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Abstract: Inverse modeling approaches in cardiovascular medicine are a collection of methodologies
that can provide non-invasive patient-specific estimations of tissue properties, mechanical loads,
and other mechanics-based risk factors using medical imaging as inputs. Its incorporation into
clinical practice has the potential to improve diagnosis and treatment planning with low associated
risks and costs. These methods have become available for medical applications mainly due to
the continuing development of image-based kinematic techniques, the maturity of the associated
theories describing cardiovascular function, and recent progress in computer science, modeling,
and simulation engineering. Inverse method applications are multidisciplinary, requiring tailored
solutions to the available clinical data, pathology of interest, and available computational resources.
Herein, we review biomechanical modeling and simulation principles, methods of solving inverse
problems, and techniques for image-based kinematic analysis. In the final section, the major advances
in inverse modeling of human cardiovascular mechanics since its early development in the early
2000s are reviewed with emphasis on method-specific descriptions, results, and conclusions. We draw
selected studies on healthy and diseased hearts, aortas, and pulmonary arteries achieved through the
incorporation of tissue mechanics, hemodynamics, and fluid–structure interaction methods paired
with patient-specific data acquired with medical imaging in inverse modeling approaches.

Keywords: inverse models; data assimilation; cardiovascular imaging; image-based kinematics;
biomechanics; tissue mechanics; hemodynamics; patient-specific models

1. Introduction

The primary role of numerical modeling in cardiovascular biomechanics has been to
predict the performance of medical devices and to estimate physiological and mechanical
cues acting on tissues, such as pressure and flow-driven stresses. Given the vast experimen-
tal evidence of mechanical factors producing effects on cellular differentiation, signaling,
communication, and function [1–5], in silico experiments have explored the role of me-
chanical stimuli on normal and pathological tissue growth and remodeling [6]. From a
clinical research standpoint, the development of patient-specific biomechanical models
could provide more accurate and detailed data leading to a better understanding of the
onset and progression of cardiovascular disease [7]. In addition, computational modeling
has also been proposed as a supporting tool for medical practice on a patient-specific basis,
which could provide non-invasive assessments of tissue properties, structure, and mechan-
ical loads as physiologically meaningful risk stratification factors. Such patient-specific
analyses have the potential to bring immense benefits to clinical practice by supporting
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diagnosis, treatment planning, and predictions of the outcome of surgical procedures with
minimum associated costs and risk to the patients [8].

However, for biomechanical models to provide low-risk patient-specific solutions,
personalized non-invasive clinical studies must be readily available to quantify regional
cardiovascular function. Current medical imaging technology, namely echocardiography
and magnetic resonance imaging (MRI), offers not only anatomical information but also
high-resolution kinematics data of tissue motion and blood flow [9–12]. Kinematic-derived
quantities, such as peak and average strain on the myocardium and aortic walls, have
shown a good correlation with clinical risk markers [13]. Nevertheless, kinematic informa-
tion alone cannot provide insights about mechanical forces, stresses, and tissue material
properties, which are necessary for a full understanding of healthy and pathophysiological
phenomena [14].

The inverse method, or data assimilation method, is an approach that allows solving
classic mechanics problems “backwards”; that is, retrieving material properties and dy-
namic information (stress and forces) using measured kinematic information and loading
boundary conditions as input [15]. Several research groups have coupled computational-
mechanics tools with medical imaging technology to retrieve relevant biomechanical and
hemodynamic markers from normal and pathological human tissues and organs [16], in-
cluding diverse cardiovascular components [17]. Inverse modeling approaches have the
potential to become a valuable tool for the non-invasive assessment of patient-specific car-
diovascular health by providing quantitative physiological metrics that cannot be directly
measured in vivo but may be derived entirely from clinical evaluations and the application
of biomechanical principles.

The relevance of patient-specific modeling and its potential impact on the future of
personalized and predictive health care has been acknowledged by several funding agencies.
In 2003, the Interagency Modeling and Analysis Group was formed from the collaboration
of nine institutes of the National Institutes of Health (NIH) and three directorates of the
National Science Foundation (NSF). This group released its first funding opportunity in
2004 under the title “Interagency Opportunities in Multiscale Modeling in Biomedical,
Biological, and Behavioral Systems Solicitation”, which has been regularly reissued since
then, and led to the creation of the Multiscale Modeling Consortium which includes over
100 projects on multiscale modeling of biological systems. The European Union initiated the
“Structuring the Europhysiome” Consortium in 2006, which led to the Virtual Physiological
Human project, an ongoing initiative that aims to bring together policymakers, regulatory
agencies, funding bodies, industry, and research organizations towards the development of
integrated computer models of the mechanical, physical, and biochemical functions of the
living human body [7]. These initiatives have motivated the integration of multidisciplinary
teams of biologists, physicians, and engineers who are faced with the challenge of bringing
together field-specific nomenclatures, techniques, and analytical approaches.

Inverse modeling of biomechanical systems requires the confluence of state-of-the-
art techniques from several disciplines including clinical care, medical imaging, simula-
tion engineering, data analysis, and computer science (Figure 1). Inverse methods have
been developed on a highly specific basis and tailored to the available clinical data, tis-
sue/pathology of interest, and available resources; thus, inverse modeling developments
only share a general data processing pipeline, while differing on the clinical data source,
imaging technique, and modeling approach. Therefore, the task of designing an inverse
method pipeline requires a comprehensive understanding of the process at all stages, for
which familiarity with fundamental concepts and terminology is a prerequisite. The latter
can be challenging due to the multidisciplinary nature not only of the method itself but
also of the clinically relevant phenomena to model.

Inverse modeling analyses can also be applied to in vitro experimental setups. The
main advantage of this approach is that input data is not limited by the available clinical
tests, mechanical loads can be precisely controlled, and kinematics can be measured with
high-resolution instruments. Furthermore, the target of the inverse method can be defined
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not only in terms of kinematic information but also in terms of controlled mechanical loads
and stress measurements [18]. Moreover, the outputs of inverse modeling can be validated
with controlled experimental parameters. Inverse analyses of in vitro setups have been
applied to explanted animal and human tissue, and to engineered tissue constructs. Notably,
inverse modeling has been applied to resolve mechanics at a cellular level. The traction
force microscopy (TFM) technique was introduced by Butler et al., to estimate the force
that adherent cells exert on their surroundings by solving the traction field in a hydrogel of
known properties, cultured with cells, and with embedded beads as visual markers [19].
By tracking the bead displacements through microscopy, and setting known boundary
conditions, the traction field is resolved by an exact solution assuming a semi-infinite
medium. Further development was introduced by Tambe et al., with the monolayer stress
microscopy (MSM) technique, which allowed the inverse estimation of stress fields across
monolayer cellular constructs under static and dynamic conditions by inducing controlled
displacements of the boundary under a motorized microscope [20]. These, and other similar
techniques, have been used to explore the response of cardiovascular cells (endothelial
cells, cardiomyocytes, smooth muscle cells, etc.), cellular layers, and engineered tissue
to mechanical stimuli in terms of cell proliferation, migration, expression, and synthesis
of extracellular matrix components [21–23]. The detailed and accurate results that can
be retrieved from inverse analyses of in vitro experiments can provide valuable insights
into cardiovascular mechanobiology. These insights contribute to the understanding of
how macroscopic biomechanical factors affect the healthy or pathological growth and
remodeling of cardiovascular and engineered tissues. However, the replication of in vivo
physiological conditions in vitro is cumbersome, and the results of in vitro experimentation
can be challenging to extrapolate to patient-specific situations. As a result, the clinical
application of inverse analyses of in vitro experiments remains limited.

This article aims first to serve as a referential document for concepts and methods
from all involved disciplines on patient-specific in vivo inverse modeling; and secondly,
to highlight the potential clinical application of patient-specific inverse modeling in the
cardiovascular research field. Specifically, we review the fundamentals of cardiovascular
tissue and blood biomechanics, modeling and simulation, and medical imaging, as they
relate to the inverse modeling approach and its applications in cardiovascular medicine. In
Section 2, we review the application of the principles of classical continuum mechanics to
the study of blood and tissue motion, with special emphasis on the constitutive equations
that have been proposed to describe the mechanical behavior of cardiovascular tissue
and blood. Section 3 briefly summarizes the fundamentals and main features of the finite
element method (FEM) and finite volume method (FVM), as the most popular formulations
for the numerical solution of biomechanical models. Next, we review the general definition
of inverse problems and the available alternatives to solve inverse mechanics problems in
Section 4. In Section 5, we review the working principles and main features of ultrasound
(US), magnetic resonance imaging (MRI), and computational tomography (CT) imaging,
giving special attention to the available techniques for the resolution of tissue and blood
kinematics. Finally, in Section 6, we present a comprehensive review of the applications
of imaging-based inverse modeling approaches to patient-specific human cardiovascular
mechanics, including the resolution of the unloaded configuration and the estimation of
tissue properties and stresses. Reviewed applications include healthy and diseased heart
valves, cardiac and arterial walls, and hemodynamics of large arteries. To highlight the
potential application of the inverse-modeling approach in cardiovascular medicine, we
focus herein mostly on developments made in human studies, with a few mentions of
relevant and pioneering studies in animals.



