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Abstract: Embedded systems are increasingly applied in numerous security-sensitive applications,
such as industrial controls, railway transports, intelligent vehicles, avionics and aerospace. However,
embedded systems are compromised in the execution of untrusted programs, where the instructions
could be maliciously tampered with to cause unintended behaviors or program execution failures.
Particularly for remote-controlled embedded systems, program execution monitoring and instruction
fault self-repair are important to avoid unintended behaviors and execution interruptions. Therefore,
this paper presents a hardware-enhanced embedded system with the integration of a Security Pro-
cessing Unit (SPU) in which integrity signature checking and checkpoint-rollback mechanisms are
coupled to achieve real-time program execution monitoring and instruction fault self-repairing. This
System-on-Chip (SoC) design was implemented and validated on the Xilinx Virtex-5 FPGA develop-
ment platform. Based on the evaluation of the SPU in terms of the performance overhead, security
capability, and resource consumption, the experimental results show that, while the CPU executes
different benchmarks, the average performance overhead of the SPU lowers to 1.92% at typical 8-KB
I/D caches, and it provides both program monitoring and fault self-repairing capabilities. Unlike
conventional hardware detection technologies that require manual handling to recovery program
executions, the CPU–SPU collaborative SoC is a resilient architecture equipped with instruction
tampering detection and a post-detection strategy of instruction fault self-repairing. Moreover, the
embedded system satisfies a good balance between high security and resource consumption.

Keywords: embedded system; hardware security; security processing unit (SPU); program monitor-
ing; instruction fault self-repairing

1. Introduction

State-of-the-art embedded systems are increasingly employed in various applications
due to their superior features of high processing performance, low power consumption, and
good functional adaptation. However, in some security-critical application scenarios, the
unintended behaviors of programs could jeopardize precious human lives and expensive
scientific instruments. Thus, high-security capability is equally important for embedded
system designs, especially for embedded processors, which are applied as the control
kernels in these safety-sensitive scenes of automotive, aerospace, avionics, and railway
transport [1–4].

Therefore, the hardware-enhanced security protection is an important consideration
in System-on-Chip (SoC) architecture. In previous reports, the various forms of hardware-
oriented attacks have been implemented from the different-level sources, and can be
categorized into the two main types: hardware-level attack and software-level attack.
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At the hardware-level attack, a malicious logic (well-known as a hardware Trojan) is a
typical example that might be inserted into an untrusted third-part intellectual property
(IP) beforehand and become activated under a specific condition to modify the processor’s
behaviors, cause program execution failure [5], or even create backdoors for confidential
data leakage and control system hijacking to attackers [6]. On the other hand, software-
level attacks mainly exploit the security vulnerabilities or bugs in software applications to
disturb program executions or perform other unintended actions, such as tampering with
the program code or injecting malicious code.

Up to the present, most embedded programs and applications have been developed
based on the high-level programming languages of C and C++, which access memory
without any valid bound checks, and this situation will bring serious security risks to
remote-controlled embedded systems. For instance, a famous case is the American Lock-
heed Martin RQ-170 sentinel unmanned aerial vehicle (UAV) that was captured by Iranian
forces through instruction tampering attacks and false coordinate injections [7]. More-
over, the software-level attacks also easily cause memory buffer overflows [8–10] via stack
smashing and then take control of hardware platforms during program execution.

Various techniques have been proposed to protect SoCs against hardware-level and
software-level attacks. For resisting hardware Trojan attacks, existing techniques using
standard functional validation [11] and side-channel analysis [12,13] can analyze and detect
hardware for a hardware Trojan. However, the large scale integrated circuit chip after
manufacturing technology makes it expensive and time-consuming to analyze all IPs.
Furthermore, some purposefully inserted hardware Trojans are designed to be activated
only by very rare events under a specific execution condition, which is difficult to detect in
the function validations.

Therefore, it is critical and challenging to eliminate the risks of these hardware-level
attacks. For defending against software-level attacks, the multivariant execution technique
(MET) [14], control flow integrity (CFI) [15], execute-only memory (XOM) [16], address
space layout randomization (ASLR) [17], etc. have been proposed to monitor whether
the program execution is following the intended behaviors. However, most protection
techniques require extended instruction set architectures (ISAs) and modified compilers,
which make them difficult to transplant into different embedded systems.

The instruction codes of embedded programs could be deliberately tampered with—
the attacks originating from both hardware-level and software-level attacks. Although some
sapiential monitoring strategies have been proposed to observe whether program execution
is under attack or not, it is not yet sufficient to ensure the correct completion of program
execution only by detecting unintended behaviors. A fast fault self-repairing capability
after discovering the unintended behavior or instruction fault is critically important to
providing a comprehensive protection for an embedded system, especially for embedded
systems that are applied in remote-controlled platforms.

At present, the majority of fault self-repairing techniques rely on the checkpoint and
rollback-recovery technology, in which the checkpoint is utilized to backup all the data of
one correct state in the processor system, while the rollback operation reverts the process
back to a recently-saved checkpoint once a processor fault is detected and then resumes
the normal program execution. In addition, many researchers have proposed hardware
redundancy strategies, such as dual modular redundancy (DMR) [18] and triple modular
redundancy (TMR) [19] to achieve hardware fault tolerance.

However, the approach of simply replicating the structures of sensitive components
will result in a high hardware complexity and resource overhead in a resource-limited
embedded system. To the best of our of knowledge, attack detection and fault recovery
are mostly studied independently in the existing hardware monitoring methods, and their
excellent combination could help to improve the security capability of embedded system
against various attacks.

After we comprehensively assessed the advantages and disadvantages of previous pro-
tections, the security designs for embedded systems still face the following three challenges:
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(1) how to reduce the performance overhead induced by real-time security validation; (2)
how to configure a processor with a fault self-repairing capability; and (3) how to ensure
the practicality of hardware security design to be equally applicable for other different ISA
platforms.

In order to overcome the above three challenges of embedded system security archi-
tecture, this paper presents a hardware-implemented security processing unit (SPU) for
providing real-time program execution monitoring and instruction fault self-repairing,
where the internal structure consists of an instruction monitor and a fault self-repairing
module (FSRM). The checkpoint-rollback mechanism applied in FSRM is tightly coupled to
the program basic block (BB) integrity signature monitoring mechanism of the instruction
monitor. The specific contributions of this paper are summarized as follows.

• A security processing unit (SPU) is constructed into the embedded system for building
the proposed CPU–SPU collaborative SoC. In the SPU, both the instruction monitor
and FSRM were constructed to monitor the program execution and instruction fault
self-repairing in real-time, where the real-time program execution monitoring was
actualized by the instruction monitor, and the instruction fault self-repairing was
actualized by FSRM.

• The program basic block’s (BB’s) integrity checking mechanism is adopted in the
instruction monitor, which is tightly coupled with the checkpoint-rollback mechanism
of FSRM. Any instruction tampering behaviors caused by hardware Trojans will be
detected and self-repaired by the SPU, and artificial program modification also can
be detected.

• In order to reduce the performance overhead of SPU induced by integrity verification
and fault self-repairing, the I/D-Caches and monitor cache (M-Cache) are felicitously
configured with the optimal size of 8 KB, and the average performance overhead of
SPU in running different benchmarks reduces to as low as 1.92%.

• Security capability evaluation and hardware implementation evaluation of the SPU in
both the FPGA platform and ASIC design confirm that the CPU–SPU collaborative
SoC achieved a good balance in high-security capability, low performance overhead,
and reasonable hardware complexity.

The remainder of this paper is organized as follows. Section 2 introduces the trust-
worthy assumptions and threat models of SoC considered in this paper. The preparatory
works related to program monitoring and fault self-repairing are described in Section 3.
Section 4 presents the hardware implementations of the instruction monitor and fault
self-repairing module (FSRM), as well as the performance optimizations of the real-time
program monitoring mechanism. Experimental evaluations of the SPU regarding the per-
formance overhead, security capability, and practicality comparison are implemented in
Section 5. Section 6 presents SoC overall hardware implementation in FPGA and ASIC.
This paper is concluded in Section 7.

