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Abstract: Fake media, generated by methods such as deepfakes, have become indistinguishable
from real media, but their detection has not improved at the same pace. Furthermore, the absence
of interpretability on deepfake detection models makes their reliability questionable. In this paper,
we present a human perception level of interpretability for deepfake audio detection. Based on
their characteristics, we implement several explainable artificial intelligence (XAI) methods used
for image classification on an audio-related task. In addition, by examining the human cognitive
process of XAI on image classification, we suggest the use of a corresponding data format for
providing interpretability. Using this novel concept, a fresh interpretation using attribution scores
can be provided.

Keywords: explainable artificial intelligence (XAI); deepfake detection; human-centered artificial
intelligence

1. Introduction

With recent advances in artificial intelligence and its applications, cases of abuses of
AI technology have also increased. A deepfake is one of the main methods that powers
many of such cases. Thus far, only a few celebrities have been targeted. However, owing to
two phenomena triggered by the public’s recent increased use of social media, i.e., (1) ease
of data collection and (2) enhanced influence of information distribution, fake media has
proliferated.

While deepfake generation has improved considerably in recent times, the accuracy
of deepfake detection has remained at 82.56% when tested upon a public open dataset [1].
Though this performance improvement is significant from an academic perspective, it is still
insufficient for real-world usage. Given two major emerging issues, i.e., less-than-perfect
accuracy of detection and widened target range, interpretability of deepfake detection has
become a critical consideration. However, contemporary research on explainable deepfake
detection is not extensive and is limited to visual deepfake detection [2].

In this study, we implemented XAI methods on deepfake voice detection in order to
be able to recommend the proper delivery of the interpretation at a human perception level.
To target the non-experts for linguistics as well as artificial intelligence, the study is focused
on intuitiveness and a higher level of interpretability.

Currently, for speech recognition or speaker verification, methods, such as transform-
ers, conformers, or wav2vec, already show good performance [3–5]. However, in this study,
to focus on the proper delivery of the interpretation rather than the performance, simple
model structures are used. A simple convolutional neural network and LSTM were used to
maintain as much simplicity as possible.

A spectrogram was used for feature extraction from the raw audio data. A spectrogram
requires relatively less preprocessing and is easily interpretable. Features, such as d-vector,
x-vector, or i-vector already show satisfactory performances for tasks, such as speaker

Appl. Sci. 2022, 12, 3926. https://doi.org/10.3390/app12083926 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083926
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5410-6391
https://doi.org/10.3390/app12083926
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083926?type=check_update&version=1


Appl. Sci. 2022, 12, 3926 2 of 14

verification. However, such feature embeddings are excluded because direct interpretability
with the original audio data are lost [6–8].

For our experiment, the ASVspoof 2019 Logical Access and LJSpeech datasets were
used, each exclusively representing a near real-world dataset and constrained dataset [9,10].
ASVspoof consists of bona fide user speech along with synthesized speech generated
through multiple generators. We labeled bona fide speech as a ‘human voice’ and com-
pletely synthesized voice as a ‘deepfake voice’. As a constrained dataset, we used LJSpeech,
and synthesized speeches based on it. We labeled the original LJSpeech speech as a ‘human
voice’ and the Tacotron-generated speech as a ‘deepfake voice’.

To maintain as much simplicity and interpretability as possible, three CNN-based
simple model structures were used for the experiment: CNN, CNN-LSTM, and CNN-
LSTM-permuted. To analyze the trained model, popular XAI methods, such as Deep Taylor,
integrated gradients, and layer-wise relevance propagation (LRP) were used [11–13]. For
the CNN-based simple model, all three XAI methods showed similar attribution score
distributions, with high absolute values located on formants 1, 2, and 3. As an LSTM
layer was added to the model, Deep Taylor and LRP were no longer dependent on the
formants. Deep Taylor shows that dependency varies on the frequency bands and LRP
shows characteristics that cannot be recognized through human visual perception.