Appl. Sci. 2022, 12, 3954 4 of 71

Figure 1. Timeline of microprocessor speed as a measure of computation capability, and relevant
landmarks on the fields of biomechanics theory, medical imaging and simulation that make possible
modern patient-specific image-based inverse modeling of the cardiovascular system. Acronyms: CT,
computerized tomography; DENSE, displacement encoding with stimulated echoes; FEM, finite ele-
ment method; FVM, finite volume method; IE, inverse elastostatics; FSI, fluid–structure interactions;
PC, phase contrast; MRI, magnetic resonance imaging.

2. Governing Principles of Biomechanics

Modern biomechanics consists of the formulation of governing equations describing
balances of mass, linear and angular momentum, and energy to biological systems and
physiological processes. The human body maintains a uniform and stable temperature
through homeostatic thermoregulation. Thus, contributions due to temperature change
in the internal energy of the material, heat fluxes, and heat supply are typically negligible
to the energy balance, which is in turn reduced to the balance between deformational
energy and stress power (thermodynamic work). In classical continuum mechanics of
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purely mechanical processes, the balance of angular momentum directly translates to the
symmetry of the stress tensor, and therefore, the relevant governing equations for most
cardiovascular mechanics applications consist only of the balances of linear momentum
and mass. However, most biological systems are open, and continuously interact with their
surroundings, and thus the conservation principles must be handled carefully, especially
with respect to tissue growth and atrophy within relevant timescales.

Given that the resolution of most in vivo medical imaging is on the scale of millime-
ters, only phenomena occurring at the tissue level can be directly associated with these
measurements. The assumption of material continuity is reasonable for the formulation
of the governing principles at this scale, leaving any additional considerations dealing
with the extracellular and intracellular micro-environments to be included ad hoc with
additional modeling formulations and constitutive equations.

To apply these principles, it is necessary to relate the stress tensor to kinematic mea-
sures, which is in essence the description of the mechanical behavior of the material under
study. This information is provided by a constitutive equation; these can be either phe-
nomenological equations “arbitrarily” formulated to reproduce experimental observations,
or analytical expressions inspired by theoretical interactions of the material constituents at
the micro or molecular scale. The selection of adequate models to describe the phenomena
of interest is key to the success of any engineering analysis. The selected model must be
complex enough to describe the most salient observable features at the scale of interest,
while ideally being simple enough to provide a rational interpretation of its parameters
and results and render a computationally tractable numerical problem. After fitting these
parametrized models to experimental data, the constitutive equation can provide an ad-
ditional understanding of the underlying mechanisms associated with the mechanical
response of the material. Models of increased complexity usually require a larger number
of parameters to be fitted, and overparametrized models can lead to solution multiplicity
which obscures its interpretation and validity. For the sake of generality, the constitutive
equation must also be independent of the frame of reference, comply with the second
principle of thermodynamics, and yield amenable mathematical treatment and systems of
equations that are solvable [24].

After formulating the constitutive relation as a function of specific unknowns (e.g.,
displacement or velocity fields), the resulting system of governing equations is then par-
ticularized into specific problems by the definition of temporal and spatial domains of
interest and the imposition of appropriate boundary and initial conditions. To obtain a
unique solution, it is necessary to constrain the problem by assigning a first-order boundary
condition on at least one of the boundaries (e.g., by prescribing a known displacement or
velocity). On the rest of the boundaries, higher-order boundary conditions can be applied to
impose distributed forces such as a known pressure. Once solved, the result of this forward
formulation is the transient spatial distribution of displacement or velocity throughout
the domain as a result of the specified loads and material properties. From this kinematic
information, strain and strain-rate distributions can be numerically derived, and the stress
distributions retrieved via the constitutive equation.

In the following subsections, we present a review of the main features of the mechanical
behavior and composition of cardiovascular tissues and blood, as well as the constitutive
equations that have been developed and applied to model such behaviors. Then, we review
the algorithms implemented to model fluid–structure interactions and their importance in
cardiovascular mechanics simulations. Finally, we briefly discuss the modeling of biological
tissue growth and remodeling by the application of the constrained mixture theory.

2.1. Structural Mechanics of Cardiovascular Tissue

The study of soft biological tissues under the framework of finite elasticity was initiated
by Y.C. Fung and others in the late 1960s, setting the basis of modern biomechanics [25,26].
As in classical solid mechanics, the mechanical analyses of cardiovascular tissues are
usually performed with a Lagrangian formulation of the governing principles (Figure 2).
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Applied forces are imposed as boundary conditions. For blood vessels, these are prescribed
as transmural pressure differences that often assume a traction-free condition on the
adventitial surface. More recently, however, growing attention to the role of perivascular
and pericardial support and tethering has promoted the inclusion of restrictions to the
displacement of the outer surface of the heart and vasculature [14,27,28]. In addition, more
complex formulations of cardiovascular tissue mechanics which departs from classical
elastic solids have been proposed to account for complex microstructural compositions,
the inclusion of pre-stress/strains, chemically activated muscular tone, and viscous energy
dissipation.

Figure 2. Representation of the modeling process of structural mechanics of cardiovascular tissue
and fluid mechanics of the blood flow with a continuum mechanics approach. Structural mechanics
of cardiovascular tissue are usually analyzed with a Lagrangian formulation that follows the defor-
mation of a given portion of the tissue. Blood flow mechanics is usually analyzed with an Eulerian
formulation, that is, analyzing the mass and energy balances on a fixed volume of interest through
which the fluid flows.

Cardiovascular tissues are comprised of multiple layers of cells and extracellular
matrix (ECM) components. The ECM is a network of macromolecules that is continuously
synthesized and degraded by active cells and functionally provides them with structural
and biochemical support. Typically, collagen, elastin, and fibrillin are regarded as the
main structural constituents responsible for the macroscopic mechanical behavior of car-
diovascular tissues [29]. Healthy cardiovascular tissue retains residual stress even when
unloaded (i.e., the tissue is pre-strained relative to a reference state of zero transmural pres-
sure). Circumferential and axial pre-stress/strain in vascular conduits have been widely
established by measuring how much these tissues recoil to an open configuration when
excised and cut transversely and longitudinally to relieve the residual stress [30,31]. It
has been hypothesized that pre-strain plays a relevant role in balancing higher stresses
on the luminal surface of blood vessels and promoting a homogenized transmural stress
distribution and homeostatic equilibrium of the vascular tissue [32]. Notably, residual
strain is heterogeneous and has been shown to vary with patient age and health, likely as a
consequence of heterogeneous growth and remodeling and/or damage.

Additionally, cardiovascular tissue is muscular in nature and actively contracts/
distends. Thus, its mechanical behavior is affected by the activation of actin-myosin sliding
filaments, which depends on ion-based chemical signaling and determines the muscular
tone. In the myocardium, striated muscle activation is responsible for cardiac contraction. In
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large arteries, contraction of smooth muscle cells regulates downstream vascular resistance,
blood flow, and propagation of the pressure-pulse wave along the vascular tree.

Of note, cardiovascular tissue also exhibits viscoelastic behavior, which has been
established with stress relaxation, creep, and strain-rate experiments. It has been argued
that viscous energy dissipation of healthy tissue, functioning at a regular physiological rate
(~1 Hz), is negligible compared to stored strain energy [33]. Nevertheless, viscoelasticity
may play a critical role under pathological conditions where the deformation rate is in-
creased, such as in atrial fibrillation, or when dealing with highly dissipative structures
such as lipid pools in atherosclerotic plaques [34,35]. Despite the relevance of viscoelastic
properties to pathological conditions, standardized testing protocols have yet to be devel-
oped for the exploration of its relation to disease onset and progression [36]. Notably, if
viscous dissipation and inertial effects are neglected, all temporal terms in the governing
equations are canceled, rendering the problem a quasi-static process (which is the most
common approach applied to vascular wall mechanics).

2.1.1. Constitutive Equations
Passive Properties

Linearized elasticity falls short in describing the complex behavior of biological tis-
sue, not only because the mechanical response is highly non-linear but also the material
undergoes finite motions and deformations. In the case of non-linear behavior, it is usu-
ally convenient to employ the formulation of hyperelasticity and express the constitutive
equations as the relation of a scalar stored energy density function to the deformation
gradient tensor or the strain tensor (while other definitions of stretch or strain tensors are
also possible and common). The scalar energy density function represents the amount of
deformational energy stored per unit volume and is defined in such a way that the stress
tensors can be obtained from their derivatives with respect to the strain or stretch tensor.

