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Featured Application: The open-source deep learning algorithm presented in this work can iden-
tify anomalous chest radiographs and support the detection of COVID-19 cases. It is a comple-
mentary tool to support COVID-19 identification in areas with no access to radiology special-
ists or RT-PCR tests. We encourage the use of the algorithm to support COVID-19 screening,
for educational purposes, as a baseline for further enhancements, and as a benchmark for differ-
ent solutions. The algorithm is currently being tested in clinical practice in a hospital in Espírito
Santo, Brazil.

Abstract: Due to the recent COVID-19 pandemic, a large number of reports present deep learning
algorithms that support the detection of pneumonia caused by COVID-19 in chest radiographs.
Few studies have provided the complete source code, limiting testing and reproducibility on different
datasets. This work presents Cimatec_XCOV19, a novel deep learning system inspired by the
Inception-V3 architecture that is able to (i) support the identification of abnormal chest radiographs
and (ii) classify the abnormal radiographs as suggestive of COVID-19. The training dataset has
44,031 images with 2917 COVID-19 cases, one of the largest datasets in recent literature. We organized
and published an external validation dataset of 1158 chest radiographs from a Brazilian hospital.
Two experienced radiologists independently evaluated the radiographs. The Cimatec_XCOV19
algorithm obtained a sensitivity of 0.85, specificity of 0.82, and AUC ROC of 0.93. We compared
the AUC ROC of our algorithm with a well-known public solution and did not find a statistically
relevant difference between both performances. We provide full access to the code and the test
dataset, enabling this work to be used as a tool for supporting the fast screening of COVID-19 on chest
X-ray exams, serving as a reference for educators, and supporting further algorithm enhancements.

Keywords: deep learning; COVID-19; chest radiograph

1. Introduction

The exponential spread of COVID-19 in the world poses substantial challenges for
public health services. The disease, caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), initially identified in December 2019 in Wuhan, China, causes respi-
ratory tract infections and spreads rapidly through contagion between people, thus overbur-
dening health systems worldwide. It is necessary to evaluate the contagion scenarios and

Appl. Sci. 2022, 12, 3712. https://doi.org/10.3390/app12083712 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083712
https://doi.org/10.3390/app12083712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7021-1936
https://orcid.org/0000-0002-0846-7196
https://orcid.org/0000-0002-9968-6473
https://orcid.org/0000-0002-2861-5061
https://orcid.org/0000-0003-2219-0290
https://doi.org/10.3390/app12083712
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083712?type=check_update&version=1


Appl. Sci. 2022, 12, 3712 2 of 19

identify as many suspicious cases as possible to define appropriate isolation and treatment
strategies [1,2]. Clinically, patients infected with SARS-CoV-2 present fever, cough, dyspnea,
muscle aches, and bilateral pneumonia in imaging [3,4]. Even though studies suggest that
the Omicron variant has a lower replication competence in human lung, thus reducing the
pneumonia occurrence [5], mechanisms for screening and monitoring the evolution of the
disease in the lungs are still essential, in the sense that we still do not know how the disease
will evolve in the years to come. Imaging in chest radiography or computed tomography
(CT) is the most common method to support the diagnosis of pneumonia in symptomatic
patients [6]. There are clear recommendations from the WHO (World Health Organization)
and the American Radiology Society for the use of imaging only in particular situations,
and CT as part of the initial screening stage [7–9]. With the progression of the disease in
the patient, characteristic chest radiographic patterns become more evident, which allows
using X-ray images to support the disease diagnosis and follow-up.

Even with limited resources, many public and private health systems have X-ray
machines distributed throughout the country, which makes chest radiography an accessible,
fast, and inexpensive alternative for diagnostic screening. In this scenario, an artificial
intelligence (AI) system can be a tool to support radiologists or the medical staff directly in
a suspected COVID-19 pneumonia patient, especially in areas where no radiology specialist
is available [10], and in situations where there is a higher pressure on the health system
from a higher demand caused by an epidemic or pandemic situation.