Audiovisual Interpretability

Traditionally, audio has been analyzed through spectrograms extracted from raw audio
by Fourier transform [14]. For a human voice, the analysis is made using a mel spectrogram,
which filters the spectrogram through a mel filterbank to emphasize low-frequency spectra
in which most of the energy is concentrated [15]. Tasks, such as speaker verification, use
x-vector or d-vector to make the process efficient [6,7]. However, the requirement of domain
knowledge and absence of interpretability made the use of spectrograms and embedded
vector features, respectively, less suitable for non-experts.

For human manual analysis, visualized audio data in the form of a spectrogram
is traditionally used [16]. Characteristics, such as distribution of the energy, formant,
frequency-wise characteristics, or general waveform are used for the analysis. However,
recognizing these characteristics requires more than just intuitive human perception. The
need for domain knowledge makes this method less user-friendly for non-experts compared
to visual data-related tasks. Owing to the following two reasons, we achieved effectiveness
of interpretability with the corresponding format: (1) lack of intuitive recognition based
on visualized interpretability, and (2) tendency of the XAI methods observed on image
classification. As a means of converting visualized interpretation back to audio, we used
the Griffin–Lim algorithm.

On CNN-based simple models, regardless of the XAI methods used, the attribution
scores show energy dependency on the spectrogram. Given the tendency of the scores,
the attribution-score-based recomposed audio is audible. When an LSTM layer is added,
Deep Taylor loses its energy dependency and makes the transcript of the recomposed audio
unrecognizable but shows significant differences between human and deepfake voices on
rhythm and pitch variances. In general, a deepfake voice shows relative monotonousness.

The major contribution of this paper is that it suggests two novel ideas on deepfake
detection, i.e., adaptation of XAI for spoken language and multi-modal interpretabil-
ity at a human perception level. Visual and audio interpretation, respectively, enabled
interpretation of model tendency on general spoken language data and intuitive recogni-
tion of characteristics that are not effortlessly recognized when only visual interpretation
is available.

The remainder of the paper is organized as follows. In Section 2, we introduce related
works, i.e., explainable deepfake image detection and explainable speech recognition. In
Section 3, preliminaries and datasets are described. In Section 4, methods and motivations
are introduced along with the experimental environments. In Section 5, we suggest inter-
pretation based on the attribution score of the model. Finally, in Section 6, the study is
summarized along with its limitations and future research directions.
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2. Related Works

Currently, application of XAI is in the early stage; the methods were introduced in
the mid-2010s. Most implementations on deepfake detection methods are focused on
image recognition. Although there has been attempt to joint both visual and audio data
to detect the deepfake, the interpretation on the model has not been tried [17]. A recent
study implemented LIME and LRP to provide interpretability only for visual deepfake
detection [2]. For deepfake facial images, XAI methods provide a heatmap for the trained
model to suggest the regions to focus on.

Implementation of XAI on speech recognition rather than both visual and audio
deepfake detection is scant, but it exists; the same XAI method, LRP, is commonly used
to provide interpretability. A study by Bharadhwaj suggested a bidirectional-GRU-based
model built for the implementation of XAI methods and finding the relevance score for each
input [11]. Through perturbation comparison, they suggested the superiority of bi-GRU
over uni-GRU, LSTM, and bi-LSTM. Becker et al. compared the implementation of LRP
on speech recognition with two tasks: digit classification and gender classification [18].
Each task was trained with AlexNet and compared using the LRP attribution score. Along
with the comparison, the authors proved the meaningfulness of LRP on speech recognition
through data perturbation.

These studies focused on quantitative evaluation of the XAI methods on spoken
language processing. Though the studies shared some ideas, our study focuses on qualita-
tive evaluation.

The XAI methods applied to various tasks, yet focused on image related tasks, such
as layer-wise relevance propagation or Deep Taylor decomposition, provide intuitive
model interpretations with a form of a heatmap. The interpretation can be effortlessly
obtained without modifying the existing trained model. The generic idea of such Taylor
decomposition-based XAI methods is to trace back the contribution of every input for
each trained node to the final prediction layer-by-layer. By iteratively calculating the
contribution of every node, the model can be interpreted pixel-by-pixel, which is a heatmap
of the input image.