The passive behavior of cardiovascular tissue is characterized by an increasing re-
sistance to deformation with strain. This behavior is represented by an increasing slope
in the stress versus strain/stretch and strain energy versus strain/stretch curves, with
a close to zero slope at zero strain and rapidly increasing at physiological ranges. This
behavior has been attributed to the structural characteristics of the ECM components. It
has been suggested that the increasing resistance to deformation with strain is owed to
the progressive engagement of wavy bundles of elastin and collagen fibers to support the
mechanical loads (Figure 3).

Hyperelastic isotropic material models, such as the Neo–Hookean and the Mooney–
Rivlin constitutive equations, can accurately describe the behavior of amorphous bodies
such as lipid pools in atherosclerotic formations, and fit some portions of the pressure–
volume relation of blood vessels. The symmetry of these material models allows its repre-
sentation as to the linear combination of the deformation gradient invariants weighted by
the material properties. This formulation allows the determination of unique material prop-
erties for a given mechanical behavior. However, these models fail to reproduce the charac-
teristic highly nonlinear and anisotropic behavior of cardiovascular tissue (Figures 2 and 3).
This was originally addressed by the use of phenomenological equations, e.g., the Fung
orthotropic exponential model being one of the most commonly used. Its success relies
on its relative simplicity, widespread numerical implementation, and accuracy in the pre-
diction of stress-strain curves [24,26]. Guccione et al. proposed modifications to Fung’s
orthotropic model based on myofiber structure and orientation to tailor myocardial tissue
behavior [38]. These phenomenological equations usually consist of two terms contributing
to the strain energy function. First, the contribution of volume changes is written as a
function of the determinant (third invariant) of the deformation gradient tensor. The second
term is the deviatoric contribution to the strain energy function, defined to be proportional
to an exponential function of the components of the strain tensor. The proportional constant
sets the scale of the material stiffness, and the function of the strain tensor components
defines the material anisotropy. Part of the success of Fung-like equations in describing
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the stiffening of cardiovascular tissue with strain relies on the exponential functional form
to quantify the effect of strain increments on deformational energy. However, the fitted
constants of phenomenological equations lack physical interpretation which is desirable
for studies aiming to relate material properties with pathological conditions [39,40].

Figure 3. Representative biaxial stress-stretch behavior of healthy cardiovascular tissue. The stress
and slope increase with the stretch/strain in any direction. This suggests that the cardiovascular
tissue stiffens with stretch/strain which is hypothesized to be a consequence of the progressive
engagement of ECM components to resist further deformation. This behavior is modeled by expo-
nential functions of the deformation tensor components and/or invariants. Mark symbols in the
figures show experimental biaxial test data of the human thoracic aorta for (a,b) young patients (20 to
35 years of age), and for (c,d) older patients (57 to 71 years of age). Solid lines represent the best-fit
approximation with a four-fiber family constitutive equation. Reprinted/adapted with permission
from Ref. [37], 2014, Elsevier.

In the past decades, many microstructure-inspired constitutive models have been pro-
posed to specifically suit cardiovascular tissue behavior [39,41]. Fiber-family models have
been particularly successful in reproducing the anisotropic behavior of the vascular wall
while keeping physiological meaning to some of the fitting constants, the Holzapfel–Ogden
model and its many variants being the most popular for cardiovascular tissue. These mod-
els assume that families of 1D fibers, each with specific mechanical behavior, orientation
distribution, and volume fraction, are embedded within an isotropic continuum matrix.
The isotropic component of the strain energy function is usually defined as a function
proportional to the first invariant of the deformation gradient tensor. The contribution
of fiber families is a weighted sum of exponential functions, the weighting factors being
the fiber family material parameters. The exponential functions are defined depending on
deformation tensor invariants and the relative orientation of fibers to strain, such that the
contribution of a fiber family is maximized if the strain deformation occurs in the direction
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of the fibers [37]. Again, exponential functions are employed to mimic the stiffening effect
of strain on cardiovascular tissue (Figure 3), this time being directly attributed to the ECM
fiber components. Many improvements to these models have been proposed to account
for different coupling effects such as inextensibility of fibers or cross-linking of the fiber
ensembles [42–45].

Active Properties

Adequate modeling of active contraction is key for an accurate description of cardio-
vascular function in general, being particularly critical for modeling the heart. Conceptually,
there are two possible approaches, the active stress models are the most common and they
assume the stress tensor can be decomposed as the sum of a passive and active component,
while active strain models assume a product decomposition of the deformation gradient.

Most active contraction models used in the inverse analysis of ventricular mechanics
through continuum mechanics are simplifications of more complex bio-chemo-mechanical
models such as the work of Hunter et al. [46]. The latter proposes a four-state variable
model which includes the passive elasticity of myocardial tissue, the binding of calcium
ions (Ca2+) to troponin C and its release, tropomyosin movement kinetics, the myofiber
length, and the kinetics of cross-bridge tension build-up under perturbation of myofilament
length. In practice, the detailed information required for the evaluation of this model is
out of reach, so simplified models assume the active stress acts mostly lengthways the
direction of myofibers, with a magnitude that is proportional to the fiber length and the
activation status. The activation status is often expressed as a time-dependent spatially
heterogeneous function ranging from 0 to 1 [47]. Active strain function will impose the
relative shortening lengthways of myofiber directions as a function of location and time
along the cardiac cycle.

Typically, the activation state is assumed to be instantaneously homogeneous within
the region of study, however, it is known that cellular activation propagates as an elec-
trical wave and the excitation-contraction coupling poses a complex electromechanical
problem [48]. This propagation has been modeled macroscopically as a reaction-diffusion
problem of the electric potential through the intracellular and extracellular domains, thus
known as the bidomain model. The monodomain model is a simplification that assumes
the same propagation anisotropy for both domains. Some interesting research has been
developed to apply inverse modeling to fit the parameters of mono and bidomain equations
using patient-specific electrocardiography [49,50]. These, however, fall out of the scope of
this review, and the interested reader is encouraged to study the abundant literature on the
inverse problem of electrocardiography [51,52].

The application of active contraction models requires the specification of the local
myofiber orientations. Patient-specific myofibers orientation can be resolved via diffusion
tensor MR imaging (DT MRI) [53]. Being a relatively novel technique, these scans are rarely
available from medical records of cardiovascular-disease patients, although their relevance
in the biomedical field is a growing topic of discussion [54]. Therefore, myofiber orientation
is either assumed a priori with simplified models or obtained through diffeomorphic
transformations with the employment of precomputed cardiac atlases [55]. Bayer et al.
proposed a Laplace–Dirichlet rule-based algorithm for assigning myofiber orientation to
computational heart models that showed good agreement with DT MRI measurements.
This algorithm consists of the resolution of the Laplace equation on the simulation domain
with appropriate Dirichlet boundary conditions constrained by the following rules: the
longitudinal fiber direction is parallel to the endocardial and epicardial surfaces, the
longitudinal fibers rotate clockwise throughout the ventricular wall from a positive helical
angle at the endocardium to a negative helical angle at the epicardium (both imposed by
the user), fibers in the papillary muscles and trabeculae are assumed parallel to the long
axis of these structures, the transverse fiber direction is perpendicular to longitudinal fibers,
and fiber orientation in the septum is continuous with the ventricular walls [55]. Similarly,
Potse et al. proposed a rule-based algorithm to define myofiber orientations assuming that
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longitudinal fibers are orthogonal to the local vector pointing to the shortest path between
endocardium and pericardium, with a clockwise varying helical angle [56]. Rijcken et al.
derived an equation for longitudinal and transverse myofiber orientation by solving an
optimization problem, which maximized the ejection while maintaining fiber strain as
homogeneous as possible on idealized geometries [57].

2.2. Fluid Mechanics of Blood Flow

For the study of fluids, it is more practical to implement an Eulerian formulation of
the governing equations. This formulation is obtained by applying the Reynolds transport
theorem to the equations for mass and momentum balance. Thus, this formulation solves
the relation between flow driving forces, flow velocity, and deformation rates (Figure 2).
A simplifying assumption applicable to biological systems is the incompressibility of the
fluids, as most of them are either liquids or gases moving at subsonic velocities. Addition-
ally, it is convenient to decompose the stress tensor into a spherical tensor representing the
hydrostatic pressure and a deviatoric stress tensor. With this decomposition, constitutive
equations can be designed to specifically relate the deviatoric stress components to the
viscous dissipation of momentum.