2. Trustworthy Assumptions and Threat Models

Before integrating the proposed security processing unit (SPU) into an embedded
system to establish the expected CPU–SPU collaborative SoC, the trustworthy assumptions
and threat models aiming at embedded system should first be determined. Generally, some
sensitive components in embedded system are likely susceptible to malicious attacks; thus,
we should make their associated trustworthy assumptions and focus on security protections
according to potential threat models. Hence, we make the following assumptions regarding
the CPU–SPU collaborative SoC hardware architecture, the potential malicious attacks, and
the program monitoring and instruction recovery mechanism.

We plan to integrate the hardware-implemented SPU with an open-source reduced
instruction set computing (OpenRISC) processor OR1200 for constructing a secure CPU–
SPU collaborative SoC architecture. In this, the central processing unit (CPU) of OR1200
is a 32-bit scalar RISC softcore processor with a Harvard micro architecture. This satisfies
the GNU general public license (GPL) protocol, which is supported by the OpenCores
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organization. The CPU core consists of a five-stage execution pipeline: the instruction fetch-
ing (IF) stage, instruction decoding (ID) stage, instruction executing (EX) stage, memory
accessing (MA) stage, and writing back (WB) stage, which is a single-emission sequence
execution pipeline.

Moreover, the CPU core is configured with instruction memory management unit
(IMMU) and data memory management unit (DMMU). For decreasing the average delays in
fetching instructions and data from the external memory, the instruction cache (I-Cache) and
data cache (D-Cache) were configured and connected with the addressable quick memory
(QMEM), the temporal locality principle and spatial locality principle of program execution
in accessing cache memory can be fully exploited to keep up with CPU’s execution pipeline.
The CPU–SPU collaborative SoC hardware architecture is shown in Figure 1.

The CPU-SPU Collaborative SoC Security Architecture

Program BB 
recognition

Searching 
BB INFref 

I-Cache D-Cache

Pipe
Line

IF ID E
X

M
A

W
B

QMEMIMMU DMMU

Store 
buffer

CPU

PC
CPU 
stall

Integrity 
checker

Monitor 
Cache

Recalculate
digest of BB

Binary Code

Compile 
& Link

Program BB 
Partition

BB INFref 
Extraction DDR 

Controller UART

Off-line 
Phase

Instruction
Memory

Store

Source 
Program

Disassembl-
ing

System Bus

INFref

INFref
Instr. Monitor

Monitor 
Memory

Instr.

Addr.

ETH

Checkpoint 
backup logic

Rollback 
recovery logic

Backup-purpose 
registers

Buffer-purpose 
registers

Exception

FSRM

SPU

Failure

Success

Instruction set 
registers

Stall

Restore

DIGlhash

DIGcal

Figure 1. The CPU–SPU collaborative SoC hardware architecture for real-time security protection.

Since all the program operations are performed under the control of CPU, the compo-
nents directly connected to the CPU are the critical targets of interest for inserting hardware
Trojans or injecting fault attacks, and thus an erroneous instruction could pose a serious
security challenge to embedded system. We assume the whole SoC architecture is an
integration of IPs, and many of which are acquired from the untrusted third-party vendors
for shortening the time-to-market of its applied products.

We reasonably make the trustworthy assumption regarding the proposed CPU–SPU
collaborative SoC architecture that our self-designed SPU was highly tested and validated
that anywhere without hidden hardware Trojans being inserted within internal control
logic. However, the CPU core, cache memory, register file, main memory, etc. are sensitive
components that are likely to suffer from the malicious tampering attacks during program
executions.

In addition, many memory IPs (including RAM technology library) need to acquire
from the third-party vendors for SoC convenient taping-out, this will further aggravate
the concerns of hardware confidence. According to the different locations where program
tampering attacks may occurred by hardware Trojans or fault injection, there are four types
of threat model assumptions, which are common-used approaches to disturb CPU normal
program execution in reported researches:

• The first situation is that instruction codes were modified or tampered with in the
processor core. The authors in [20] designed a sequential hardware Trojan, which
was activated by a sequence of rare events to modify instruction codes before the
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ID stage. In addition, a capacitor-based triggering Trojan IP was embedded into a
CPU [21], which leveraged an analog circuit to siphon charges from nearby wires and
enforced the victim to flip-flop to a desired value. These two examples indicated that
the instruction register (IR) and the instruction bus to IR in CPU were vulnerable to
hardware Trojan attacks; therefore, their instruction code faults should be detected
and repaired.

• The second situation is that instructions were maliciously modified in I-Cache instead
of processor core. The hardware designers in [6,22] were developing specific hardware
Trojans towards CPU cache memories to modify the cached instruction codes, here,
the instruction modifications in I-Cache are manifested as the data bit flips.

• The third situation is that instruction codes were modified in the instruction memory
(such as flash memory) induced by hardware Trojans, where the main memory was
hidden for the sake of brevity. For example, the designers in [23,24] were leaning flash-
memory-oriented hardware Trojans to tamper with the instructions in non-volatile
memory.

• The fourth situation is that instruction codes that were modified by artificial intentions
arose from the program code phase (including software and application) before com-
piling and linking. For example, the programs in C and C++ programming languages
were modified via malicious code injections to take control of hardware platforms [25].

The above-mentioned four threat models are assumed according to the system’s
potential locations where instruction tampering attacks may occur, which is induced
by both human and hardware Trojans. Hence, an instruction monitor is implemented
into the SPU to monitor the instruction execution security in real-time. For convenience,
the instruction tampering detection can be normalized to aim at the instruction register
(IR) monitoring, which is the final phase of instruction codes before entering the CPU’s
execution pipeline, this monitoring mechanism can not only effectively guarantee secure
program executions against the above-mentioned four threat models but also facilitates
hardware implementation of the instruction FSRM.

The post-detection strategy of the instruction fault self-repairing scheme is tightly
coupled with the real-time instruction integrity monitoring. When a tampered instruction
is executed and detected, the self-repairing is triggered and reverts to the recently-saved
checkpoint for resuming normal program execution. This recovery scheme is adopted
based on the strong randomness of hardware Trojan activation. It is noteworthy that source
program tampering by an adversary before compiling and linking processes can also be
detected and reported but cannot be self-repaired by the checkpoint-rollback scheme.

3. Preliminaries

Our proposed CPU–SPU collaborative SoC architecture focuses on achieving rapid
instruction fault identification and fault self-repairing. This section presents the basics of the
program execution monitoring and checkpoint-rollback mechanism in embedded systems
to inspire implementation of the proposed CPU–SPU collaborative SoC architecture.

3.1. Program Execution Monitoring Based on Basic Block

Before integrating an instruction monitor into an SPU to monitor whether the CPU’s
executive instructions were modified or not, it is essential to preprocess instruction codes
(InsCodes) for extracting the reference information of BB integrity monitoring. The offline
preparation phase before the program execution contains three main stages: the partition
of program basic blocks (BBs); the BB reference information extraction; and the integrity
signature calculation of each BB.

3.1.1. Partition of the Program Basic Block

According to our previously-reported literature of instruction execution security [26],
hardware-assisted integrity signature monitoring is an effective technique to monitor
unintended program behaviors. In that scheme, the program basic block (BB) is defined as
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a sequence of consecutive instructions, which starts from the program’s first instruction
and ends with the branch or jump instruction. Each BB block is assigned with an integrity
signature for the real-time BB integrity verification. The integrity signatures of the BBs
are calculated beforehand from the associated instruction information and then copied
onto the monitor memory before the program is loaded for execution. During program
execution, the integrity signature of each BB is recalculated from the executed instructions
and compared with the previously-stored ones to validate the BB instruction integrity.

In general, the performance overhead of hardware monitoring is relevant to the
integrity signature checking speed, and further, the speed of integrity validation depends
on the BB granularity. Therefore, we partition programs strictly according to the transfer
type instructions, where BB is a fine-grained partition scheme to monitor the potential
instruction modified issues of deletion, tampering, and injection, and it can keep up with
the CPU’s execution pipeline.

The program execution order can be regarded as having a natural hierarchical structure
according to the instruction transfer operations. Taking the six transfer instructions from
the OpenRISC ISA as an example, their instruction jump operations are described in Table 1.
The six transfer instructions can be conveniently categorized into the direct branch (l.bf N
and l.bnf N), direct jump (l.j N and l.jal N), and indirect jump (l.jalr rB and l.jr rB) according
to the instruction transfer types.