There are many deep learning (DL) algorithms proposed in the literature to detect
COVID-19 in radiographs, the majority based on popular convolutional neural networks
(CNN) architectures for image classification, such as VGG, Inception, Xception, and Resnet.
These algorithms take benefit from the DL characteristic of automatic feature extraction.
Nevertheless, learning the features normally requires training the algorithms with a huge
amount of annotated images. For a thorough review, please refer to [11,12].

It is difficult to categorize CXR images for COVID-19. The images have few semantic
regions (sparsity) and other pulmonary infections generate similar lesions on the lungs,
so there is also an inter-class similarity in the images. Recently, some studies that were
based on the VGG-16 architecture proposed new methods to enhance feature extraction
in CXR images. The work by [13] adopted a novel approach based on the bag of deep
visual words (BoDVW) to classify CXR images. The method removes the feature map
normalization step and adds the deep features normalization step on the raw feature maps,
preserving the semantics of each feature map that might have importance to differentiating
COVID-19 from other forms of pneumonia. This method was improved by [14], proposing
a multi-scale BoDVW, exploiting three different scales of the pooling layer’s output feature
map from a VGG-16 model. The study by [15] used an attention module to capture the
spatial relationship between the regions of interest in CXR images. The method produced
a classification accuracy of 79.58% in the 3-class problem (COVID vs. No_findings vs.
Pneumonia), 85.43% in the 4-class problem (COVID vs. Normal vs. Pneumonia bacteria vs.
Pneumonia viral), and 87.49% in the 5-class problem (COVID vs. No_findings vs. Normal
vs. Pneumonia bacteria vs. Pneumonia viral).

Despite many algorithms being available for public use, there are still many obsta-
cles to their wide application in clinical practice. A study published in Nature Machine
Intelligence [16] systematically reviewed publications of machine learning models for the
diagnosis or prognosis of COVID-19 from X-ray or CT images that were published between
1 January 2020 and 3 October 2020. The search identified 2212 studies, of which 415 were
included after initial screening, and, after a more rigorous quality screening, 62 studies were
included in the systematic review. The conclusion is impressive. None of the models iden-
tified are of potential clinical use due to methodological flaws and/or underlying biases.
Our review also identified fundamental problems that limit the adoption of algorithms
in clinical practice. The source code and the training and testing data are rarely publicly
available. It is not possible to replicate the results and evaluate the AI algorithm on different
datasets. We noticed that usually, this happens because patient data protection policies
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prevent the release of data or because there are commercial interests in the developed
software tool. Sometimes the researchers provide only part of the source code. In addition,
most studies used a limited number of images from local sources and, therefore, their mod-
els may not generalize well to other phenotypes and geographic regions’ contexts. Many
works used unreliable public datasets for training, did not provide external validation
or presented deficient model robustness metrics. Our observations are in line with the
findings identified in the studies of [16–18]. Table 1 presents the open-source algorithms
published in the major peer-reviewed publications to the best of our knowledge. Only two
other studies used datasets larger than 25,000 chest X-ray images (CXR) for training, and
only one had more than 2000 COVID-19 cases.

Table 1. A partial list of DL algorithms based on COVID-19 radiographs with publicly available code.

Ref. Objective Base Model Training Dataset
(# of CXR)

External Validation
Dataset (# of CXR)

[19] Detect common thoracic
disease DenseNet-121 120,702 24,500

[19] Diagnose COVID-19 and
multiclass classification DenseNet-121 27,825/1571 1

China 1899/98 1

China 1034
Ecuador 650/132 1

[20] Detect COVID-19 pneumonia

Ensemble of CNN:
Densenet-121, Resnet-50,

Inception, Inception-Resnet,
Xcepton, EfficientNet-B2

Pre-training: NIH-CXR14
dataset >100,000

Fine-tunning: 14,788/4253 1
2214 images/1192 1

[21] Predict COVID-19 severity
and progression VGG-11 and EfficientNet-B0 1834 all COVID-19 patients 475