Blood flow is generally assumed to be laminar throughout the circulatory system.
The main arguments for this assumption are the pulsatile nature of the flow, the reduced
dimensions of the vessels, and relatively low velocities, each contributing to the viscous
effects overcoming the inertial forces and preventing turbulent random motion. However,
it has been argued that transition to turbulent flows could be achieved locally in stenotic
arteries. The use of a laminar model to study those cases could lead to an underestimation
of wall shear stress, and stress oscillation [58,59]. Unlike most conventional engineering
flows, blood flow is pulsatile and contained by compliant conduits of complex geometry.
Since the 1950s, Womersley [60], McDonald [61], Taylor [62], Pedley [63], and others,
developed analytical and experimental studies of pulsatile flow in mammals, identifying
the most relevant parameters and features of this type of flow, thus setting the bases for
modern hemodynamics.

Besides the intricacies of pulsatile flow in distensible conduits, the blood itself is a
complex fluid. Blood consists of a suspension of cells in an aqueous solution of proteins
and minerals called plasma. Plasma occupies approximately 55% of the blood volume,
the rest being mainly occupied by red blood cells, white blood cells, and platelets. The
rheological behavior of blood depends on how its constituents interact with each other and
with the vessel walls, in consequence, this behavior is non-linear and highly dependent on
the volumetric composition of blood, the flow conditions, and vessel dimensions. Mod-
eling the complex interactions of blood constituents is a challenging statistical mechanics
problem [64]. Some researchers have shown that cell aggregation and disaggregation are
relevant to accurately describing blood rheology, especially in capillary flows where the cell
size is comparable to the vessel diameter. Multiscale approaches have been successful in
coupling the behavior of single cells as elastic entities with the transport equations of fluid
flow, which are relevant for the study of clotting, aggregation, and platelet activation [65,66].
These approaches are computationally expensive, making them impractical for the study
of large vessels.

Constitutive Equations

In the study of large and medium vessels (the ones that can be feasibly resolved with
standard medical imaging), blood is often assumed to be a single-phase continuum. This
approximation is reasonable given the relatively small size of cell aggregates compared to
the vessel dimensions (and thickness of the boundary layer), and the relative relevance
of inertia on flow motion [67]. For these cases, phenomenological constitutive equations
describing the macroscopic behavior of flow are often applied. The linear Newtonian
fluid is the simplest and most commonly employed model, providing reasonable results in
vessels with diameters down to 200 µm [67]. Constitutive equations, such as the Casson,
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Herschel–Bulkley, and Carreu–Yasuda, incorporate the shear-thinning effect on apparent
viscosity by introducing a yield shear stress term [68]. To account for the effect of the
volumetric share of cell suspension, recent works have included the hematocrit as an
independent variable for the estimation of the effective viscosity [69].

2.3. Fluid-Structure Interactions (FSI)

Mechanics of the vascular wall and hemodynamics have been mostly studied as iso-
lated problems; however, the function of the cardiovascular system is the result of complex
interactions between blood, the actively contractile cardiac tissue, and the compliant vascu-
lar walls. The interaction of fluids and solids can conceptually be achieved by coupling the
boundary conditions on the interface between the solid and the fluid, such that the field
of displacements, velocities, and stresses are continuous and derivable at all points in a
monolithic fully coupled approach. This, however, poses many implementation difficulties
for complex 3D domains that can only be solved numerically. In addition, the typically
large deformations of the cardiovascular walls cannot be handled by linearized methods
used in conventional engineering applications.

The immersed boundary method, introduced by Peskin, was originally developed
for the study of flow around heart valves and was rapidly adopted for many other ap-
plications [70]. In this approach, the Eulerian variables of fluid dynamics describing the
surrounding flow are defined on a fixed computational grid, while the Lagrangian vari-
ables, accounting for the deformation of the tissue structures, are defined in a curvilinear
computational grid that can be displaced with no conforming constraints in respect to the
Eulerian grid. The moving solid boundary interacts with the fixed fluid domain by means
of elastic body forces which are modulated by Dirac delta-like functions [71,72]. The ficti-
tious domain method is a generalization of the immersed boundary method, which solves
the coupling of the Lagrangian and Eulerian domains by the use of Lagrange multipliers
instead of the concept of body forces [73]. This method is computationally less demanding
as it does not require fitting the interface boundary at the cost of impaired accuracy near
the interface.

Similarly, Figueroa et al. proposed the coupled momentum method, consisting of
changing the non-slip condition on the fluid boundary to a traction condition, which is
strongly coupled to the degrees of freedom of modified thin-membrane elements. This
allows the formulation of the solid equations on the same Eulerian frame as in the fluid
equations. In consequence, the fluid–solid interface mesh remains fixed, while the bound-
ary nodes will have nonzero velocities [74]. Another well-established method for FSI
simulation is the arbitrary Lagrangian–Eulerian (ALE) algorithm, which allows the arbi-
trary convective motion of the computational nodes of the discretization grid with respect
to a fixed reference frame. Typically, the nodes on the fluid-solid interface are treated with
a Lagrangian formulation. To deal with large or heterogeneous deformations of the inter-
face, several implementations include the re-discretization of the computational domain
to avoid the influence of ill-shaped deformed elements. The drawbacks of this method
are the computational expense of re-meshing the domain, and the induced inaccuracies by
transferring solutions from the degenerated mesh to the new one [75,76].

2.4. Growth and Remodeling Models by the Constrained Mixture Theory

One of the most relevant characteristics of living tissue is its capability to adapt in
response to chemical and mechanical stimuli. This adaptation comes with microstructural
reconfigurations, which alter the mass composition and the resulting contributions and
properties of the tissue constituents. The understanding of the effect of mechanical stimula-
tion on normal and pathological growth and remodeling of soft tissues is an active field of
study that bridges biomechanics and mechanobiology.

In 1994, Rodriguez et al. proposed a general continuum formulation for the finite
volumetric growth modulated by mechanical stress [77]. The theory of adaptation of
living tissues was further developed by Humphrey and Rajagopal who proposed the
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constrained mixture theory, a mathematical framework to predict not only the growth
but also the remodeling of biological tissues under transient mechanical and chemical
stimulation [78,79]. The constrained mixture theory is based on the continuum theory
of mixtures; that is, each component complies with a modified version of the governing
principles of motion in the Eulerian formulation. The modification involves the addition
of mass source/sink terms that account for the rate of synthesis or degradation of the
constituent in its respective mass balance equation and the component-to-component
interaction forces in the momentum balance equation. These source/sink terms respond
to a series of constraints of physical and chemical nature and are dependent on the local
distribution of strains, stress, and current composition. Constitutive equations must be
defined for each constituent, and the overall properties of the construct can be calculated
as a combination of its constituents, where simplified linearized forms weighted by their
volume fraction are typically chosen [32,80].

2.5. Summary

In Table 1 we summarize the highlights of the governing principles of cardiovascular
biomechanics through a continuum mechanics approach.

Table 1. Summary of governing principles of biomechanics.

Section Highlights

2.

Inverse modeling of the cardiovascular system is usually grounded on classical continuum mechanics theory.
The fundamental principles of mass and energy conservation are complemented by constitutive equations that describe the
mechanical behavior of the material of interest.
Constitutive material models can be either based on empirical evidence (phenomenological) or analytical expressions inspired
by theory
Once the model is defined through the selection of governing principles and constitutive equations, the problem is particularized by
setting the domain of analysis and adequate boundary conditions.

2.1

Cardiovascular tissue is a complex multilayered structure that displays non-linear viscoelastic behavior, residual stress, and active
contraction and distention.
Structural mechanics of tissue is usually done with a Lagrangian formulation.
The theory of finite hyperelasticity is applied to address the non-linear behavior and relatively large deformations.
The adequate modeling of the passive behavior of cardiovascular tissue requires accounting for its structural anisotropy and the
typical stiffening effect of strain/stretch.
Active contraction and distention are the consequence of ion-based chemical signaling that triggers the contraction of actin-myosin
sliding filaments, which determines the muscular tone.
Active behavior is modeled by either adding an active stress or active strain components to the momentum balance.
The additional active stress/strain is assumed to occur along myofiber directions and to depend on the cellular activation status. The
geometrical distribution of the activation status can be determined by solving a reaction-diffusion problem.
The patient-specific orientation of myofibers can be assessed by diffusion tensor MRI. However, the most common approach is to
assume myofibers follow a standard orientation for which several models are available.

2.2

Blood is a suspension of cells in an aqueous solution of proteins and minerals that undergoes a pulsatile flow in vivo.
Blood flow mechanics is typically studied with an Eulerian formulation.
Assuming Newtonian fluid behavior and laminar flow are reasonable and typical approximations to model the blood flow in large
vessels. Transition to turbulence flows may be relevant in the study of stenotic arteries.
Phenomenological constitutive equations are available to model the shear-thinning effect on apparent viscosity.

2.3

The function of the cardiovascular system is the result of complex interactions between blood, the actively contractile cardiac tissue,
and the compliant vascular walls.
The interaction of blood flow and cardiovascular tissue requires specialized numerical formulations. There are several available
formulations with different levels of complexity, one of which is the arbitrary Lagrangian–Eulerian algorithm which is complex and
computationally expensive.