Although interpretability adoptable to the existing trained model is significant, as
Jung et al. mentioned, the methods show limitations: high noise of heatmap output and
lack of class-discriminativeness [19]. Considering such limitations, we found it necessity
to interpret at the human cognitive level. By focusing on qualitative evaluation of the
interpretation, noise of the heatmap can be overcame through the human cognitive level of
contextual interpretation. Hence, based on the interpretation to the human-in-loop system
as a guideline, lack of class-discriminativeness is also expected to be efficiently resolved.

3. Preliminaries and Dataset
3.1. Deepfake

Deepfakes are synthesized media generated using deep learning methods, such as
a generative adversarial network or autoencoder. In real-world applications, it is often
used in a form of face-swapping. Face-swapping involves an encoder and a decoder
that representatively learn target and base face as well as transforms. Deepfake voices are
generally divided into two categories: text-to-speech (TTS) generation and voice conversion.
TTS generation only trains the model for audio generation using a text transcript as input,
while voice conversion is voice-to-voice conversion, similar to face-swapping. Currently,
both generation methods show good performance, so lay viewers are usually unable to
distinguish between the real and deepfake media intuitively.

3.2. Speech Analysis

Speech can be categorized into three types: voiced, unvoiced, and silence. Voiced
speech has constrained energy with a periodic impulse sequence, while unvoiced speech is
a relatively random non-periodic noise-like sequence. Silence refers to a section with no
meaningful signals.
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For categorized speeches, several linguistic features, including formant, are used for
analysis. Formant is the frequency with constrained energy, showing a local maximum
on the spectrum. For general human speech, three to five formants can be found, and
named in ascending order from low-frequency formant to high. In voiced and unvoiced
speech, the first three formants form the mainframe of the speech, considered as one of the
representative features.

In voiced speech, pitch and amplitude are also considered major features. These
two voiced speech features represent expressions of stress and the accent of the speech.
In unvoiced speech, the local center frequency and its amplitude at high frequency are
considered key features.

Based on such acoustic information, speech recognition or speaker recognition can
be performed through human or algorithm analysis. In this study, for a higher level of
interpretation, such traditional features are used to interpret the attribution scores acquired
from the XAI methods applied to the detection models.

3.3. Dataset

For the general interpretation of the detection model, two datasets with exclusive
characteristics were used. The first set of experiments was conducted upon the ASVspoof
2021 Logical Access dataset. ASVspoof consists of 2580 bona fide user speech data collected
from 107 speakers and the corresponding 22,800 synthesized speech data generated using
19 synthesizers. We labeled the bona fide user voice and synthesized voice as the ‘human
voice’ and ‘deepfake voice’, respectively. With various human speakers and randomly sam-
pled transcripts for text inputs of deepfake voice generation, the experimental environment
was able to represent near real-world behavior.

For the constrained environment, paired data for both human and deepfake voices
was required. We used the LJSpeech dataset consisting of 13,100 transcripts and speeches
and generated the corresponding deepfake speeches. With the LJSpeech dataset, we
used Tacotron, an attention-based sequence-to-sequence TTS generator to train the gen-
eration model [20]. From the complete dataset, we selected 8076 speeches and prepared
the corresponding synthesized speeches. LJSpeech speech and synthesized speech were,
respectively, labeled and trained as ‘human voice’ and ‘deepfake voice’.

