results demonstrate
the effectiveness of our approach on five popular datasets. This work explores the inter-
action of relational information in visual emotions with visual features; however, more
effective use of object interaction information remains a challenging problem. In the future,
we will continue exploring the method of integrating abstract affective relational informa-
tion with specific visual features, which will play an essential role in achieving alignment
of different levels of affective information.
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