2.4

Living tissue has the capability to adapt in response to chemical and mechanical stimuli.
The constrained mixture theory has been proposed to model the growth and remodeling of living tissue by solving sets of balance
equations for each constituent of the tissue under study.
The balance equations must be adequately constrained to account for the component-to-component interactions.
The constrained mixture theory can introduce models to account for the reconfiguration of constituents under chemical/mechanical
stimuli (remodeling).

3. Numerical Methods

The above-described system of governing and constitutive equations can only be
solved analytically for a reduced group of oversimplified cases. Thus, mechanical analyses
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of complex biological systems require the application of numerical methods to obtain
approximate solutions. It has been claimed that the development of numerical methods
was key to the foundations of modern biomechanics [81,82]. Many of the early simulation
analyses of the cardiovascular system and components were developed with in-house
codes, but the popularization of commercial software boosted the production of computa-
tional research in biomechanics [82]. More recently, open-source specialized software for
numerical biomechanics, such as SimVascular and FEBio [83,84], have risen from the col-
laborative effort of academic groups aiming to incorporate relevant bio-chemo-mechanical
models of biological systems into simulation pipelines. Many different options exist for
the numerical solution of time-dependent 3D problems. Mesh-based methods are the most
popular approaches, particularly the finite volume and finite element methods which are
reviewed in the following pages.

3.1. Finite Volume Method

The finite volume method (FVM) is conceptually straightforward. The domain of study
is discretized in a series of non-overlapping finite volumes, and the governing equations,
usually expressed in Eulerian formulation, are converted into algebraic expressions by
integrating them over each discrete volume. The balance equations are applied on a node
located in the center of the finite volume, while the flux terms are calculated at its faces
(Figure 4a). This allows first and second-order approximations of derivatives. The surface
flow for a given shared face is set identical and in opposite direction for the adjacent discrete
volumes, and equal to a boundary condition at the edge of the domain. By doing so, the
balance equations are held at the whole domain and within each finite volume, which is one
of the most attractive features of the FVM. Additionally, since the calculation of properties
happens in the center of each volume, it is relatively easy to implement boundary conditions
of a higher order [85]. Numerical implementation of this method is also straightforward in
the case of structured meshes, becoming more complex for unstructured meshes due to the
bookkeeping necessary for the calculations of interface flux balances.

Figure 4. Diagram of finite volume (FVM) and finite element methods (FEM) approximation princi-
ples. (a) In FVM, the domain is discretized in finite volumes, and balance equations are solved at the
center of each volume. (b) In FEM, the domain is discretized in finite elements, and the variables
distribution is assumed to follow a prescribed shape function within each finite element.
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The use of FVM for the solution of convection-diffusion problems was first introduced
in the early 1960s by Tikhonov and Samarskii [86]. Since then, FVM has been particularly
successful in its application to computational fluid dynamics, as many of the current com-
mercial computational fluid dynamics (CFD) software suites are based on this method.
Biomechanical applications of this method mostly focus on hemodynamic and tracheo-
bronchial airway simulations. However, this method can be applied to other boundary
value problems such as electromagnetics and structural mechanics [87,88].

3.2. Finite Element Method (FEM)

The finite element method (FEM) consists of the discretization of the domain of study
on simple geometrical elements (or finite elements), where the unknown fields are dis-
cretized as linear combinations of shape functions of any order, linear and quadratic being
the most common. The shape functions are typically defined at each element depending
on local and normalized coordinates (Figure 4b). The local governing equations for each
element are then assembled and organized in a matricial system of algebraic equations.
Finally, the solution is approximated by minimizing the weighted error associated with
each element. Several weighting rules have been proposed, the Galerkin method and its
variations being the most widely used [89]. By converging to the solution through the
minimization of an error function and not through the exact solution of balance equations,
FEM is said to be formulated in a “weak” form. However, the weak form is equivalent
to the exact solution in the limit of refining the domain discretization. In fact, it has been
widely shown that mesh-independent FEM solutions do not show any practical difference
from the output of more conservative numerical methods such as FVM [90,91].

FEM was developed in the early 1950s to perform structural analysis for the aerospace
industry and was soon applied to study the biomechanics of musculoskeletal and cardio-
vascular tissue [81,82]. As early as 1968, FEM was used to study the non-linear viscoelastic
behavior of arteriole tissue [92]. This technique has been traditionally used for the solu-
tion of solid mechanics problems; however, it has also been used to solve the governing
equations of other physical phenomena, including fluid mechanics [81]. Regarding the
convenience of relying on a single solver engine, many multiphysics simulation software
suites have introduced FEM formulations for fluid mechanics, [93] which also facilitates
the implementation of FSI simulations [94].

3.3. Summary

In Table 2 we summarize the highlights of the principles and formulations of the
numerical methods typically applied on cardiovascular biomechanics research.

Table 2. Summary of numerical methods.

Section Highlights

3.

Mechanical analyses of complex biological systems require the application of
numerical methods to obtain approximate solutions.
There are several numerical methods available to solve the governing principles of
continuum mechanics, including popular mesh-based methods such as the finite
volume method (FVM) and finite element method (FEM).
Mesh-based methods discretize the domain of study on spaces of finite size and
iteratively solve the governing equations on each finite space simultaneously.
FVM is based on a “strong” formulation that solves exactly the balance equations on
the center of each finite volume.
FEM is based on a “weak” formulation that assumes the unknown variable to follow
a prescribed shape function within each finite element. The method converges to the
solution by minimizing the weighted error induced by the discretization and use of
the shape functions.
FVM and FEM offer equivalent solutions to a variety of Multiphysics problems.
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4. Inverse Problems

Modeling physical phenomena can be thought of as a mapping operation, where a set
of inputs (B) is transformed into a set of outputs (E) by applying the model operator (M)
such that M(B) = E. In the realm of physics, there must be a cause–effect relation between
the inputs and outputs, and forward modeling consists of designing and applying a map-
ping function capable of producing outputs that closely follow experimental measurements
(e), meaning that the difference E − e should be close to zero (Figure 5a) [95].

Figure 5. Data processing pipeline for patient-specific (a) forward problems and (b) direct inverse
problems. Symbols, B: forward problem inputs, E: forward problem outputs, e: experimental data.

Conceptually, solving an inverse problem consists of using the measured effects to
estimate the causes. That is, solving a problem of the type B = M−1(e), which could be
straightforward if M was a bijective function, with M and M−1 being continuous and
differentiable, and e was a continuous and smooth distribution (Figure 5b). The main
difficulties with inverse problems are the possible nonlinearity of the inverse mapping
function, the multiplicity of solutions, and the sparsity and noise of the measured effect
data [15,95].

The development of advanced measuring techniques along with advances in computer
science brought attention to the practical applications of inverse problems. A growing
body of research has been built to address the afore-mentioned difficulties and to apply the
inverse modeling methodologies to problems from many different engineering applications.
To attend to the necessity of opening wide discussion of concepts, methodologies, and
methods related to inverse formulations, specialized journals started circulating by the
late 80s, e.g., the Inverse Problems and Inverse Problems in Engineering Journals (today
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Inverse Problems in Science and Engineering) among many others [95]. In this section,
several solution methodologies for inverse problems in mechanics are reviewed, highlight-
ing their respective advantages and drawbacks when incorporated into cardiovascular
biomechanics analyses.

4.1. Direct Inverse Methods

The direct solution of inverse problems by the deduction of the inverse mapping
function

(
M−1) is only possible for oversimplified cases; however, specialized mathematics

has been developed for the direct solution of some specific problems. In the case of finite
elasticity, one relevant inverse problem is the retrieval of the mechanical properties of
the domain of interest from the applied loads and measured displacement field. Several
methods have been proposed to solve this problem directly, e.g., the reciprocity gap method
which has been used to retrieve the distribution of elastic properties and to resolve the
location of cracks in solid bodies from image-derived displacement fields. This method
linearizes the inverse problem by assuming that the same elasticity tensor can resolve
both the measured displacement field and a slightly perturbed version of it [15]. Another
alternative for inverse elasticity is the application of the virtual work principle. This
requires a complete description of the deformation field as a starting point, then the virtual
work identity is defined by arbitrarily selecting a virtual field function. These functions
can be tailored to specific constitutive equations to convert the virtual work identity into
a set of algebraic equations from which the components of the elasticity tensor can be
resolved [96,97].

Another relevant problem on inverse elasticity is the resolution of the unloaded geo-
metric reference configuration with the applied loads, material properties, and deformed
configuration as inputs. This problem has many applications in manufacturing engineering
and is key to the study of patient-specific biomechanics. Govindjee and Mihalic proposed a
finite element implementation for the direct solution to this problem [98,99]. The proposed
method exploits the duality of the equations of finite hyperelasticity when the role of the
reference and deformed coordinates are interchanged. In the absence of body forces and
assuming material homogeneity, the FEM implementation of the inverse problem can be
formulated similarly to the conventional FEM problem, requiring slight changes in the
definition of elements and shape functions. The authors highlight that the application of
the method to buckling problems can lead to multiple solutions for a given input and the
resulting method was highly sensitive to input variations.