[22] Detect COVID-19 cases COVID-Net CNN 13,975/358 1 300/100 1

[23] Detect COVID-19 (3 binary
classifiers) ResNet-50 7406/3411 N/A 2

[24] Detect COVID-19 and
Multiclass Classification DarkNet-19 1125/125 1 N/A 2

This work Detect COVID-19 Inception-V3 44,031/2917 1 1158/13 1

1 COVID-19 infection. 2 Did not use external validation. Used 20% of data for testing/5-fold cross-validation.

We avoided repeating the most common flaws identified in the available studies.
We carefully prepared and used a large and multi-centric dataset for training the algorithm.
We used an external validation dataset with data carefully labeled by two experienced
radiologists and benchmarked our algorithm with a well-known algorithm on the same
dataset. We sought to not only validate the hypothesis that supervised AI algorithms
applied to chest radiographs can be an alternative for supporting COVID-19 detection,
but also to share all the details related to the major methodological decisions taken to
develop our proposed solution, providing full access to the code and a valuable annotated
external test dataset. Thus, the main contributions of our work are:

• The proposal of a new DL system based on the Inception V3 architecture, one that sup-
ports the identification of normal and abnormal CXR examinations and the diagnosis
of COVID-19.

• The preparation and publication of an annotated CXR dataset with 1158 images. It is
an external validation dataset suitable not only for this but also for future works.

• The evaluation of the classification metrics of our algorithm in an external validation
dataset and a comparison of the performance with a state-of-art algorithm.

• The guarantee of reproducibility.

2. Materials and Methods

In this work, we present Cimatec_XCOV19, a deep learning system to support the
detection of COVID-19 in radiographs. The system is composed of two AI models: one
evaluates normal and abnormal examinations, while the second is a binary classifier for
being suggestive of COVID-19 or not. Both models are variations of Inception-V3 CNNs [25]
trained with pre-processed CXR. Figure 1 shows the system workflow for the evaluation
of an image. A CXR image, X, is pre-processed and serves as input for both models
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simultaneously. The system evaluates the input image in both CNN independently. They
have different box colors in the figure. One model evaluates the probability of image X
being abnormal, Pabn(X), while the other evaluates the probability of image X being COVID-
19, Pcov(X). An outcome suggestive of COVID-19 occurs only when the multiplication of
the outputs of the two models is greater than 0.5.
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Figure 1. Cimatec_Xcov19 workflow of DL models for COVID-19 classification.

Deep CNNs are often large models and demand much computational power. The widely
used Inception-V3 architecture is made of suitably factorized convolutions and aggressive
regularization to scale up the networks to efficiently use the available processing capabilities.
The model has both symmetric and asymmetric building blocks comprising convolutions
layers, average and max pooling operations, concatenation, and fully connected layers.
The model uses dropout layers and batch normalization applied to activation inputs.
The loss function is a softmax. The Inception architecture innovation is the implementation
of inception blocks, which splits the input into different parallel trajectories. There is a
concatenation module at the end of the inception blocks to integrate these different paths,
as observed in Figure 2. The Supplementary Materials details our network’s architecture,
showing the structures in block diagrams. It is possible to notice the modifications they
have from a traditional Inception-V3 network.
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The dataset was prepared by collecting 44,031 examinations from different sources,
mainly from public databases and Brazilian and Spanish healthcare institutions. We did a
visual inspection of each database and manually excluded out-of-the-context images and
those with bad quality. Table 2, below, details the origins of the datasets.

There were multiple image classifications methods in the datasets. The image tags
changed according to the origin of the data. For proper use by the models, we reclassi-
fied the CXR labels into three categories: (i) normal, (ii) abnormal, but not COVID-19,
and (iii) abnormal, and suggestive of COVID-19. Figures 3 and 4 represent the datasets
distributions.
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Table 2. Datasets description and number of images.