4. Methods
4.1. Motivation

As mentioned earlier, visualized interpretation with XAI methods for image clas-
sification that provides the output in the form of a heatmap is often acceptable. If the
classification accuracy is high enough, the ensuing XAI result also tends to proceed prop-
erly. However, current XAI methods are not perfect, and often fail to separate an object from
the background, eventually only highlighting the high-contrast object contour. Figure 1
shows the input image and its attribution score obtained using three XAI methods for
image classification based on VGG16 trained upon ImageNet data. Deep Taylor shows the
positive score distribution on the high-contrast object contour. Integrated gradients and
LRP show relatively random positive–negative score distributions, yet still highlight the
general contour of the ball. However, when humans attempt to interpret such XAI output,
visual perception is involved and assists in interpretation. Visual perception expects general
or partial shapes of certain possible candidates and processes the attribution score of each
pixel accordingly rather than as individual numbers. The involvement makes interpretation
possible, despite the random negative score distribution near the contours. Such a series
of phenomena can be seen as an interference of human visual perception caused by the
difference in cognition levels between a human and machine (or model). Although there
are several studies focusing on object segmentation, interference of human perception is
inevitable until perfect segmentation is achieved [21].
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(a) (b) (c) (d)

Figure 1. Deep Taylor, integrated gradients, and LRP on image classification through VGG16.
(a) Input. (b) Deep Taylor. (c) IG. (d) LRP.

Based on the difference between human and machine perception on image classi-
fication, we attempted to interpret the attribution score obtained from deepfake voice
detection. We focused on the general distribution of the scores for contextual information
following human perception and compared it with the traditional method used for the
spectrogram-based audio analysis.

4.2. Feature Extraction

Through the Fourier transform, a complex signal can be sorted into multiple spectra
at various frequencies [14]. Such a converted form is used for audio or video analyses. For
audio analysis, the amplitude of each frequency of the audio wave is analyzed using a
certain window size. The series of spectra are converted into a visualized form: a spectro-
gram. Using a spectrogram for the analysis, characteristics, such as general waveform and
voiced-unvoiced-silenced frames, can be visually inspected by humans.

Generally, short-term Fourier transform is used to convert a audio signal into a
two-dimensional function of time and frequency. The representation can be shown as
follows:

STFT(τ, ω) =
∫ ∞

−∞
x(t)w(t− τ) exp(−iwt)dt (1)

where x(t) is the audio signal and w(τ) is the window function. For the window function,
the Hann window is used [22].

Specifically, for human voice analysis, a mel spectrogram is used. Humans do not
recognize audio in a linear scale; instead, they focus on low frequencies. Considering this
characteristics of human perception, voice analyses traditionally use a mel-filterbank to
convert a spectrogram into mel-scale. In this study, visual and audio interpretation was
provided using spectrogram-based attribution scores in both visual and audio formats.

4.3. Models

Generally, speech recognition tasks using machine learning have spectrogram-based
features as input data. The task of deepfake voice detection is similar to speaker recognition.
Features used for speaker verification, such as x-vector or i-vector, show better performance
and higher efficiency. However, because of the limitation of embeddings for providing
interpretability, spectrogram-based features are used instead.

From the extracted mel spectrogram, we trained the recognition model using widely
used networks. By applying several XAI methods to the model, we found general as well as
distinguishing learning tendencies and interpreted them using the higher, human cognitive
level of concept.

4.3.1. Convolutional Neural Network

A convolutional neural network (CNN) is one of the neural networks used for ana-
lyzing image data. As it can preserve contextual information, currently CNN is also used
for extracting features in general. CNNs consist of convolution layers and pooling layers,
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which respectively learn feature vectors using an activation function and decrease the size
of the data, making it relatively representative.

4.3.2. Long Short-Term Memory

Though the audio was converted to visualized data, i.e., a spectrogram, it still had
time-series characteristics, unlike other visualized data. Consequently, a sequential model
often used for spoken or natural language processing was used.

A sequential model, recurrent neural network, before LSTM, had a vanishing gradient
problem. Adding cell-state to a hidden state LSTM resolved this issue. For overall sequential
data and tasks, LSTM shows good results.

With two widely used simple networks, we set three models as listed in Table 1.
Considering the purpose of the experiment, we focused on simplicity rather than accuracy.
As a representative, the structure–processing workflow for the CNN-LSTM model is shown
in Figure 2. For all convolutional layers, ReLU was used as an activation function, and the
kernel size was set to 3 × 3 with a stride of 1 and max-pooled with a kernel size of 2 × 2
with a stride of 1. All models feature FC-256, a fully connected dense layer. For the last
FC layer for the classification between a real human voice and deepfake voice, softmax
was used.