Direct solutions to inverse problems are computationally efficient; however, solution
methods are not generalizable and need to be tailored for each specific inverse problem and
each constitutive equation, making its implementation on existing numerical solvers a non-
trivial process [100]. Another limitation of direct solutions is the requirement of a smooth
continuous function of the measured effects (e), which cannot be satisfied by discrete
empirical measurements affected by random error. The experimental variability and noise
of the input data could be incompatible with the assumed model, which could dampen the
convergence to a valid solution or any solution at all [95]. An option to deal with this issue
is through preprocessing of the input data with smoothening and interpolation operations.

4.2. Iterative Inverse Methods

An alternative method for the solution of inverse problems is the iterative approach.
This consists of optimization algorithms that iteratively solve the forward problem while
varying the input parameters (B) until an error function defined as the difference between
target experimental data (e) and the forward problem output (E) is minimized [101]. The
advantages of this method are its easy generalization to any kind of inverse problem, its
capability to operate on top of any existing solver for the forward problem, the existence of
methods to reduce solution multiplicity, and its inherent capacity to handle scattered and
noisy experimental data (Figure 6) [102]. All these advantages come with a detrimental
increase in computational resource requirements, given by the repetitive solution of the
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forward problem. To reduce computational expense, some formulations have proposed
the use of surrogate simpler models for the forward problem at the initial stages of the
optimization process [103,104]. Some statistical tools based on Bayesian data analysis and
inference have been implemented to improve the performance of iterative inverse methods
for cases where the error distribution of the measured target is known or can be safely
assumed [105].

Figure 6. Data processing pipeline for patient-specific iterative inverse methods. Symbols, B: forward
problem inputs, E: forward problem outputs, e: experimental data.

The core concept of iterative inverse methods is the solution of an optimization prob-
lem that drives the solution into reproducing the target data with the smallest possible error.
The definition of an optimization problem requires the selection of an appropriate target
function to minimize, an optimization algorithm suited for the particular characteristics of
the forward problem and optimization parameters, and the implementation of parameter
constraints to point and restrict the convergence of the algorithm into desirable outputs. In
this section, we briefly discuss the most common optimization target functions, algorithms,
and constraints used on inverse problems in biomechanics.

4.2.1. Target Function

Most inverse studies implement a single target function for optimization, although
optimization of multiple targets is feasible. The target function is often defined in terms of
an error between the forward problem output and experimental measurements. Since the
target function is defined as an error to be minimized but not exactly reduced to zero in a
point-wise fashion, the iterative inverse method can converge to reasonable solutions even
if the measured data are scattered and affected by random error.

The selection of an adequate target function must comply with at least two conditions.
First, the target function must be compatible with the solution space of the forward model;
otherwise, convergence may never be achieved, e.g., pulse wave velocity is incompatible
as a target with CFD models assuming rigid walls. Second, the target function must be
representative of all the aspects of the modeled phenomena, e.g., a target function based
solely on output flow estimation is not adequate for FSI models since the contribution of
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the elastic behavior of the wall can be miscalculated. In FSI studies, pulse wave velocity
or multiple target functions dealing with pressure and flow velocity are more reasonable
options [106].

Structural Tissue Mechanics

First attempts to assess patient-specific mechanical properties of blood vessels were
based on the knowledge of pressure vs. volume or pressure vs. area changes. Nevertheless,
this unidimensional information can only be used to fit simple models that assume material
homogeneity and isotropy, which departs from the known complexity of myocardium and
arterial tissue [107]. The least-squared error to a pressure-volume curve as an optimization
target increases the number of comparison points and allows the fitting of non-linear
material models [108]. However, pressure–volume curves can only be measured in practice
through invasive catheterization and are not generally available on a patient-specific
basis. Alternatively, such data could be obtained from other sources such as normalized
models with self-similarity or statistically obtained atlases. For example, Klotz et al. found
that normalized pressure–volume curves of the left ventricle (LV) have a consistent profile,
regardless of etiology across large mammal species [109]. This normalized pressure–volume
function has been extensively used for forward and inverse analyses of the LV when direct
pressure measurements are unavailable [110].

Some studies use the high-resolution information from MRI or computed tomography
(CT) to obtain accurate geometric models of arteries at diastole and systole. The diastolic
configuration is discretized into the mesh, which is then mapped into the systolic geometry
by incorporating kinematic assumptions such as negligible axial and torsional displace-
ments [111]. Then, the target optimization function can be set to minimize the simulated
to mapped displacement errors. Due to the non-uniform distributions of nodal displace-
ments, this technique allows the estimation of heterogeneous distribution of stiffness from
anisotropic material models [112]. To avoid the requirement of node-to-node correspon-
dence, and the related displacement assumptions while using geometric (non-kinematic)
information, some authors proposed the minimization of the least-square-error of the
distance between the loaded/deformed simulation mesh to the surface of the segmented
anatomy model at systole, or systolic shape matching [113,114].

The explicit displacement field distribution made available by ultrasound speckle
tracking, MRI tagging, or DENSE MRI, allows for defining a more direct target function
by minimizing the least-squared error of the nodal displacement between the simula-
tion results and the image-based measurement. The direct comparison of simulation-to-
measured displacements can be achieved by locating mesh nodes in the location of speck-
les/tags/voxels, or by interpolating the measured displacement field into the mesh [14].
To reduce the effect of noise, some authors prefer defining the target function in terms of
a region-wise averaged strain, instead of displacement distributions [115]. By averaging
the strain field over a region, the effect of the noise is dampened. However, this requires
an adequate discretization of the domain on regions of similar boundary conditions and
material properties, while keeping discretization regions small enough to produce a smooth
distribution of strain estimates. The use of region-wise averages of strain is widely used
in the analysis of heart mechanics, and there is even a standardized discretization of the
left ventricle. However, defining adequate regions for smaller and thin vessels is challeng-
ing [13]. Furthermore, defining the target function solely on strain measurements rules out
the effect of possible translational/rotational rigid body motions.

The use of stress fields as target data can potentially reduce solution multiplicity
on the fitting of material parameters, and yield results that more accurately describe the
mechanical behavior of the tissue under study. The definition of such targets, however,
requires a priori knowledge of the boundary loads, and resulting stress distribution within
the deformed domain of study. In practice, some controlled in vitro experiments have
successfully applied inverse models with stress-based targets by having accurate measure-
ments of forces and deformations in three orthogonal directions on samples of reduced
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size [18,116,117]. The definition of stress-based targets for patient-specific in vivo applica-
tions could be extremely beneficial to improve the accuracy and uniqueness of the solution.
However, it would require the implantation of load sensors on and within the tissue
of interest. Given that in vivo tissue samples are not isolated, as they are in controlled
in vitro experiments, further assumptions on material behavior and boundary conditions
are required.

Fluid Mechanics and FSI

Cardiovascular catheterization pressure measurement is considered the reference
standard on patient-specific hemodynamics, as it constitutes a direct assessment of pres-
sure and dimensions within the blood vessels or the cardiac cavities using high-accuracy
transducers. When available, most inverse models of computational fluid dynamics use a
least-square-error of the time-dependent pressure function as the optimization target, while
image-based flow data is used as boundary conditions [103,118,119]. Models incorporating
FSI can instead use the pulse wave velocity as an optimization target that accounts for both
the hemodynamics and elastic properties of the vessel [120]. The carotid-femoral pulse
wave velocity is considered the gold standard for systemic arterial stiffness assessment,
which is calculated as the patient-specific distance between the carotid and femoral artery
and the time delay between the pressure wave measured at those locations. Local esti-
mations of pulse wave velocity can also be obtained from invasive catheterization and by
flow-to-area ratios from doppler ultrasound or phase-contrast MRI [121]. However, CFD
cardiovascular modeling often relies on rigid wall simplification which significantly reduces
the computational cost of the forward problem. Furthermore, cardiac catheterization is an
invasive procedure and may not be available, so target pressure data is either non-available
or non-reproducible owing to model limitations. In these cases, either least-square-error
of nodal velocity between simulation results and 4D flow MRI assessment or branch flow
distributions have been used as target functions [122].

4.2.2. Optimization Algorithms

The development of algorithms for numerical optimization is a broad and active field
of research. It is not the aim of this article to carry out a comprehensive review of all the
available optimization techniques, but rather to list the methods most commonly used in
the field of biomechanics, providing a rationale for their selection with specific problems.
In the following sections, we loosely follow the classification proposed by Kochenderfer
and Wheeler based on the characteristics of the target function [123]. Given the nature and
complexity of inverse biomechanics problems, we only consider optimization algorithms
that deal with continuous variables and multiple optimization parameters.