Dataset Description # of CXR

RSNA Pneumonia Detection Challenge [27]
Images labeled by the Society for Thoracic Radiology and MD.ai

for pneumonia cases found in the chest radiograph database
made public by the National Institutes of Health (NIH).

25,497

BIMCV PadChest [28]
Digital Medical Image Bank of the Valencian Community.
Images were interpreted and reported by radiologists at

Hospital San Juan (Spain) from 2009 to 2017.
14,252

BIMCV COVID-19 [29] Digital Medical Image Bank of the Valencian Community
related to COVID-19 cases. 1762

HM Hospitales CXR images from patients from the HM Hospitales group in
different cities in Spain. Private Dataset. 1277

COVID-19 Image Data Collection [30]
Data was collected from public sources, as well as through

indirect collection from hospitals and doctors organized by a
researcher from the University of Montreal.

613

HC USP Competition Images obtained from patients from the HC hospital in São
Paulo used for a competition. Private Dataset. 593

Hospital Santa Izabel Images interpreted and reported by radiologists at Hospital
Santa Izabel, Salvador, Bahia, Brazil. Private Dataset. 37

There were 2917 images tagged as COVID-19 (6.7%). This is one of the largest collec-
tions of images used to train COVID-19 classifiers, to our knowledge. Before inputting the
data into the models, we pre-processed the images for normalization and better feature
extraction. A data augmentation process included new images with variations in the
gamma contrast, which generated, in total, 132,093 images.

We randomly distributed the dataset to 70% for training, 20% for validation, and 10%
for testing, keeping the same distribution of classes from the original dataset. We chose
to use a hold-out test dataset instead of doing cross-validation, due to hardware and time
constraints. After building a stable system by training and testing it in the general dataset,
we did an external validation with a new dataset of CXR from a Brazilian hospital focused
on elder people and used explainable AI techniques to show how the algorithms are taking
their classification decisions.
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During the development of the algorithms, we used one shared computing node with
four Nvidia GPUs V100 with 32 MB of memory for each.

2.1. Data Pre-Processing

The system input data are CXR in the JPG format. The source of the images is uncertain.
They might come in different formats, usually DICOM or JPG. They also may have different
resolutions, sizes, and qualities. To establish a standardization process for the input data,
facilitate the model feature extraction and learning, and reduce training time, we perform a
pre-processing routine [31]. Three preprocess routines correct the edges of the images, cut a
bounding box with the lung area, resize it to 299 × 299 pixels, normalize the data between
0 and 1, and execute a histogram equalization to improve the contrast.

We decided to maintain the standard 299 × 299 pixels image input size of the Inception
V3 architecture. A study on the effect of image resolution on DL in radiography by [32],
identified that maximum AUCs were achieved at image resolutions between 256 × 256 and
448 × 448 pixels for binary decision networks targeting emphysema, cardiomegaly, hernias,
edema, effusions, atelectasis, masses, and nodules. Although the impact of resizing the
image in this work is not completely clear, we assumed this resolution had low interference
in the feature detection ability of the models.

There are many images with a concentration of pixels in a reduced number of col-
ors, which makes it difficult for the model to identify the inner region of the lung. Therefore,
we apply a color histogram equalization to standardize and improve the images, as observed
in Figure 5.

To expand the assertiveness of the classification models and their ability for generaliza-
tion and noise tolerance, we used a technique known as data augmentation. This technique
aims to expand the training database of the deep learning models by generating new
images from the original dataset, with the intentional introduction of variations in color,
brightness contrast, flips, rotations, or spatial distortions. After trying multiple options,
we encountered better results when introducing variations in the gamma contrast. In this
way, two new images were created from each original image, tripling the training and
validation datasets, which generated, in total, 132,093 images.
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2.2. External Validation Dataset

The test dataset for external validation has frontal chest radiographs from patients from
a hospital in Espírito Santo, Brazil, obtained in the period between July and September 2020,
during an acute phase of the COVID-19 pandemic. The retrospective study was approved
by the Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória—EMESCAM
institutional review board (STU# 34311720.8.0000.5065) and was granted a waiver of written
informed consent. Figure 6 shows a diagram with the flow of participants. The study
sample consisted of 1,158 images, being 830 (71.68%) females, 328 (28.32%) males, with a
mean age of 72.56 years ± 10.02 (standard deviation), and 30 cases (2.59%) with a positive
RT-PCR test for COVID-19.
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Figure 6. Flowchart for patient inclusion in the external validation dataset.