Table 1. Model Structure.

CNN CNN-LSTM CNN-LSTM-Permuted

Input Input Input
Input

(perm)
Conv1 Conv1 Conv1 Conv2

LSTM1 LSTM1 LSTM2

FC-256 FC-256 FC-256
FC-25 FC-2 FC-2

8

1

2

1

2

256

2

1

Mel-spectrogram FC Layer
Flatten
Layer

LSTM
Layer

2D Convolution
Layer

2D Max-pooling
Layer

128 × 480 × 1 128 × 480 × 25 64 × 240 × 25

2 × 2
3 × 3

12,800

Figure 2. Illustration of CNN-LSTM Model Structure.

For ASVspoof dataset, four subsets configured by the generation methods of the
deepfake voice were used for the experiment. For LJSpeech, human speeches with corre-
sponding deepfake voices generated with Tacotron were used. Each subset was randomly
divided into 80% of training data, 10% of validation data, and 10% of test data. The model
was trained with the Adam optimizer for 100 epochs at a batch size of 50 speeches. The
learning rate was set to 0.001.

4.4. Explainable Artificial Intelligence

Until recently, most AI research focused on its performance. With the application of
evolving technology to the field, transparency become more critical. Unlike traditional
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simple algorithms, the complexity of artificial intelligence required a new approach. For
a post-hoc approach, methodologies, such as decomposition and data perturbations, are
now in use. In this study, we used layer-wise relevance propagation, Deep Taylor, and
integrated gradients.

4.4.1. Integrated Gradients

The performance of an attribution method is generally evaluated in terms of accuracy
drop by data perturbation with a high attribution score. However, the accuracy drop evalu-
ates correlation rather than causality, which can be triggered by external factors. To evaluate
properly, integrated gradients consider two axioms: sensitivity and implementation of
invariance. Path integral can consider a non-linear path and integrate multiple attribution
methods, resulting in adequate attribution evaluation. With the path integral formulation,
integrated gradients can satisfy the axioms and properly calculate the attribution score [13].

For neural network, suppose there is a function F : Rn −→ [0, 1] with x ∈ Rn and
x′ ∈ Rn, respectively, as the input and the baseline input. By accumulating the gradients
for all inputs, the integrated gradients can be obtained. It was calculated with the path
integral of the gradients between input x and baseline input x′, as followings:

IntegratedGradientsi ::= (xi − x′i)×
∫ 1

α=0

∂F(x′ + α× (x− x′))
∂xi

d α (2)

where ∂F(x)
∂xi

is the gradient of the function F(x) on dimension i and α is the interpolation
constant for the perturbation of the features.

4.4.2. Taylor Decomposition-Based XAI methods

Several XAI methods use visual approaches to explain a model prediction for image
classification or natural language processing. These methods generate a heatmap over the
input data to highlight the relevance of the input to the prediction. Using three main ideas,
relevance-based XAI methods calculate the score as follows: (1) all nodes at each layer have
a certain amount of relevance; (2) the relevance is redistributed in a top–down direction
from output to input of the node; and (3) the total amount of the relevance score on each
layer is maintained. With the series of redistribution, the relevance score of each input data
can be collected from the prediction.

For the decomposition of a given function, f (x), and calculating each relevance score
of input xi, Taylor series is used. With the first-order Taylor series, f (x) can be defined
as follows:

f (x) = f (a) +
d

∑
i=1

∂ f
∂xi
|xi=ai (xi − ai) + ε (3)

where a is an arbitrary constant and ε is the error term. Respectively, by the w2-rule and
property of ReLU, f (a) and ε can be approximated to 0. With the approximation, f (x) can
be defined as

f (x) =
d

∑
i=1

∂ f
∂xi
|xi=ai (xi − ai) (4)