Updating by Differentiation of Target Function

In those cases where the target function is continuous and derivable, derivative in-
formation can be used to estimate the descent path towards the minimum. First and
second-order algorithms refer to optimization methods that incorporate numerical eval-
uations of the local Jacobian and the Hessian matrix, respectively. To reduce the risk of
convergence to local minima, stochastic sampling of these derivatives is incorporated.

First-order algorithms can only deal with relatively simple problems and are not suited
for inverse biomechanics. However, they are used in other relevant applications, such
as the automation of image processing and segmentation for the generation of geometric
models [11]. Second-order algorithms have been used in the solution of inverse arterial and
myocardial mechanics for the estimation of anisotropic material constants. The most com-
monly used are the Levenberg–Marquardt [34,107], Broyden–Fletcher-Goldfarb–Shanno
(BFGS), limited BFGS (L-BFGS), and sequential quadratic programming [5].
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Updating with No Differentiation of Target Function

Some optimization algorithms do not require derivative information of the target
function to operate. These methods are not as fast as gradient-based counterparts when
applied to derivable functions. However, they are advantageous in cases where the func-
tions are not derivable, there are regions with invalid solutions or singularities, the function
response is noisy, or the target presents multiple local minima. Since the target functions
on simulation-based inverse problems are not analytical functions, but instead, are the
simulation outputs, it is prone to some numerical problems, e.g., non-valid solutions due to
forward problem divergence. In consequence, most recent inverse method developments
have incorporated gradient-free algorithms. The most common algorithms can be classified
into two groups direct methods and population methods.

Direct methods incorporate deterministic algorithms based on patterns or geometrical
constructs for sampling the domain and carry a direct comparison of the target function
value. This comparison is then used to define the location of the next sampling point.
Powell and Nelder–Mead algorithms have been particularly popular in biomechanics
applications and inverse analyses [124,125].

The main feature of population methods, in contrast to direct methods, is that the
initial seed is not a single point in the parameter hyperspace but a pool of candidate
optimum solutions. On each iteration, a new pool of candidate solutions is generated by
altering the input parameter values following different recombination rules from parent
candidates and stochastic variations. Then, each new candidate is evaluated and a new pool
is selected to build the next generation. These algorithms have proven to be particularly
useful when dealing with noisy target functions, and with multiple local minima. The
popular genetic algorithms and particle swarm methods stand out due to their multiple
applications, including the solution of inverse problems [117,126–128]. These methods
require intensive sampling, so they are contraindicated for the solution of inverse problems
when the forward problem is computationally expensive [15].

Statistics-Based Methods

Some statistical methods applied in the field of biomechanics rely on the use of
Bayesian inferences, also known as inverse probability. Unlike the methods described
previously, Bayesian inference-based methods provide not only an estimation of the pa-
rameters to be fitted but also a confidence interval for such values. The method requires a
set of measured data along with its probability distribution (which can be often assumed
normal due to random experimental error), a predictive model, and a prior probability dis-
tribution for the model parameters. The latter can be estimated from previous experiments
and published data or can be simply assumed as uniform within a given range. Then,
a selection of parameter combinations is used to run the prediction model and compare
it to the experimental data. Finally, the Bayes theorem is used to produce a map for the
probability of the model that reproduces the experimental data in a parameter hyperspace.
This map is used to update the prior parameter probability distribution to iteratively repeat
the process [129].

There are many different computational implementations, some of the methods used
on patient-specific inverse problems are the Gaussian process regression, Kalman filters
in its many variations, and linear-quadratic-Gaussian estimations. These methods differ
mostly on how the sampling is carried out, how the parameter probability distribution
is assumed or calculated on each step, and how the model predictions and experimental
measurements are weighted to determine the converged parameter solution [130–132].

4.2.3. Constraints

A series of constraints can be implemented on the optimization algorithms to restrict
solution spaces and parameter values. These constraints can be used to ensure the phys-
iological and physical meaning of the results and to funnel down solution multiplicity.
One of the most relevant constraints required for material parameter estimation on tissue
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mechanics is compliance with the second law of thermodynamics. One of the required
conditions for this compliance is that the strain energy function must be positive convex,
which restricts the relative value of material parameters [24,133].

The assumption of material incompressibility is another common constraint imposed
on cardiac and arterial wall mechanics. Full incompressibility introduces singularities to the
solution of numerical formulations; therefore, nearly incompressible behavior is enforced
by restraining the relative values of material properties. However, experimental and in
silico evidence have shown that cardiovascular tissues are compressible to some degree
and that myocardial volume varies throughout the cardiac cycle [134]. The most recent
in vivo measurements of myocardium compressibility in human and large-mammal animal
models agree on estimating peak compressibility between 1% and 20% [134–136] Moreover,
it has been shown that the accuracy of heart-mechanics models is significantly increased
if this compressibility effect is considered [137]. Thus, the incompressibility constraint
is a reasonable yet rough approximation that must be carefully considered in simulation
analyses [134,138,139].

Microstructure-based models allow the introduction of physiologically and structural
meaningful constraints to material parameters, e.g., maximum possible fiber stiffness, or
maximum cellular volume fraction. Inequality type constraints can restrain material param-
eters within expected physiological ranges. Inequality relations between model parameters
can also be introduced to address structural component differences, e.g., collagen fibers are
typically stiffer than elastin fibers. In the study of FSI inverse problems, pulse wave velocity
is constrained by the maximum possible speed of sound on the liquid media, and some
authors have introduced constraints on the maximum volume change of the fluid-solid
domain [140].

In addition, constraints can also be introduced to promote numerical stability of the
solution, or to smooth the solution when the parameters to be fit are temporal or spatial
distributions, e.g., the first-order Tikhonov regularization functional has been used in the
estimation of heterogeneous material parameter distributions [141].

4.3. Summary

In Table 3 we summarize the highlights of direct and iterative solution methods of
inverse problems.

Table 3. Summary of inverse methods.

Section Highlights

4.
Solving an inverse problem consists of using measured effects to estimate the causes.
The main difficulties with inverse problems are the possible nonlinearity of the inverse mapping function, the multiplicity of
solutions, and the sparsity and noise of the measured effect data.

4.1

The direct solution of inverse problems by the deduction of the inverse mapping function is only possible for simple cases.
There are specialized mathematical solutions for specific problems of finite elasticity. Some relevant problems of inverse elasticity
that have direct inverse solutions are (1) the solution of material properties from boundary loads and domain displacements. (2)
The solution of the unloaded configuration from the applied loads, material properties and deformed configuration.
Direct solutions of inverse problems are computationally efficient. However, direct solutions are not generalizable and require
continuous smooth functions of the measured input often not compatible with noise and scarce experimental data.

4.2

Inverse problems can also be solved through an iterative weak approach. This consist of iteratively solving a forward simulation
problem to minimize an error function between simulation outputs and target measurements while fitting the sets of unknowns.
The iterative solution methods of inverse problems are generalizable, can handle noisy and scarce experimental target data, and
can operate on top of existing simulation software. However, iterative methods are computationally expensive.
The selection of the target function to be minimize needs to be consistent with the nature of the problem and the characteristics of
the biomechanical model.
The inverse method can be implemented though a variety of optimization methods. For the solutions of biomechanical inverse
problems, optimization methods with no differentiation of the target function are preferred.
Population-based optimization algorithms can solve global minima of multiparametric functions with an increased toll of
computational expense.
Statistic-based optimization method can incorporate previously reported data which can reduce convergence time and provide
probability distributions of results rather than single deterministic values.
Convergence times can be improved and solution multiplicity narrowed by the implementation of solution constraints.
Constraints can be based on physical laws and limits or on previous experience.
Constraints can also be implemented to promote numerical stability and smoothness of the converged solution.
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5. Medical Imaging-Based Kinematics

Early attempts to use medical imaging to assess the stiffness of blood vessels relied on
the measurement of the luminal area change between diastolic and systolic configurations.
This area change is used in several clinical risk markers, such as the β-index, that have
shown a good correlation with the occurrence of certain cardiovascular pathologies such
as atherosclerotic damage, hypertension, diabetes, and Marfan syndrome, as well as to
tobacco exposure, obesity, aging, and other risk factors [142–144]. However, the predic-
tive capabilities of these factors are inconsistent among different arterial locations and
pathologies, most likely due to the oversimplification of the problem without any account
of vascular mechanics [142].