Independently, two radiologists (henceforth radiologists A and B), certified by the
Brazilian Federal Council of Medicine and by the Brazilian Society of Radiology, both with
at least 15 years of practical experience, evaluated the exams. The dataset was randomized
and anonymized and accessed via a PACS (picture archiving and communication system),
where the radiologists could review the images but had no access to any other clinical data,
nor to the review of the other radiologist. They analyzed each image twice at different
times and orders. Hence, each image received four diagnoses.
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The radiologists issued one of the following seven possible diagnoses: (1) normal
examination, (2) severe viral infection, (3) moderate viral infection, (4) mild viral infection,
(5) severe bacterial infection, (6) moderate bacterial infection, or (7) mild bacterial infection.
We only considered valid a diagnosis with at least three concordant analyses. Of the
1158 images, 1082 (93.43%) had 100% agreement, while 59 cases (5.09%) had 75% agreement.
Seventeen images (1.46%) had less than 75% agreement and were excluded from the
database. Table 3 presents the radiologists’ analysis of the dataset.

Table 3. Characteristics of Patients of the External Validation Dataset.

Parameter Number of
Examinations Age(y) Sex Positive

RT-PCR Test

All Patients 1158 72.56 ± 10.02 830 female 30
Radiologists’ Diagnosis Breakdown

Lack of Consensus
(agreement < 75%) 17 74.35 ± 9.38 10 female 3

Normal 1108 72.32 ± 9.94 802 female 12
Mild Viral Infection 1 71 1 male 1

Moderate Viral Infection 3 78.67 ± 10.01 2 female 3
Severe Viral Infection 10 81 ± 6.55 5 female 10

Mild Bacterial Infection 9 78.11 ± 11.86 6 female 1
Moderate Bacterial Infection 7 78.43 ± 9.81 4 male 0

Severe Bacterial Infection 3 85.67 ± 16.44 2 female 0

We calculated Cohen’s kappa coefficient of intraobserver and interobserver agree-
ment [33] with a 5% confidence. The intraobserver analysis of radiologist A showed a
kappa of 0.847. From the first sampling to the second sampling, radiologist A changed the
diagnosis for 13 images. While for radiologist B, the coefficient was 0.507, changing the
diagnosis for 66 images. For the interobserver analysis, in the first round, the radiologists
differed in 51 diagnoses; the kappa coefficient was 0.595. It increased to 0.699 in the second
round, when they only differed in 33 diagnoses. The kappa coefficient varied between moderate
and substantial agreement. A complete table with all 1158 diagnoses is available at [34]

According to the radiologists’ agreed diagnosis, 1108 examinations were normal,
19 had a bacterial infection, one had a mild viral infection, and 13 had a moderate or severe
viral infection. Interestingly, the 13 cases diagnosed as moderate or severe viral infection
correspond to images of patients infected with COVID-19, having tested positive on the
RT-PCR test. These results suggest that during a COVID-19 pandemic, it is possible to
associate usual diagnoses of moderate and severe viral infection from X-ray examinations
with a strong suspicion of COVID-19 infection.

2.3. Benchmark Algorithm

We used the external validation test dataset to evaluate the performance of our AI
algorithm and compare it with the results obtained from the same dataset from another
public COVID-19 classifier, which we will describe further. We compared the algorithm’s
indication of examinations suggestive of COVID-19 with the radiologists’ diagnoses of
moderate or severe viral infection.