=
d

∑
i=1

Ri (5)

where ∂ f
∂xi

represents the relevance of xi for function f . By iteratively decomposing the
outputs into the sum of relevance score of the input for every node, the heatmap of the
prediction can be obtained.
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4.5. Speech Reconstruction with the Griffin–Lim Algorithm

The Griffin–Lim algorithm is an algorithm generally used as a phase reconstruction
rule-based vocoder before the neural vocoders [22]. It uses the redundancy of short-time
Fourier transform with two projections of the spectrogram. The Griffin–Lim algorithm only
utilizes the consistency of short-time Fourier transform and excludes any prior information.
The algorithm reconstructs the spectrogram with a given amplitude A to the audio signal
by the following process:

X[m+1] = PC(PA(X[m])) (6)

where X[m] is a spectrogram at iteration m, PC and PA are metric projections of the set of the
consistent spectrogram and spectrogram with a given amplitude. The metric projections
are given as:

PC(X) = GG†X (7)

PA(X) = A� X� |X| (8)

where G and G† represent, respectively, short-time Fourier transform and inverse short-
time Fourier transform. The optimization problem of the Griffin–Lim algorithm is obtained
as following:

min
X
||X− PC(X)||2Fro s.t. X ∈ A (9)

where || · || is the Frobenius norm. With the optimization by iteration, the spectrogram
converges. Although various other reconstruction algorithms or neural vocoders are
available, because of its simplicity, the Griffin–Lim algorithm is adopted instead. In this
study, we considered the attribution score as a spectrogram and recomposed it back to
audio to intuitively confirm the possible characteristics.

Considering the general behavior of the attribution scores on energy, the attribution
score was expected to reflect the general form of the originating audio and its spectrogram.
This greediness was also found in image classification, highlighting seemingly random
positive–negative attribution scores mostly on the high-contrast contour, regardless of the
object-background segmentation. Despite less-than-perfect segmentation, the interference
of human visual perception enables XAI methods to provide interpretability. We were
inspired to apply the idea of current XAI methods assisted with human perception, which
have been used on visual tasks as well as audio tasks.

5. Experiment

In this section, we interpret the output of the three XAI methods. Each XAI method
shows consistent results under several environments along with two noticeable differences.

Mel-spectrogram and the corresponding attribution score were reviewed as visualized
data. Then, using the attribution score, we recomposed it back to audio and inspected it
using an acoustic approach. By matching the data and interpretation format, the charac-
teristics formally unrecognized solely via visual interpretation were revealed. The sample
data were selected from the test set of each experimental environment.

For ASVspoof dataset, four subsets were used as follows:

• Deepfake voice generated by a single TTS model;
• Deepfake voice generated by multiple TTS models;
• Deepfake voice generated by a single voice conversion model;
• Deepfake voice generated by multiple voice conversion models.

5.1. Model Detection Performance

A model performance of each environment is summarized in Table 2. Under certain
environments, the model shows relatively less ideal performance. However, the primary
goal of the experiment was to provide an interpretation rather than to achieve an improved
performance. The performances were only used to confirm the proper model training
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for each environment. The ASVspoof-based model trained to detect the deepfake voice
generated with multiple methods showed a generally low performance.

Table 2. Model Performance.

Model

Dataset

ASV
Single TTS

ASV
Multiple TTS

ASV
Single VC

ASV
Multiple VC LJSpeech

CNN 97.32% 77.78% 77.93% 83.61% 98.88%
CNN-LSTM 98.91% 88.74% 86.90% 84.81% 99.92%

CNN-LSTM-perm 99.85% 99.97% 94.19% 88.29% 99.97%

5.2. Visual Interpretability
5.2.1. ASVspoof Dataset

In Figure 3, all XAI methods for the CNN-based model highlight formants 1, 2, and
3, respectively, around areas F1, F2, and F3 of each figure. In acoustics, a formant is the
local maximum or broad peak, similar to contours of objects as well as the background
for visual content. For human speech, these first three formants are used to identify the
vowel that is the fundamental component of the spoken language. In Figure 3a,d, Deep
Taylor highlights the general formants 1, 2, and 3 while distinguishing unvoiced speeches
by highlighting the corresponding frames at all frequencies around the area U.
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Figure 3. ASVspoof attribution score with the CNN model. (a) Deep Taylor deepfake voice. (b) Inte-
grated gradients deepfake voice. (c) LRP deepfake voice. (d) Deep Taylor real voice. (e) Integrated
gradients real voice. (f) LRP real voice.