In this, when the direct branch instructions of l.bf N and l.bnf N branch or not (depend-
ing on whether the status register (SR)’s flag-bit are set or cleared), the effective branch
address (EBA) after instruction operation will be sent to the program counter (PC); the
direct jump instructions of l.j N and l.jal N directly send their jump target addresses to PC;
and the indirect jump instructions of l.jalr rB and l.jr rB jump to the jump target address
in the rB register. The l.jalr rB instruction stores the next instruction address of the delay
instruction into the link-address register (LR).

Depending on these six transfer type instructions, the GNU Cross Compilation
Toolchain of or32-elf-gcc matched with OpenRISC ISA is utilized to generate a binary
executable file; and the GNU tool or32-elf-objdump is utilized to disassemble the binary
executable file into a text file. We can employ regular expressions to search all the function
entries, jump instructions, and target addresses; therefore, we can partition programs into
BB segments from disassembling text files at the offline preparation phase.

Consequently, a sequence of consecutive instructions of each BB starts from the pro-
gram’s first instruction (or the last jump instruction’s target address) and ends with the next
transfer instruction; therefore, there is no branch or jump transfer operation in the middle
of each BB. It is noteworthy that, in the five-stage execution pipeline of OpenRISC CPU, it
takes at least two clock cycles between fetching instruction from the target transfer address
and entering the instruction execution that will cause CPU execution pipeline discontinuity,
where the branch delay slot is the wasted clock spaces following the conditional branch
and jump instructions.

We considered the delay slot mechanism to reduce processor performance loss. To
improve the execution efficiency of CPU, the delay slot instruction was also partitioned into
each BB for filling the execution pipeline clock gap to follow the branch or jump instruction
as the end boundary of each BB. This program BB partitioning strategy can minimize the
processor-itself performance overhead.

Applying the fine-grained program BB partitioning strategy to the real application
program, as shown in Figure 2, a segmentation of consecutive instructions was selected
from the benchmark of OpenECC to illustrate the program BB partitioning details. First,
the sequence of consecutive instructions can be partitioned easily into BB1, BB2, and BB3
according to the boundaries of the branch and jump instructions, where the branch and
jump instructions are followed with the delay slot instruction, respectively. Secondly, the
instruction transfer target address of each BB can be deduced according to the transfer-type
instruction.
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Table 1. The transfer type instructions in the OpenRISC instruction set architecture (ISA).

Instruction Example Instruction Operation Transfer Type

l.bf N l.bf 0x3 EA←exts(Immediate<<2)+Bran.Instr.Addr.
PC←EA if SR[Flag] set

Direct branch

l.bnf N l.bnf 0x6 EA←exts(Immediate<<2)+Bran.Instr.Addr.
PC←EA if SR[Flag] cleared

Direct branch

l.j N l.j 0x3 PC←exts(Immediate<<2)+JumpInstr.Addr. Direct jump
l.jal N l.jal 0x3 PC←exts(Immediate<<2)+JumpInstr.Addr.

LR←DelayInstr.Addr.+4
Direct jump

l.jalr rB l.jalr r2 PC←rB
LR←DelayInstr.Addr.+4

Indirect jump

l.jr rB l.jr r9 PC←rB Indirect jump

For example, the instruction l.bf is a conditional branch instruction, and two potential
legal branch addresses can be inferred from the analysis of branch instruction code. The
absolute jump instruction l.jr jumps to the target address corresponding to the value of
the r9 register, which is usually the returned address of the superior function. Although
the value of the r9 register cannot be extracted in offline analysis phase, a new BB can be
created by processing the call function entry address and traversing its target jump address.

Thus, considering the branch target addresses of two l.bf conditional branch instruc-
tions, BB3 and BB4 can be generated, where BB3 is an overlap with the previous BB3
and BB4 is inside BB2 from a new start address. Therefore, we only need to reserve one
BB3 to avoid duplicated BB integrity checks. This will help to reduce the on-chip storage
resource overhead in storing BB integrity signatures. Ultimately, the instruction stream can
be partitioned into the four BBs.

  

l.add r7, r7, r6
l.ori r6, r7, 0x0
l.sfeqi r5, 0x0
l.bf 1f744
l.nop 0x0
l.slli r4, r4, 0x18
l.addi r7, r0, 0x0
l.srai r8, r4, 0x18

l.add r4, r6, r7
l.addi r7, r7, 0x1
l.sfne r5, r7
l.bf 1f730
l.sb 0x0(r4), r8

l.addi r1, r1, 0x4
l.ori r11, r3, 0x0
l.jr r9
l.lwz r2, 0xfffffffc(r1)
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Figure 2. Example of partitioning the benchmark of OpenECC into program basic blocks.

3.1.2. Extraction of Reference Information

The intention of partitioning the instruction stream into BBs enables modular security
checks for the proposed instruction monitor with minimal performance loss and great
security. In the design of the instruction monitor, the reference information (INFre f ) of
divisory BBs should be predefined to determine each BB’s integrity monitoring parameter.

To satisfy the security monitoring requirements against the various forms of instruction
tampering attacks and achieve a quick integrity verification, the BB INFin f constitution
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requires meeting three conditions: (1) it must be associated with each BB, and its value for
each BB is unique so that they can be searched for quickly and accurately; (2) it must be
sensitive to any damage issue so that the injection, deletion, or tampering of instruction
will cause the security monitoring parameter to change; and (3) it is easy to extract from
each BB—its number of bits should not be overly long while ensuring adequate security
with storage-resource-limited SoCs.

After the above comprehensive consideration, we plan to extract the effective start
address (ADDstart) and the integrity digest of each BB to constitute the expected 32-bit
integrity monitoring INFre f , organically. The BB digest is generated by employing a light-
weight hash function (DIGlhash) to calculate all the instruction codes (InsCodes) of each BB.
Our adopted OpenRISC processor OR1200 has a 32-bit instruction code and target address,
whose instruction and address are aligned to 4 bytes. Due to the lower 2 bits of the 32-bit
instruction address in the program counter (PC) being fixed to 2’b00 (addressing RAM by
word), the available value as the effective start address of each BB is PC[31:2].

In general, the width of a 32-bit address can provide 4 GB of address space, where the
PC[31:2] value of the BB start address leads to large on-chip storage consumption when
it constitutes the integrity reference information of INFre f . For this reason, we selected
the lower 16-bit effective values from PC, that is, PC[17:2], as the start address value of
each BB into INFre f , which can provide the applications with up to 256 KB address space.
Furthermore, the size of the address space can be extended by selecting more effective
bits from PC[31:2] according to the real application requirements, and its storage resource
overhead will also increase.

In this work, the 32-bit INFre f is composed of the 16-bit ADDstart[17:2] and the 16-
bit golden DIGlhash, where the ADDstart[17:2] is assigned to INFre f [31:16] for identifying
the current BB and searching its corresponding INFin f from the reference information
table; and the 16-bit golden DIGlhash is assigned to INFre f [15:0] for checking the BB digest
integrity.

3.1.3. Integrity Signature Calculation

As described above, the extraction of INFin f from each BB requires the LHash al-
gorithm to calculate the BB digest signature for integrity monitoring. This light-weight
cryptographic hash algorithm was first reported in the study [27], where an internal
permutation employed the kind of Feistel-PG extended sponge structure for utilizing the
permutation layers on nibbles to improve the diffusion speed. This was a hardware-friendly
hash function (only 817 gate elements) and was suitable to be implemented in embedded
systems to quickly transform a given sequence of instructions into a fixed bit-number of
integrity signature.

As shown in Figure 2, the LHash algorithm was utilized to calculate the instruction
information and generate the 16-bit integrity signatures for BB1 to BB4, respectively. Fur-
thermore, an important consideration of applying the LHash algorithm is utilizing its
sequential iteration mechanism in the sponge structure to recalculate the integrity signature
of a sequence of instructions during program execution, which is then compared with
the value of the previously-stored LHash-16 integrity digest in the INFin f table. Conse-
quently, this algorithm will quickly complete the integrity signature calculation under a
low hardware complexity.