We chose the DeepCOVID-XR algorithm as the public COVID-19 classifier for bench-
marking. The Image and Video Processing Lab (IVPL) at Northwestern University devel-
oped the algorithm and shared the code [20]. The DeepCOVID-XR system is an ensemble
of six different CNNs, as shown in Figure 7. It uses the entire chest X-ray image and a
cropped image with the lung region as the input. Both images are resized to 224 × 224 and
331 × 331 pixels, which amounts to four smaller input images for each X-ray sample in the
dataset. The system sends these images into each of the six different previously validated
CNN architectures. A weighted average of the predictions from each model produces a
single prediction of COVID-19 for each image.
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The CNNs were pre-trained on a public dataset with more than 100,000 images before
being fitted with images collected from a clinical trial with 14,788 images (4253 posi-
tives for COVID-19) using transfer learning. The hold-out test dataset had 2214 images
(1192 positives for COVID-19). It generated an 83% accuracy, 75% sensitivity, 93% specificity,
and 0.90 AUC ROC (area under curve of receiver operating characteristic).

2.4. Statistical Methods

We calculated the sensitivity and specificity with a confidence interval (CI) of 95%
and compared the AUC ROC of the two algorithms with the DeLong test [35]. We used
the IBM SPSS 2.8® software to calculate Cohen’s kappa coefficient and the AUC ROC.
For the statistical analysis, we used the following Python libraries: sklearn, scipy, and im-
balanced learn [36].

3. Results

The Cimatec_XCOV19 system, presented in this study, comprises two CNNs, one to
classify the CXR images as normal or abnormal and the other to classify the CXR images as
abnormal or suggestive of COVID-19.

3.1. Algorithm Evaluation

To prepare the normal and abnormal classification model, we randomly distributed
70% of the data for training, 20% for validation, and 10% for testing, keeping the same
distribution of classes from the original dataset. Figure 8 shows the confusion matrix for
the testing dataset.
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Figure 8. Normal/Abnormal model Confusion Matrix for the test dataset.

The model had, overall, an F1 score of 94%, an accuracy of 91%, a sensitivity of 94%,
a specificity of 94%, and a precision of 94%. The AUC ROC and PRC (precision-recall
curve) curves shown in Figures 9 and 10 complement the results that demonstrate the
good performance of this approach. The model has an excellent fit as a screening tool for
abnormal images since it generates few false negatives.
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Table 3 CNN. We trained it to differentiate an abnormal CXR from a CXR suspicious
of COVID-19. We collected the training data from multiple databases, looking to enhance
variability, avoiding bias toward a specific one. We used 8493 images, being 70% for
training, 20% for validation, and 10% for testing. As observed in the confusion matrix in
Figure 11, the model wrongly labeled images as Abnormal in only 3.5% of the COVID-19
image examinations.
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The model had an average F1 score of 94%, an accuracy of 94%, a sensitivity of 93%,
and a specificity of 96%, which minimizes the possibility that an anomalous image of
a patient with COVID-19 is considered non-COVID-19. To complement the results that
demonstrate the excellent performance of this module, Figures 12 and 13 show the AUC
ROC and PRC curves.
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We compared the results of Cimatec_XCOV19 with the published result of the algo-
rithms identified in Table 1. This comparison is only a rough reference, as some of those
algorithms were multiclass classifiers and all of them were trained and tested on different
datasets. Table 4 shows the results.
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Table 4. Table comparing Cimatec_XCOV19 metrics with other algorithms.

Ref. Name Accuracy Sensitivity Specificity ROC PRC

[19] Wang et al. N/A 1 0.93 0.87 0.97 N/A
[20] DeepCOVID-XR 0.90 0.75 0.93 0.83 N/A
[22] COVID-Net 0.93 0.91 N/A N/A N/A

[23] Narin etal
(Resnet50) 1 1 1 N/A N/A

[24] DarkCovidNet 0.98 0.95 0.91 N/A N/A
This work Cimatec_XCOV19 0.94 0.93 0.96 0.98 0.96

1 N/A—Not available results.

3.2. External Validation

We used the 1141 CXR exams with a consensus diagnosis, detailed in Table 3, to per-
form an external validation. We also used this dataset to compare the performance of our
algorithm with the DeepCOVID-XR published open-source algorithm. From the list in
Table 1, it was the best fit because it was trained using large datasets, performed exter-
nal validations, and had rigorous statistical analysis. Another good option would be the
algorithm developed by [19] but it missed code documentation.