Figure 4 shows the result for each XAI method applied to the CNN-LSTM-based model.
Only in Figure 4b,e, do the integrated gradients highlight the formants similar to the CNN-
based model in Figure 3. In Figure 4a,d, Deep Taylor does not highlight the formants and
unvoiced speeches. Instead, certain frequency bands are highlighted regardless of energy
distribution from 0 to 500 Hz, and 1000 Hz to 2000 Hz, respectively, around areas A and B.
In Figure 4c,f (LRP), though, the attribution score is no longer formant-dependent, unlike
Deep Taylor, and it becomes less recognizable at the human cognitive level.

To see the frequency-wise series data characteristic of the model, CNN-LSTM-perm
was used. Only Deep Taylor showed a difference—showing that less significant frequency
band centered scoring was weakened. For integrated gradients and LRP, no recognizable
difference was observed.
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Figure 4. ASVspoof attribution score with CNN-LSTM model. (a) Deep Taylor Deepfake voice. (b) In-
tegrated gradients deepfake voice. (c) LRP deepfake voice. (d) Deep Taylor real voice. (e) Integrated
gradients real voice. (f) LRP real voice.

5.2.2. LJSpeech-Based Dataset

Although interpretation of the model based on the ASVspoof dataset showed the
possibility of interpretation, a near-real-world dataset without paired transcripts over
labels obstructed thorough interpretation. For better interpretation by XAI methods and
model structures, the constrained dataset LJSpeech, which featured a single speaker and
pre-defined transcript, was used.

In Figure 5, the CNN-only model trained with LJSpeech showed no significant differ-
ence compared to the model trained with ASVspoof. Similar to ASVspoof dataset, generally,
the model tended to focus on formants 1, 2, and 3 around areas F1, F2, and F3, and unvoiced
frames around area U when analyzed with Deep Taylor.
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Figure 5. LJSpeech attribution score with CNN model. (a) Deep Taylor deepfake voice. (b) Integrated
gradients deepfake voice. (c) LRP deepfake voice. (d) Deep Taylor real voice. (e) Integrated gradients
real voice. (f) LRP real voice.

Similarly, in Figure 6 (CNN-LSTM) and Figure 7 (CNN-LSTM-perm), the formant
dependency for Deep Taylor and LRP was diminished, as the previous ASVspoof-trained
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model has demonstrated. For Deep Taylor in Figure 6a,d, an identical model tendency on
the frequency band found on ASVspoof was observed as well.
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Figure 6. LJSpeech attribution score with CNN-LSTM model. (a) Deep Taylor deepfake voice. (b) In-
tegrated gradients deepfake voice. (c) LRP deepfake voice. (d) Deep Taylor real voice. (e) Integrated
gradients real voice. (f) LRP real voice.
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Figure 7. LJSpeech attribution score with CNN-LSTM-perm model. (a) Deep Taylor deepfake
voice. (b) Integrated gradients deepfake voice. (c) LRP deepfake voice. (d) Deep Taylor real voice.
(e) Integrated gradients real voice. (f) LRP real voice.

Using the corresponding transcript of LJSpeech with both a human voice and deep-
fake voice, a detailed comparative analysis can be conducted, which assists the user in
interpretation for decision-making. As can be seen in Figures 6 and 7a,d, Deep Taylor
maintained highlights distinctively for each real human voice and deepfake voice at a
frequency around 2 kHz, which is marked as area C. Inspecting the spectrogram in Figure 8
area D based on the assistance of the attribution score, the deepfake voice showed a flatter
waveform around 2 kHz, whereas the human voice showed more variance.