3.2. Fault Self-Repairing Based on Checkpoint-Rollback Scheme

The program execution monitoring was proposed to detect the embedded system
whether is under attack or not. However, it is not sufficient to complete program executions
only by detecting unintended behaviors caused by malicious attacks, the fast fault self-
repairing capability after discovering instruction faults is also critical important to provide
comprehensive protection for an embedded system. The fault self-repairing based on the
checkpoint-rollback scheme contains two main stages: the object and time selections for
checkpoint backup; and the buffer and backup registers for checkpoint rollback.
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3.2.1. Object and Time Selections for Checkpoint Backup

As the name checkpoint-rollback recovery suggests, checkpoint backup and check-
point rollback are two independent operations for the fault self-repairing module (FSRM);
therefore, the backup object and the backup time are two critical parameters for establishing
effective checkpoints. In the traditional checkpoint backup scheme, the embedded systems
need to back up all the data belonging to the architectural memory components (registers
and memories) for the next checkpoint-rollback [28]. This procedure requires continuously
accessing various registers for replicating stored elements.

However, this type backup approach will not only occupy a large number of on-chip
storage spaces but also result in a high time overhead on checkpoint backup operation to
the real-time embedded system. Generally, the registers in a processor can be categorized
into instruction set registers and temporary registers according to their function types,
where we define the instruction set registers of OpenRISC as special meaning registers with
a small number of control registers, such as the instruction register (IR), program counter
(PC), general purpose registers (GPR), special purpose registers (SPR), and status registers
(SR). In addition, temporary registers are defined as buffer registers during instruction
execution, where the results will be saved into the instruction set registers after operation
and will not affect the continuation of program.

In the five-stage execution pipeline of the CPU, the sequence of instructions of each
BB enters the processor for orderly execution. The timing diagram of the BB instructions
executed in the five-stage pipeline processor is shown in Figure 3. In the P1 clock cycle,
when the jump instruction enters the ID stage, the instruction (Instr. 3) in front of the jump
instruction enters the EX stage, and its regular operation, such as logical comparison or
data operation begins to execute.

Then, in the P2 clock cycle, the instruction (Instr. 3) execution stage has completed, its
operation results are stored into the instruction set registers, and the temporary registers
associated with it will no longer affect the execution of subsequent instructions. The jump
instruction enters the EX stage, and some relevant registers will be updated. Finally, in the
P3 clock cycle, the instruction monitor will detect a delay slot instruction, which indicates
the end of the current BB, and if the relevant registers for the jump instruction execution
have completed updates, the integrity signature of the current BB will be verified as early
as at this time.

As all the operation results were updated to the instruction set registers in the P3 clock
cycle, and the values of all the temporary registers do not affect next BB program execution;
we only need to back up the values of the instruction set registers to meet the checkpoint-
rollback operation. Therefore, the end of P3 is the best time for the checkpoint backup.

EX StageIF Stage ID Stage MA Stage WB Stage

Transfer Instr.

P1

EX StageIF Stage ID Stage MA Stage WB Stage

EX StageIF Stage ID Stage MA Stage WB Stage

EX StageIF Stage ID Stage MA Stage WB Stage

EX StageIF Stage ID Stage MA Stage WB Stage

CLK

Instr. 1

Delay Slot Instr.

Instr. 2

Instr. 3

BB End 

BB Integrity 1

10

0

P2 P3

Figure 3. The timing diagram of BB instructions being executed in the five-stage pipeline processor.
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3.2.2. Buffer and Backup Registers for Checkpoint Rollback

As BB integrity signature recalculation and reference information search require sev-
eral clock cycles, the integrity verification of each BB will take time after the end of the P3
stage. This can cause a wrong situation that when the checkpoint-backup registers (storing
the values of a previous successful checkpoint) need to be updated with the values of the
current BB instruction set registers at the end of P3. Once the subsequent integrity check
is invalid, checkpoint-rollback will revert back to the current BB’s checkpoint with the
updated values of registers.

In order to avoid this wrong situation, we configured the two-stage registers of buffer-
purpose and backup-purpose registers for the checkpoint-rollback operation. The schematic
implementation of two-stage registers for the checkpoint rollback operation is shown in
Figure 4. When the processor executing instructions and each BB’s integrity signature check
are successful, the CPU checkpoint-rollback operation are not activated, and the instruction
set registers are updated according to the current instruction execution.

At the end of the current BB, the values of instruction set registers are first buffered into
buffer-purpose registers, and the values in backup-purpose registers maintain unchanged
until the BB integrity signature is verified successfully. If the current BB integrity verification
is invalid, the buffered values of the buffer-purpose registers will not be backed up into
backup-purpose registers and will be overwritten at the next BB integrity checking pass.
The CPU checkpoint-rollback operation is activated, the values of the previously-saved
checkpoint in backup-purpose registers will be restored into the instruction set registers to
resume the normal instruction execution of the current BB.

Q

EN Q

D Q

EN Q

D

1

0

Instruction Set 
Registers

Buffer-Purpose 
Registers

Backup-Purpose 
Registers

Rollback

Q

EN Q

D

Clock

BB Integrity 
Valid

BB End
Normal Output

Instruction 
Operation

Figure 4. The schematic implementation of two-stage registers for checkpoint-rollback operation.

Applying the above two-stage registers to the CPU’s checkpoint-rollback operation is
based on the contingency of instruction tampering attacks induced by hardware Trojans.
Once an instruction is tampered with in program execution, it inevitably destroys the
integrity signature of BB, and the checkpoint-rollback operation will revert the processor
back to the initial instruction of the current BB with all saved checkpoint data for BB
re-execution. In order to expatiate the proposed checkpoint-rollback operation based on
two-stage registers, the specific example of an instruction stream tampering attack aiming
at the benchmark of OpenECC is shown in Figure 5.

Firstly, the BBi−1 is already verified with the integrity of the instructions at the end
of the delay slot instruction. The values of the instruction set registers are backed up into
the backup-purpose registers at the checkpoint. Secondly, the CPU begins to execute BBi,
the values of instruction set registers will be buffered into the buffer-purpose registers at
the end of BBi for the waiting BB integrity verification and thus will not interfere with
the execution of the following instructions of the next BB in writing the instruction set
registers. Once the BBi integrity is valid, the buffered values in buffer-purpose registers
will be backed up into the backup-purpose registers as new checkpoint data.
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On the other hand, if the BBi integrity is invalid, we assumed the branch transfer
instruction l.bf 1f744 was tampered with by an attack to a wrong target branch address of
l.bf 1f730, the values of buffer-purpose registers will be overwritten in the next BB execution.
Finally, the checkpoint rollback is activated, and the values of backup-purpose registers
are restored into CPU instruction set registers, and the CPU re-fetches the BBi instruction
order from the instruction memory for BBi re-execution.

Figure 5. Example of instruction tampering attack and fault recovery aim at the benchmark of
OpenECC.

4. Hardware Implementation of CPU–SPU Collaborative SoC

This section presents the hardware implementation details of the CPU–SPU collab-
orative SoC. We expatiate the hardware implementations of the instruction monitor and
FSRM. In addition, the performance optimization methods will be implemented to reduce
the performance overhead of the SPU.

4.1. Hardware Implementation of Instruction Monitor

After we complete the offline preparation works of the program BB partition and the
BB’s INFre f extraction from the instruction codes (InsCodes), our following phase is the
hardware implementation of the instruction monitor to provide a high-efficiency instruction
violation detection relying on the proposed fine-grained BB integrity monitoring. As the
instruction codes will be executed in the five-stage pipeline processor in a sequential order,
the instruction monitor will verify the BB integrity signatures according to the sequential
order of program execution. The hardware architecture details of the proposed instruction
monitor connecting with the CPU are illustrated in Figure 6.

The CPU exports the physical addresses of instructions from the PC, the instruction
codes from the ID stage, and the delayed tags from a synchronizer logic, respectively. These
three parameters are the input signals of our hardware-implemented instruction monitor.
Then, a finite state machine (FSM) IP is configured to keep track of the branch and jump
instruction executions with their control-state transitions, which can also identify the BB
boundary of the start address (also being the target address of previous transfer instructions)
and end address with a delay slot instruction after the branch or jump operation.

Under the control of FSM IP, when the start address (ADDstart) of each BB is input
into the LHash engine as an activated signal, the InsCode streams will be continuously
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pumped into the LHash engine to recalculate a 96-bit LHash digest after following the BB’s
InsCodes executions. Moreover, we provide a selection logic of 16-bit RNG bit-selected
numbers to generate the 16-bit LHash digest (DIGcal).