To evaluate the performance of both AI algorithms, we compared the algorithm´s
indication of examinations suggestive of COVID-19 with the radiologists’ diagnoses of mod-
erate or severe viral infection. We expected a worse performance by the AI algorithms than
those presented in previous studies, given the variances between the patients’ phenotypes
present in the training dataset from those present in the external validation dataset as well
as the differences in X-ray images. The quality of X-ray images depends on factors, such as
the film quality, type, and the state of the conservation of filters and collimators, exposure
time and power (dose), the distance from the beam source to the target, among others [37],
but it also varies with the brand and model (year) of the X-ray unit. In particular, resolution
and contrast can vary significantly between units. For this reason, it is essential to address
the ability of a trained AI to identify patients with COVID-19 using X-ray images obtained
with the equipment available in each region. Figure 14 shows the confusion matrix for
both algorithms.
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The Cimatec_XCOV19 model had a sensitivity of 0.85 (95% CI, 0.54 to 0.97). Only two
examinations were false negatives from the 13 abnormal examinations. Specificity was 0.82
(95% CI, 0.80 to 0.84) and the AUC ROC was 0.92 (95% CI, 0.84 to 1). The DeepCOVID-XR
had a slightly worst sensitivity of 0.77 (95% CI, 0.46 to 0.94) with three false negatives, but it
had a lower false-positive rate, generating a specificity of 0.94 (95% CI, 0.93 to 0.95) and a
ROC AUC of 0.97 (95% CI, 0.93 to 0.999). Table 5 presents the algorithms’ performance in
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the external validation dataset and the performance in the test dataset used in their initial
training (previous performance). Both algorithms generalized well for the new dataset.

Table 5. Comparison of metrics between the Cimatec_XCOV19 and DeepCOVID-XR algorithms.

Metrics for “
Suggestive of COVID-19

Infection”

Cimatec_XCOV19
Performance on the
External Validation

Dataset

Cimatec_XCOV19
Previous Performance

DeepCOVID-XR
Performance on the
External Validation

Dataset

DeepCOVID-XR
Previous Performance

Sensitivity 0.85 0.93 0.77 0.75
Specificity 0.82 0.96 0.94 0.93
Accuracy 0.82 0.94 0.94 0.83

AUC ROC 0.93 0.98 0.97 0.90
AUC PRC 0.48 0.96 0.7 NA

The DeepCOVID-XR improved its performance in the external validation dataset, con-
firming the ability to generalize well for images from different regions. We notice a perfor-
mance decrease in the Cimatec_XCOV19 algorithm specificity and accuracy. Interestingly,
there was an increase in sensitivity. Although there is a high number of false positives,
it has few false negatives, confirming the algorithm as a good screening tool. As observed
in Figure 15, according to the results of DeLong’s test of AUC ROC, z = −0.96 and p = 0.34,
we can accept the null hypothesis and conclude that there is no statistically significant
difference between the two AUCs.
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3.3. Explainability of the AI Models