Appl. Sci. 2022, 12, 3926 12 of 14

0 1.5 3 4.5 6 7.5 9 10 12Time
0

512

1024

2048

4096

8192

H
z

D

(a)

0 1.5 3 4.5 6 7.5 9 10 12Time
0

512

1024

2048

4096

8192

H
z

D

(b)

Figure 8. Spectrogram of LJSpeech “The wildest and most cut-throat looking of the lot, which proves
that he could be grateful for kindness, and was not all bad.” (a) Deepfake voice. (b) Real voice.

5.3. Audio Interpretability

Currently, interpretability is focused on a visual method, i.e., a heatmap on a spec-
trogram, to interpret the model. With the visual approach, diverse characteristics of the
model’s tendency, depending on XAI methods and data types, have been found. Through
visual interpretation, the user can confirm what the model is focusing on. However, visual
interpretation has certain limitations in intuitiveness and in assisting decision-making.
Using the Griffin–Lim algorithm, the attribution scores of each model and XAI method
were recomposed back to audio. For the CNN-only model, because of the tendency of XAI
methods to show dependencies on energy-like formants, most of the original voice was
recovered during the conversion from the attribution score. The transcript of the original
voice can be recognized from the recomposed voice as well.

The attribution scores of Deep Taylor and LRP on the CNN-LSTM-based model
showed less sensitivity to the energy, losing highlights on formants. Consequently, the
transcript was unrecognizable on the recomposed voice. In the case of the recomposed
voice of Deep Taylor and LRP on the CNN-LSTM model, because of the lack of sensitivity
on formants 1, 2, and 3, the transcript of the speech was unrecognizable.

However, with the recomposed voice, visually unrecognizable characteristics, general
pitch variance, and rhythm of the speech were revealed with the removal of formant
dependency on the attribution score of the CNN-LSTM model. Hence, the LRP attribution
score on the recomposed voice showed relatively distinct differences between the voiced
and unvoiced sections.

Rhythm and pitch variance differences on a Deep-Taylor-based recomposed voice can
assist in distinguishing a human voice from a deepfake voice. The features showed signifi-
cantly high variances in a human voice compared to the deepfake, which is presumably
considered an accent, which is a feature that the generative model did not train for. Figure 9
shows the top 10% of the amplitude of the recomposed speech as a visual reference, for the
comparison of pitch and rhythm variances between the deepfake and human voice.
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Figure 9. Top 10% amplitude of reconstructed Deep Taylor-based attribution score from LJSpeech.
(a) Deepfake voice. (b) Real voice.

Based on the audio interpretation, i.e., the spectrograms in Figure 8, energy distribution
on frequency 2 kHz showed distensibility. The deepfake voice showed a relatively flat
pattern compared to a human voice, while the human voice showed randomness. This
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phenomenon was assumed to be triggered by the absence of training on accents while
generating training data from the LJSpeech through Tacotron TTS. This absence resulted in
a flat rhythm and accent.

6. Conclusions

In this paper, we presented a general interpretation for deepfake audio detection by
analyzing the attribution score patterns of several post-hoc XAI methods. Based on the
characteristics of the XAI methods found in image classification, we applied them to the
audio domain and attempted to interpret the characteristics at a higher level to enable
non-expert cognition.

Using traditional methods used for audio-related tasks, the attribution score of the
deepfake detection model was interpreted. Under a certain environment, we could find
a clear distinction in formants and voiced–unvoiced speech. The experiment showed a
consistent interpretation of each XAI method under various environments.

Furthermore, by recomposing the attribution score back to audio, human cognition
became easier as a supplementary recognition assist. With this assist, the interpretation
teardown needed to be less exclusive. With the recomposed audio, the end-user could be
provided interpretation with intuitive differences in high-frequency pitch variance and a
general rhythm of the speech.

Through the experiment, model interpretability on deepfake voice detection could be
obtained and explained at a human cognitive level using existing XAI methods. As the
current study has identified differences between model and human perception in detecting
deepfake media, implementation of the marker without human recognition can be studied
in the future to relieve public anxiety towards generative models creating fake media.
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