In another path, an additional monitor cache (M-Cache) is configured to buffer parts
of INFre f blocks from the monitor memory. The instruction monitor searches the cache
lines of M-Cache according to the received ADDstart of each BB. If the M-Cache hits, the
corresponding INFre f block is input an intercept logic for obtaining the 16-bit BB integrity
digest of INFre f [15 : 0] as the golden LHash (DIGlhash); if M-Cache misses, the instruction
monitor starts to search the ADDstart in the monitor memory. If it succeeds, a two-input
multiplexer (MUX) controlled by the states of hit/miss receives the INFre f [15:0] after the
intercept logic; if it fails to search, the monitor asserts an invalid signal of BB absence to the
processor.

When M-Cache hits or memory hits, the recalculated DIGcal will be compared with
the prestored DIGlhash in the integrity checker. The instruction monitor asserts the BB as a
valid status when their compared result is equal. Otherwise, the instruction monitor asserts
the BB as an invalid status, and we preset the LHash value error with the invalid status
“01”, and the start address error with the invalid status “10” (BB absence).

Monitor 
memory

LHash 
engine

Integrity checkerFSM IP
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Cache

INFref

CPU

D-Cache

Pipe
Line

Processor Core

IF ID E
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W
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Figure 6. The hardware implementation details of the instruction monitor connecting with the CPU.

Ultimately, the BB’s invalid signal will be sent not only to the Exception module
of the CPU when the instruction monitor detects a violation of BB integrity but also to
the FSRM in the SPU to activate checkpoint-rollback operation, and hold the CPU_Stall
signal to suspend the execution pipeline. In the CPU–SPU collaborative SoC architecture,
the exception signal is nonmaskable to trigger both a fast-response and the self-repairing
mechanisms of the CPU and FSRM. While FSRM repairs the instruction fault, the rollback
recovery logic still asserts the CPU_Stall signal until the successful checkpoint-rollback
operation. It is noteworthy that the above delayed tag signal is configured to improve
the checking efficiency of BB integrity; it helps to reduce the performance overhead of the
instruction monitor.

4.2. Hardware Implementation of the Fault Self-Repairing Module

As previously described, the instruction fault self-repairing operation of the FSRM
via the checkpoint-rollback mechanism is tightly coupled with the BB integrity checking
mechanism of the instruction monitor. The overall control status diagram of the SPU real-
time instruction monitoring and checkpoint-rollback operation is illustrated in Figure 7.
When the instruction monitor detects a delay-slot instruction following transfer instruc-
tion into the execution of the CPU five-stage pipeline, the status of BB end triggers the
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checkpoint-backup operation, which duplicates the values of instruction set registers into
buffer-purpose registers.

Then, the instruction monitor asserts the BB valid status when the BB integrity label
verification has passed; otherwise, it asserts the BB invalid status. At the status of BB valid,
a new checkpoint begins to be established, which backs up the values of buffer-purpose
registers into the backup-purpose registers. After checking that the status is BB invalid, the
checkpoint recovery is activated, and all the values of backup-purpose registers are restored
into the instruction set registers. When the register value restoration has completed, the
CPU_Stall signal will be released and the CPU resumes the first instruction execution of
the current BB. This two-stage checkpoint-rollback can minimize the time consumption
required for instruction fault recovery.

First Instruction 

Transfer Instr.

Delay-Slot Instr.

BB Integrity ?

Next 
BB

BB Valid

BB
Invalid Holding the CPU_Stall Signal 

CPU_Stall 
Signal Release

Instr. Monitor

Instruction Set 
Registers

Error_Logs

BB 
Valid

CPU_Stall

Checkpoint-Rollback Control

BB 
End

BB 
Invalid

BB End

BB
Valid

Checkpoint 
Establish

Checkpoint 
Recovery

Checkpoint 
Backup

BB
Invalid

Exception Next BB Instr.

Backup-Purpose 
Registers

Buffer-Purpose 
Registers

Restoration 
Completed

01/10

FSRMActivation
BB End

Figure 7. The overall control status diagram of instruction monitoring and checkpoint-rollback.

The hardware implementation of two-stage registers for the checkpoint-rollback oper-
ation is presented in Figure 8, which also is a specific hardware implementation detail of
Figure 4. We additionally configured the proposed two-stage registers for buffering and
backing up all the values of the instruction set registers. In each stage, thirty-two 32-bit
registers are configured to back up all the values of the instruction set registers (including
the IR register).

In some practical applications of the OpenRISC processor, only twenty-six instruction
set registers are actually utilized in the realistic checkpoint-backup operation. Increasing
register configurations of the thirty-two 32-bit registers will fully meet the requirements of
future more-complicated checkpoint-rollback operations in different application platforms.
For a better clarification, the implementation flow of the program execution monitoring
and instruction fault self-repairing is presented in Algorithm 1.

It should be considered that the CPU_Stall signal will suspend the execution pipeline
of instruction when the BB’s integrity is invalid, and then SoC enters the instruction fault
self-repairing phase, which will make the performance overhead of FSRM impossible to
be calculated by the performance indicator of Cycles-Per-Instruction (CPI). Therefore, the
checkpoint-rollback operation as the post-detection technique will not be considered in the
next performance overhead evaluation.
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Figure 8. The hardware implementation of two-stage registers for checkpoint rollback.

Algorithm 1 Implementation flow of the program execution monitoring and instruction
fault self-repairing.

Inputs: ADDstart, Instruction
Outputs: Exception, BB End, BB Valid, BB Invalid
1: BBi ← set of the program basic blocks, BBi, 1 ≤ i ≤ m, where m denotes total of BBs.
2: Instructionj ← set of instructions in each BB, Instructionj, 1 ≤ j ≤ n, where n denotes

total number of instructions in each BB.
3: begin: Program execution, SPU BB integrity monitoring and fault self-repairing;
4: for all BBi (i = 1; i++; i ≤ m) do
5: if ADDstart of BBi is detected then
6: for all instructionj (j = 1; j++; j ≤ n) do
7: DIGcal = fLHash(instruction1, instruction2, ..., instructionj)[16-bit];
8: DIGlhash =INFre f [15:0] of BBi from monitor memory;
9: end for

10: if DIGcal = DIGlhash then
11: Exception = null (“00”); /* BB Valid */
12: else Exception = assertion (“01”/“10”); /* BB Invalid */
13: end for
14: if BB End then
15: Checkpoint backup: Buffer-purpose registers⇐ Instruction set registers;
16: else if BB Valid then
17: Checkpoint establish: Backup-purpose registers⇐ Buffer-purpose registers;
18: else BB Invalid then
19: Checkpoint recovery: Instruction set registers⇐ Backup-purpose registers;
20: end
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4.3. Performance Optimizations of SPU Security Monitoring

During program execution, the performance overhead induced by the BB integrity
verification is an important consideration in the hardware-enhanced architecture design.
As previously described, the integrity signature recalculation and reference information
search require some clock cycles. This is the reason for the two-stage register configuration,
as it is possible that the comparative result of the BB integrity verification is not yet
asserted after all the instructions of the BB being executed. This situation requires the CPU
execution pipeline to be suspended every time before each BB integrity checking pass,
which will cause the CPU to have a large performance overhead. Therefore, we configured
the M-Cache to improve the searching efficiency of the INFre f block, and an optimized
I-Cache to reduce the number of times in the BBs integrity verification. In addition, the
worst situation regarding the maximum performance overhead in completing BB integrity
checking is depicted.

4.3.1. M-Cache Searching Efficiency

During program execution, the determining factor of performance impact in the pro-
posed instruction monitor is the searching efficiency of INFre f blocks. When the instructions
of each BB enter the CPU execution pipeline in sequence, if there is no M-Cache, the instruc-
tion monitor needs to search the corresponding INFre f block from the monitor memory
according to the ADDstart of each BB, which will frequently access the monitor memory
and search all the table of INFre f blocks. In order to improve the searching efficiency of BB
INFre f blocks, the M-Cache with a depth of 256 cache lines is configured to buffer partial
blocks of the BBs INFre f table from monitor memory.

Hence, both the temporal locality principle and spatial locality principle of the M-
Cache in searching nearby BB INFre f blocks can be fully exploited to reduce the memory’s
searching time. The M-Cache content-searching method with a pointer and cache internal
structure with partial BB INFre f table are shown in Figure 9. The pointer is described as a
double ring buffer that is constructed with an 8-bit register to indicate the address of the
appointed cache line.