We asked a radiologist to highlight the findings in four CXRs from the external
validation dataset. We compared his findings with the features extracted by the algorithms.
Figure 16 provides gradient-weighted class activation mapping heat maps (Grad-CAM) of
feature importance for the most representative images from each class of the algorithm’s
predictions, thus helping to interpret and explain how each of the AI models performed
their predictions. Figure 16a shows the heat maps for the CXR of a male patient, 73 years.
It is a true-positive situation for both algorithms. The image label is suggestive of COVID-
19. The bounding box highlights infiltrates, and both algorithms classified the image
correctly as positive for COVID-19. Figure 16b is a false-positive situation for a 75 years
old female patient. Both algorithms incorrectly identified COVID-19 findings in a patient
with a moderate bacterial infection. Bounding boxes highlight infiltrates, cardiomegaly,
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and atelectasis. In Figure 16c, both algorithms correctly did not identify COVID-19 in a
normal examination. The patient is female, 58 years old; Figure 16d shows a false-negative
situation. Both algorithms failed to identify infiltrates characteristic of viral infection.
Bounding boxes highlight cardiomegaly and infiltrates. The patient is female, 83 years
old. There are differences in the images’ background color and size because the two AI
algorithms use different image pre-processing algorithms.
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4. Discussion

The worldwide most available radiographic method to explore lung lesions is still
the X-ray examination [38]. In addition, hospitalized patients in intensive care units with
suspected COVID-19 pneumonia usually cannot be transported to the radiological centers
in the same hospital, however, an X-ray image examination can routinely be performed on
the bed of patients. Herein, we detailed the development of a new Inception-V3 based CNN
system to support the identification of COVID-19 pneumonia using a chest radiograph.
We examined the performance of the algorithms using a dataset from patients treated by a
hospital in Espírito Santo, Brazil, during an acute phase of the pandemic and compared
it with one previously published algorithm. This study validated in a controlled dataset
that the two AI algorithms, Cimatec_XCOV19 and DeepCOVID-XR have, respectively,
a specificity of 0.82 and 0.94, a sensitivity of 0.85 and 0.77, and an AUC ROC of 0.92 and
0.97. The performance of both algorithms is good enough to consider them reasonable
tools for supporting COVID-19 pneumonia screening. The models generated too many false
positives, reinforcing the limitations of the AI systems as a sole diagnostic tool for COVID-19.

The generalization of different datasets is a known problem in AI [39]. This result also
reinforces the need for better techniques to adapt the algorithm to the characteristics of
new datasets. Advances in the performance of both algorithms might foster the adoption
of such systems in scale. In order to facilitate future works and support the development
of new AI algorithms in this area, we made all the code freely available [34]. The external
validation dataset with labels is also publicly available. They are a good source of images for
testing and training new algorithms. The algorithm serves well for educational purposes.
We believe that medical staff, under intense work pressure in a pandemic situation, can use
the algorithm to help fast screening of COVID-19 cases.

One limitation of this study was the age of the population in the external validation
dataset. All patients were older than 50 years and the average age was over 72 years.
On one hand, this may limit the ability of the model to extrapolate the analysis to different
age groups. Some patients had previous alterations in the chest, though with normal
diagnosis. This might represent a bias and could lead to some misclassification of the AI
algorithms. Despite this, when we consider that elderly people can be more impacted by
COVID-19, these results show that these solutions can be of great help during new COVID-
19 pandemic emergences. Furthermore, all of this knowledge, methodology, and source
code can be easily applied and adapted to new eventual pandemic situations, by using
transfer learning with new data from CXR exams.

The importance of CXR exams is evident as an alternative for supporting COVID-19
fast screening, especially to identify severe cases, as there might be no findings on CXR
exams in mild or early-stage COVID-19 patients. AI algorithms can support the detection
of pneumonia caused by COVID-19 in chest radiographs, as they are fast, simple, cheap,
safe, and a ubiquitous tool for the management of COVID-19 patients. In the absence of a
radiologist specialist, Cimatec_XCOV19 and DeepCOVID-XR AI systems might be good
tools to support the detection of COVID-19. Future studies should explore other freely
available AI models, test new feature extraction techniques, and use the indications of
Grad-CAM and other explainable AI techniques to understand and enhance the actual
classification algorithms. Cimatec_XCOV19 is now under controlled testing in a hospital in
Espírito Santo, Brazil. Feedback from clinical practice will be paramount to evolving the
algorithm and mitigating adoption risks.

Supplementary Materials: The following supporting information can be downloaded at: https:
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model block diagram.
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