The content-searching circuit and the storage parts of ADDstart are fully intercon-
nected; therefore, the hit/miss status of M-Cache can be acquired within two clock cycles.
As the content searching method is according to the effective ADDstart from the PC, the
cache line is appointed by comparing the BB start address segment of ADDstart[17:2] with
the value of cache line INFre f [31:16].

ADDstart[17:2] DIGlhash[15:0]

ADDstart[17:2] DIGlhash[15:0]

ADDstart[17:2] DIGlhash[15:0]

ADDstart[17:2] DIGlhash[15:0]

line 0

ADDstart[17:2] DIGlhash[15:0]

line 1

line 2

line 3

line

255

0
1

2

3

4

5

6
78

9

A

B

C

D

E
F

1
2 3 4

5

6

7
8

9AB
C

D

E

F

0

Pointer
[3:0]

Pointer[7:4]

0x00

0x01

0x02

0x03

0xFF

0151631

BB reference information

Cache line in M-Cache

P

Figure 9. The M-Cache searching method and internal structure of the BB reference information table.

4.3.2. I-Cache Structure Optimization

In the SoC architecture, improving the searching efficiency of the INFre f block is
not the only strategy in performance overhead optimizations. Moreover, reducing the
number of times on BBs integrity checking is another approach to decrease the performance
overhead caused by LHash recalculation and searching the INFre f table. In order to better
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utilize the locality principle of I-Cache directly mapping main memory (InsCode segment),
we tagged the instructions that had been cached in I-Cache and validated for integrity
signature during the other BB executions as security statuses.

Figure 10 presents the internal implementation mechanism of the I-Cache with a size
of 8 KB. The structure consists of two parts of IC_TAG and IC_RAM. When CPU sends
the request 32-bit physical address (ADDphy) to the I-Cache for fetching an instruction,
then, the I-Cache searches the high 19-bit ADDphy[31:13] to identify whether it is within its
address space range, while the indexed cache line is appointed by ADDphy[12:4] (where
the cache-line depth is 512).

Afterwards, the physical address can accurately find the target address of the request
instruction according to line block offset address of ADDphy[3:0]. The Validity (V) mark
bit in the appointed cache line is “1”, which indicates that the I-Cache hit. If the I-Cache
misses, then CPU fetches instruction via accessing the external InsCode memory.

As shown in the IC_RAM of I-Cache structure, a cache line has four instruction words,
and when the four instructions at the same cache line are read for execution, the Tag (T) bit
in the cache line turns from “0” to “1” to indicate that the instructions in current cache line
were verified for integrity. From the partition principle of program BBs, one BB contains at
least three instructions and occupies one or two cache lines. The long BB occupies several
cache lines.

Therefore, the I-Cache outputs the tag signal of security when all the instructions of
the current BB are cached in I-Cache, also the tags of cache lines they occupied are all signed
with “1” ( for logic AND). Then, the delayed Tag from a synchronizer is input into the
FSM controller, and the instruction monitor directly asserts the valid status to the processor
(as shown in Figure 6). This optimized approach plays an important role in reducing the
number of BB integrity checks in the situation that the BB overlaps with the other BBs.
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Figure 10. The internal implementation mechanism of the I-Cache with the size of 8 KB.

4.3.3. Worst Situation Depiction

In the above-mentioned optimizations of M-Cache and I-Cache, an important consider-
ation is the clock timing overhead or conflict induced by SPU, which induced by instruction
monitoring and instruction fault recovery. The worst situation of performance overhead
occurs when M-Cache and I-Cache both fail to contribute to the integrity verification for
the current BB, and the instruction monitor requires searching the BB’s INFre f block in the
entire monitor memory.
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Moreover, the FSRM will further perform the instruction fault recovery once the BB
integrity check is invalid. Figure 11 depicts the timing diagram of one BB execution with
integrity validation and instruction recovery in the worst situation. The period of T1
represents the total time consumption for searching the BB INFre f block in both M-Cache
and monitor memory from a new BB being detected, and its search result can be obtained
with a high probability before the recalculated results of the LHash engine.

The period of T2 represents the time consumption of the golden LHash DIGlhash being
obtained and waiting for verification. Period T3 indicates that the integrity checker com-
pletes the comparison and outputs the validation status within one clock cycle. Since the
searching process of INFre f relying on the ADDstart of each BB in the M-Cache and monitor
memory is simultaneous with instruction executions, it can minimize the performance
overhead of the BB integrity checking; thus, the time consumption on searching INFre f in
the M-Cache and monitor memory are both acceptable for integrity validation.

In the instruction recovery phase when the BB integrity verification has failed, the
activated checkpoint recovery signal closely follows the status of the BB integrity validation.
It is later only three clock cycles from the end of the current BB boundary to CPU_Stall
signal suspension, it is indicated that the BB recovery will not cause potential clock timing
conflicts even in executing the shortest BB (only three instructions).
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Figure 11. The timing diagram of one BB execution with integrity validation and instruction recovery
in the worst situation.

5. Experiments and Results

This section presents the experiments and results of the CPU–SPU collaborative SoC, and
expatiates the proposed SPU in terms of the performance overhead and security capability.
This section contains the following three parts: the experimental setup for the program
execution; the performance overhead evaluation; and the security capability evaluation.

5.1. Experimental Setup

We integrated the hardware-implemented SPU into the scalar OpenRISC processor
system of OR1200 for constructing the CPU–SPU collaborative SoC for real-time program
execution monitoring and instruction fault self-repairing. The main frequency of the CPU
core is set as @100 MHz, and the internal clock signal of integrated SPU satisfies the
synchronization with the processor. The hardware configurations of I-Cache and D-Cache
support the different sizes of 2, 4, 8, and 16 KB.

We first configured the processor with a typical depth size of 8-KB I-Cache and 8-KB D-
Cache, in which the internal structures consisted of the 512 cache line blocks. We developed
the embedded system in Verilog hardware description language (HDL), performed the
logic synthesis and implementation in Xilinx ISE Design Suite 14.7, and completed the
hardware implementation on the Xilinx Virtex-5 FPGA development board. The GNU Cross
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Compilation Toolchain or32-elf-gcc matching with the OR1200 instruction set architecture
(ISA) was utilized to generate InsCodes.

Moreover, we configured some necessary controllers for some off-chip peripherals,
such as the DDR2 SDRAM, parallel flash, serial ports, and Ethernet. In the system initial-
ization stage (Boot Process), the SoC bitstream is programmed from the flash memory onto
FPGA at power-up; then, the bootloader (U-Boot) boots a Linux kernel to mount the root
file system for execution. We defaulted that the SPU monitors the program execution and
recoveries the instruction fault during the whole application life cycle.

5.2. Performance Overhead Evaluation

While the integrated SPU monitors the program execution in real-time, this inevitably
causes some performance overhead to the embedded system. Although we adopted some
architectural optimizations in both M-Cache and I-Cache to reduce the performance over-
head of CPU–SPU collaborative SoC, it is still necessary to evaluate the final performance
overhead induced by the SPU as an indicator of its applied practicability. In our evaluations
of the SPU performance overhead, ten various benchmarking programs were selected from
Mibench suite [29] to simulate real embedded application scenarios. These ten benchmarks
were developed based on the market-proven industry-standard EEMBC-CoreMark; they
are comprehensive and advanced performance benchmarks in academia, industry, and
military applications.

First, the selected ten benchmarks are preprocessed under offline analysis and static
extraction via running Perl scripts to generate the INFre f blocks of BBs; then, the bench-
marks are compiled by the GNU Cross Toolchain or32-elf-gcc and downloaded into FPGA
for program execution, respectively. Furthermore, the numbers of total instructions and
all the BBs of each benchmark are counted, and the INFre f table required on-chip storage
space is also calculated.

Considering that the hit rates of I-Cache and M-Cache could influence the SPU perfor-
mance overhead, we used the or1ksim [30] simulation software to record the hit rates of
the I-Cache and M-Cache, respectively. Hence, the SPU average performance overheads
under the different benchmarks can be calculated according to the indicator of CPI on the
SoC with and without integrating the SPU.

5.2.1. SPU Performance Overhead

The performance overhead of the CPU–SPU collaborative SoC is shown in Table 2. In
the selected benchmarks, OpenECC has the largest numbers of instructions and BBs, and
its INFre f table for integrity monitoring occupies the maximum on-chip storage space of
26.30 KB in the monitor memory accordingly. We also found that the average hit rates of
I-Cache and M-Cache configured with 8 KB both exceeded 98%, and even the hit rate of the
M-Cache reached 99%. The primary reason is that the BBs INFre f blocks were stored into
monitor memory by the order of BBs execution.

Their high-hit rates contributed by both temporal locality principle and spatial lo-
cality principle can effectively maintain the SPU with a low performance overhead. The
benchmark of quicksort had the highest M-Cache hit rate (99.83%); its small number of
program BBs determined both a lower number on BB overlaps and a higher proportion in
caching INFre f blocks from the monitor memory. The higher proportion in caching INFre f
blocks from the M-Cache can avoid frequent access to monitor memory; therefore, it had
the lowest performance overhead (0.43%).

The indicator CPI tended to increase with the number of benchmark instructions,
which indicates that the probability of M-Cache missing increases. When the overlapped
BBs occupied a larger proportion in the program partition, that caused INFre f block discon-
tinuity in the monitor memory.

For example, running the benchmarks of OpenECC and basicmath requires searching
the INFre f table cached in M-Cache. A small minority of discontinuous INFre f blocks are
not cached in the current M-Cache at the time of executing the jump instructions, and the
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monitor memory is accessed in response; thus, their CPI values are higher than the other
benchmarks. After we complete the calculations of the experimental data from these ten
benchmarks, the average performance overhead induced by SPU was 1.92%, ranging from
0.43% (quicksort) to 3.36% (OpenECC).

Table 2. Performance overhead of the CPU–SPU collaborative SoC (8-KB I-Cache, 8-KB D-Cache, and
8-KB M-Cache).

Benchmark Total
Instruction Total BB Memory

Size (KB)
I-Cache

Hit
M-Cache

Hit
CPI without

SPU
CPI with

SPU
Performance

Overhead

AES 22,170 3535 13.81 99.26% 99.35% 3.528 3.636 3.06%
basicmath 26,515 4327 16.90 98.13% 98.97% 2.643 2.712 2.61%
bitcount 19,684 3344 13.06 98.29% 99.40% 1.653 1.680 1.63%
blowfish 19,128 3247 12.68 97.95% 99.56% 3.536 3.597 1.72%

CRC 18,941 3231 12.62 99.53% 99.58% 1.723 1.748 1.45%
FFT 13,506 2143 8.37 96.58% 99.71% 2.943 2.979 1.22%

OpenECC 56,313 6734 26.30 98.71% 98.52% 3.184 3.291 3.36%
patricia 23,130 3853 15.05 97.90% 98.14% 1.649 1.685 2.18%

quicksort 6707 1018 3.98 99.72% 99.83% 1.856 1.864 0.43%
SHA1 20,455 3400 13.28 98.65% 98.27% 2.351 2.388 1.57%

Average – – 13.61 98.47% 99.13% 2.507 2.558 1.92%

5.2.2. Optimized Effects of M-Cache

In order to further explore the effects of M-Cache in reducing the performance over-
head of the SPU, we made experimental statistics to evaluate the indicator of CPI under
different depths of M-Cache while keeping the 8-KB I/D-Cache unchanged. Since the M-
Cache hit rate was closely related to its size, the depths of M-Cache were configured with
different sizes of no M-Cache: 16, 32, 64, 128, and 256. Table 3 presents the performance
overhead of the SPU configured with different depths of M-Cache.

These experimental results indicate that the performance indicators of CPIs are con-
stantly decreasing with the raising in depths of the M-Cache, however, the CPI reduction
trend begins to slow down when the M-Cache hit rate reaches a saturation, such as depth
(128) and depth (256). In fact, depth (128) and depth (256) are both suitable for M-Cache
configuration. We selected depth (256) to obtain the lowest performance overhead of 1.92%,
which is a suitable depth for SPU to achieve a good tradeoff between storage space and
performance overhead.

Table 3. Performance overhead of the SPU configured with different depths of M-Cache (8 KB I-Cache
and 8 KB D-Cache).

Benchmark CPI without SPU
CPI with SPU under the Different Depths of M-Cache

No M-Cache Depth (16) Depth (32) Depth (64) Depth (128) Depth (256)

AES 3.528 4.986 4.217 3.862 3.736 3.642 3.636
basicmath 2.643 3.935 3.120 2.839 2.755 2.716 2.712
bitcount 1.653 2.362 1.964 1.796 1.713 1.685 1.680
blowfish 3.536 4.968 4.353 3.895 3.742 3.608 3.597

CRC 1.723 2.180 2.019 1.954 1.816 1.754 1.748
FFT 2.943 4.891 4.162 3.583 3.214 2.986 2.979

OpenECC 3.184 4.764 3.975 3.482 3.381 3.302 3.291
patricia 1.649 2.336 1.986 1.816 1.712 1.690 1.685

quicksort 1.856 2.637 2.179 1.970 1.887 1.867 1.864
SHA1 2.351 3.674 2.662 2.539 2.436 2.392 2.388

Average 2.507 3.673 3.064 2.774 2.639 2.564 2.558

Performance
overhead – 46.52% 22.21% 10.63% 5.27% 2.28% 1.92%
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5.2.3. Optimized Effects of I-Cache

As described above, the instruction monitor is also closely related to the hit rate of the
I-Cache. In order to further explore the effects of the I-Cache hit rate on the performance
overhead of SPU, we continued the benchmark evaluation experiments by maintaining the
8-KB D-Cache and M-Cache unchanged, and the size of I-Cache is reconfigured as 2, 4, and
16 KB, respectively. The performance overheads of ten selected benchmarks under different
sizes of I-Cache are shown in Figure 12. The performance overhead incurred by the SPU
decreased with the enlargement of I-Cache addressing space as well as the I-Cache hit rate
improvement.

Moreover, the space enlargement of I-Cache helps to reduce the number of times BB
integrity verification. When executing the selected ten benchmarks with a 16-KB I-Cache,
the performance overhead of the CPU–SPU collaborative SoC had significant reductions
compared to I-Cache configured with 2-KB, where the highest performance overhead was
6.87% (OpenECC at 2-KB), and the lowest performance overhead was at 0.38% (quicksort
at 16 KB). The mechanism of this trend is that, when the I-Cache hit rate increases, the
number of times the CPU fetches instructions from the external memory decreases.

Considering the applied practicality of the SPU in transplantation with reasonable
resource consumption and low hardware complexity, we finally selected the 8-KB I-Cache
to reach a good balance between the performance overhead and resource consumption; in
addition, the size remains the same with the D-Cache and M-Cache depths, and it is easily
configured in other instruction set architecture platforms.
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Figure 12. Performance overheads of ten selected benchmarks under the different sizes of I-Cache.

5.3. Security Capability Evaluation

An important consideration of the CPU–SPU collaborative SoC is its security capability.
In order to validate the effectiveness of the proposed SPU on program execution monitoring
and fault self-repairing, we utilized the OpenRISC debugging system of OR1K to observe
the program execution, instruction modification, exception output, and interrupt location.
This debugging system consists of the Joint Test Action Group (JTAG)-TAP module and the
Advanced debug interface (ADI), which acts as an interface to directly communicate with
the processor core and Wishbone system bus so that we can start and break the execution
pipelines of programs and read or write processor internal registers by accessing the CPU.

We performed instruction tampering evaluations aimed at both nontransfer instruction
tampering and transfer instruction tampering from the different locations of processor core,
I-Cache, flash memory, and source program code. Conveniently, we also selected the partial
instructions from the instruction stream of benchmark OpenECC (as shown in Figure 2) as
an example, in which, the nontransfer instruction l.nop 0x0 was artificially tampered with as
l.nop 0x1 and the branch transfer instruction l.bf 1f730 was modified to the different branch
address of l.bf 1f734. Table 4 presents the security capability evaluations of the CPU–SPU
collaborative SoC under different instruction tampering attacks.
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The exception binary results from serial port printing were analyzed and displayed in
the upper computer, and their corresponding error_log files were generated for examination.
Ultimately, the instruction fault recovery was completed within three clock cycles after the
delay slot instruction execution.

Table 4. Security capability evaluations of the CPU–SPU collaborative SoC under different instruction
tampering attacks.

Attack Methods Nontransfer Instruction Tampering Transfer Instruction Tampering

Locations Processor I-Cache Memory Program Processor I-Cache Memory Program

Approaches Instruction tampering: l.nop 0x0⇒ l.nop 0x1 Instruction tampering: l.bf 1f730⇒ l.bf 1f734

InsCodes Binary code tampering: 15000000⇒ 15000001 Binary code tampering: 13ff fffd⇒ 14000001

Exception LHash Error (“01”) LHash Error (“01”) & BB Absence (“10”)

Fault Recovery 3 clock cycles after delay slot instruction execution 3 clock cycles after delay slot instruction execution

While the CPU executed the programs of selected benchmarks on the FPGA develop-
ment platform and printed the control scripts of exception statuses into the upper computer,
we can track the embedded system for a malicious attack as shown in Figure 13. The
integrity signature validations for the above binary instruction codes at the granularity of
BBs can recognize any instruction tampering behaviors in transfer and nontransfer instruc-
tions. When the adversary tampered with the nontransfer instruction, the SPU asserted
a BB LHash verification error and reported the corresponding BB integrity recalculated
value and its correct LHash digest. There was only exception error (“01”) for nontransfer
instruction tampering when the BB integrity checking failed.

In addition, there were two invalid statuses for the transfer instruction tampering: the
SPU first asserted the exception error (“01”) when the current BB integrity checking failed,
and then another BB absence (“10”) was reported when the next BB start address (target
address of branch/jump) searching missed. We can benefit from the error_logs of both the
nontransfer and transfer instruction attacks regarding the BB LHash recognition.

Figure 13. The output error_log files for reporting the instruction tampering behaviors in BBs.

From the theory of probability, the anticollision capability of the LHash engine integrity
signature for each BB in the hardware-implemented SPU can be represented as follows.

P(m, n) =
1

C(m, n)× 2n (1)

where P(m, n) denotes the success probability for adversaries to correctly guess the integrity
signature of each BB, in which m represents the initial digest size of LHash algorithm, and n
represents the length of RNG-selected LHash bits from the m digest size. In our CPU–SPU
design, the success probability for an adversary to reversely derive BB integrity signature is

1
C(96, 16)× 216 , which makes it impossible for the adversary to actualize instruction tam-

pering attacks without being detected during the period of each BB execution. Hence, the
LHash integrity signature has a good robustness in resisting instruction tampering attacks.
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5.4. Comparison of Security and Practicality

In the previous hardware-enhanced architectures, security and practicality are two
most important metrics to evaluate the superiority of protection techniques. The extended
SPU was implemented without any modification on corresponding compiler and processor,
and thus it is easily transplanted to other embedded processors with different ISAs.

Moreover, the fully hardware-implemented SPU has a high processing performance
in monitoring program execution and calculating the LHash digest; therefore, it can keep a
low performance overhead to keep up with the CPU’s execution pipeline. Therefore, we
evaluated the SPU practicality with ISA extension, compiler modification, and performance
overhead. The SPU security capability was evaluated based on the protection abilities of
attack detection and fault self-repairing. We divided the system security capability into the
following three levels.

• Level-I: Only monitor instruction tampering behaviors by a coarse-grained partition.
• Level-II: Only monitor instruction tampering behaviors by a fine-grained partition.
• Level-III: Both monitor instruction tampering behaviors and instruction fault recovery.

The different hardware security mechanisms reported in the literature in terms of secu-
rity capability and comprehensive practicality are compared in Table 5. Our integrated SPU
achieves both instruction tampering detection and instruction fault self-repairing at a low
performance overhead of (1.92%) , which is a lower value compared with the state-of-the-art
security techniques while providing a comprehensive protection feature. In addition, its
fine-grained BB integrity monitoring is not necessary to extend ISAs and modify compilers;
these enable the SPU to be transplanted into other ISA hardware platforms.

The fine-grained BB integrity checking can provide a sensitive violation detection for
instruction tampering behaviors, and it does not incur significant performance overhead or
speed degradation in each BB integrity verification. Therefore, we evaluate the security
capability of SPU into the level-III, and it has a better practicality.

Table 5. Comparison of different security mechanisms in terms of security capability and comprehen-
sive practicality.

Security
Mechanism

Security Capability Comprehensive Practicality

Level Instruction
Tampering

Fault
Self-Repairing

Coarse/Fine
Grain

ISA
Extension

Compiler
Modification

Performance
Overhead

HAM [31] I Yes No Coarse No No Medi (5.59%)
CFI-LEA [15] I Yes No Coarse Yes Yes Low (3.19%)

CCFI [32] I Yes No Coarse Yes Yes High (52.0%)
CEDA [33] I Yes No Coarse Yes Yes High (10.5%)
AE-SSS [34] II Yes No Fine No No Medi (7.70%)
HCIC [35] II Yes No Fine No No Low (0.95%)

CLR-REV [36] II Yes No Fine Yes Yes Low (1.87%)
CPU-ASP [37] II Yes No Fine No No Low (2.52%)

Our SPU III Yes Yes Fine No No Low (1.92%)

6. Hardware Implementation Evaluation

In addition to causing performance overhead at the processor, the integrated SPU also
inevitably increases the original SoC with hardware complexity, resource overhead, and
power consumption. The CPU–SPU collaborative SoC was synthesized, implemented, and
evaluated on a Xilinx Virtex-5 FPGA development board. In addition, Synopsys back-end
design tools of Design Compiler (DC) and IC Compiler (ICC) were utilized to synthesize
the SoC into technology-mapped gate-level netlists, and complete automatic placement
and routing based on SMIC 130-nm CMOS standard technology library.

Table 6 presents the CPU–SPU collaborative SoC hardware implementation on FPGA
and ASIC. According to the resource utilization of FPGA, the hardware-implemented
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SPU occupies about 9.83% on the total slices of SoC and consumes a certain amount of
on-chip storage resources for integrity checking and checkpoint-rollback operations. On
the whole, our integrated SPU is a relatively smaller hardware module compared to the
overall CPU–SPU collaborative SoC.

We implemented the LHash engine as a hardware-friendly algorithm, where the
Feistel-PG internal permutation structure only requires 817 gate elements (GE), its hardware
consumption is less than another lightweight hash implementation of PHOTON [38], where
the internal permutation requires 1120 GE. From the ASIC implementation of SoC, the
extended SPU occupies 36.8% of the chip area, which is larger than the proportion of 9.83%
on FPGA after automatic routing because of more RAM IP library placements, and its
dynamic power maintains a low power consumption. Therefore, the proposed SPU reaches
a good balance between security capability and hardware overhead.

Table 6. The CPU–SPU collaborative SoC hardware implementation on FPGA and ASIC.

Platform Resource Utilization SoC SPU

FPGA

Slice Registers 2572 958
Slice LUTs 16,754 2074

Occupied Slices 6835 672
BlockRAM/FIFO 57 52

ASIC Chip Area 3.42 mm2 1.26 mm2

Power Consumption 56.6 mW 7.4 mW

7. Conclusions

Embedded systems applied in safety-critical equipment require a high quality of
security to guarantee program execution security, especially for remote-controlled hardware
platforms. This paper presents a CPU–SPU collaborative SoC that integrates the proposed
SPU to monitor the program execution and instruction fault recovery in real time. The
hardware-implemented SPU architecture employs an instruction monitor to verify the
BB integrity signature for detecting malicious instruction tampering behaviors caused by
hardware Trojans and artificial modification.

The instruction fault self-repairing module (FSRM) was integrated into the SPU to
provide a low-cost instruction recovery for BB re-execution. The CPU–SPU collaborative
SoC was implemented and validated on the Virtex-5 FPGA development board. The evalu-
ation results after executing different benchmarks indicate that the SPU can provide both
high-efficiency instruction execution monitoring and fast instruction fault self-repairing
while maintaining a low performance overhead. Its average performance overhead lowered
to the 1.92% at typical 8-KB I/D caches.

Moreover, the security capability evaluation and practicality comparison of the SPU
confirmed its superiority in detecting instruction tampering behaviors and transplanting
different ISA platforms. According to the hardware implementation of SPU, its hardware
complexity is acceptable for embedded systems. Ultimately, the SPU satisfies a good
balance between security capability and resource consumption.
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