Multiple previous studies have considered inverse problems applied to in vitro marker-
tracking kinematics of surgical and cadaveric tissue samples [145,146]. In these works,
direct or fluid-driven mechanical loads are applied to the tissue sample to induce controlled
deformation through an in vitro experiment setup. Physical or digital markers are fixed to
the samples, and their displacement is captured by high-speed, high-resolution cameras.
These studies are less affected by resolution limitations and noise than in vivo studies and
can be applied to structures that are difficult to capture with medical imaging such as heart
valve leaflets [147]. Some notable drawbacks of in vitro testing of explanted tissue include
neglecting active contractility, loss of in vivo boundary conditions, potential tissue damage
during excision, experimental setup and marker placement, and degradation of the living
tissue after extraction.

In vivo medical imaging has evolved to provide not only anatomical geometric infor-
mation but also detailed kinematics measurements. The accuracy and availability of these
techniques are limited by image resolution, signal-to-noise ratio (SNR), the occurrence of
artifacts, and practical obstacles related to testing costs and health hazards [122,148–151]. In
the following subsections, we review the available techniques for assessing in vivo image-
based kinematics for tissue deformation (Table 4) and blood flow (Table 5), fundamental
principles, typical image resolution, and some specific applications.

Table 4. Image-based technique for assessment of tissue motion.

Technology Technique Principle Resolution Applications

US Speckle Tracking

Acoustic response to
the interaction of
ultrasound signals with
tissue fibers.

Spatial and displacement
resolution < 1 mm/pixel
Real-time temporal resolution.

Identification of: septal
defects, CHD, valve
structure. Assessment of
cardiac and aortic
function.

MRI

Tissue tagging

Local perturbation of
myocardium
magnetization with
selective
radiofrequency
saturation sequences

Spatial and displacement
resolution ~1 mm
Tag spacing ~4 mm
25 images per cardiac cycle.

Assessment of cardiac
function; motion and
deformation of
myocardium, skeletal
muscle, lung tissue and
tongue.

DENSE MRI

Applied magnetic field
gradients produce a
phase shift on proton
spins proportional to its
relative displacement.

Pixel size ~2.5 mm for myocardial
motion [149], ~1.3 mm for aortic
motion [150]
Displacement resolution < 0.1 mm.
30 images per cardiac cycle

Assessment of
myocardial and aortic
motion, deformation, and
function.

5.1. Ultrasound Technology (US)

Ultrasound (US) uses high frequency (2 to 15 MHz) acoustic waves to create real-time
2D in vivo images of tissues, organs, and blood pools using piezoelectric transducers. As
in any wave, higher frequencies are associated with smaller wavelengths, higher penetra-
tion power, and improved image resolution [152,153]. Volume rendering from ultrasound
images has led to three-dimensional, time-resolved ultrasound (4D US), and real-time imag-



Appl. Sci. 2022, 12, 3954 23 of 71

ing [154]. US is relatively inexpensive, portable, and safe, so it has become a customary
tool in many clinical applications such as anesthesia, critical care, prenatal care, and pain
management. Its application to cardiology, commonly known as echocardiography, was
introduced in the 1950s, and currently is the more ubiquitous diagnostic tool to assess car-
diovascular structure and function. With an approximate lateral resolution of 1 mm/pixel,
this technique allows the estimation of heart chamber size, valve structure, identification of
structural abnormalities such as seen in congenital heart defects (CHD), and determination
of systolic and diastolic function (Figure 7c) [155]. Nevertheless, echocardiography presents
some intrinsic limitations regarding accuracy and repeatability, particularly in patients
with complex flow patterns related to congenital heart disease, aortic regurgitation, or
dissection, in which case it is recommended to complement the study with other imaging
techniques [156]. Intravascular ultrasound technology (IVUS) was developed following
the principle that accuracy and resolution are improved as the transducer is closer to the
tissue of interest. This technology involves placing a miniature ultrasound probe at the end
of a catheter and then introducing the catheter into the vessel of interest in order to resolve
the surrounding structures with greater detail than allowed by standard external US. This
invasive technique is mostly used to study the conditions and progression of atherosclerosis
in patients with coronary and carotid artery disease [157]. US technology can also provide
blood flow and tissue kinematic information through the use of echo-Doppler and speckle
tracking techniques.

Table 5. Image-based technique for assessment of blood flow.

Technology Technique Principle Resolution Applications

US Echo and Vector
Doppler

Measurement of
frequency shift of the
reflected acoustic wave.

Spatial resolution
<1 mm/pixel

Identification of: septal defects,
CHD, valve structure. Assessment
of cardiac and arterial function.
Prenatal care.

MRI

2D PC Applied magnetic field
gradients produce a
phase shift on proton
spins proportional to
its relative velocity.

Pixel size ~1.5 mm
30 images per cardiac cycle

Assessment of cardiac, arterial,
and venous flow, cardiac output,
regurgitant flow, pulse
wave velocity.

4D flow Pixel size ~2.5 mm
25 images per cardiac cycle

Same as 2D PC plus
measurements of wall shear stress,
vorticity and pressure drop.

Figure 7. Resolution comparison of left ventricular myocardium at diastole and systole with clinical
grade (a) MRI, (b) CT (Reprinted/adapted with permission from Ref. [158], 2019, Korean Society of
Echocardiography, open access), and (c) 2D ultrasound.
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5.1.1. Echo and Vector Doppler

Echo Doppler estimates the velocity of blood and tissue through the use of the Doppler
equation. By measuring the frequency shift from the original ultrasound wave and the
reflected echo, the local velocity can be determined. The main shortcoming of this technique
is its dependence on the angle between the original ultrasound wave (position of the
transducer) and the displacement direction, which can introduce large intra- and inter-
observer variability. Dependency on the transducer angle was solved by the introduction
of vector Doppler techniques, which additionally provide in-plane velocity components.
This is achieved by the simultaneous measurement of two doppler signals, either from two
crossing beams from different transducers, or from a single transducer with two different
in-plane receivers [159]. This technique is of great use in clinical practice for the qualitative
assessment of blood flow and tissue displacement [160] and used in early studies of patient-
specific hemodynamics to impose inlet and outlet flow boundary conditions [161,162].

5.1.2. Speckle Tracking

Speckle tracking is a relatively novel technique developed during the early 2000s
for the measurement of tissue 3D displacement and deformation. Speckles are defined
as image features/spots generated by the acoustic response of tissue fibers to ultrasound
signals. Single speckles are analyzed in identifiable kernels that are followed along the
cardiac cycle. Postprocessing techniques allow the averaging of kernel displacements
over several cardiac cycles to reduce the effects of noise [163]. The spatial and temporal
resolution of speckle tracking is remarkable, providing hundreds of frames per second for
pixels of <1 mm size [164]. This resolution allows not only the study of the myocardium
but also the mechanics of arterial walls and aortic aneurysms [165,166]. Displacement
measurements are limited by kernel size (~1 mm) and show reproducibility issues common
to any US-based technology (Figure 8a) [167,168].

Figure 8. Cont.
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Figure 8. Examples of image-based kinematics of the left ventricular myocardium with (a) Speckle
tracking ultrasound (Reprinted/adapted with permission from Ref. [169]. 2020, Alessandra M.
Ferraro et al.; open access) (Left) Dots indicate speckle-kernel location and identification, (right)
green lines indicate trajectory through the cardiac cycle. (b) Tissue tagging (Reprinted/adapted
with permission from Ref. [170]. 2012, The Radiological Society of North America). Tissue tagging
estimates kinematics by tag-to-tag tracking from diastole to systole. Transversal (green lines) and
diagonal (red lines) tag-to-tag dimensions are measured at diastole (left column) and systole (middle
column), their difference can be used to measure displacement and deformation (red lines in right
column). (c) DENSE MRI (Reprinted/adapted with permission from Ref. [171]. 2015, Wehner et al.;
licensee BioMed Central, open access). DENSE MRI resolves pixel-wise displacements by processing
phase data for each direction. Red and green contours represent segmented luminal and adventitial
boundaries, yellow arrows represent the phase-encoded displacement.

5.2. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) offers superior quantitative utility compared to
ultrasound as it offers high-resolution 2D and 3D visualization of the heart and major
arteries referenced to a fixed coordinate system, providing greater accuracy for anatomic
and volumetric assessment of heart chambers and wall thickness [160]. In addition, various
MRI sequences have been specially designed to assess other valuable data such as fiber
orientation, tissue displacement, and blood velocity [172,173].

The fundamental principle of this technology consists of the use of magnetic fields to
align hydrogen protons in the body. After the magnetic field is interrupted, the protons
return to a lower energy state by emitting radio signals that can be captured and utilized to
create imaging data. For clinical applications, base magnetic fields with strengths ranging
between 1.5 to 7 T are used to excite the protons to a base level. Then, a second time-
varying radiofrequency magnetic field is used to induce changes in tissue magnetization.
Tissues with different hydrogen-protons content will respond to the oscillating radiofre-
quency with different characteristic responses, which can be used to resolve various tissue
components [174].

The first reported human magnetic resonance image dates from 1977 and was a single
image that required 5 h to capture [175]. Nowadays, an MRI image can be captured in
a single breath-hold with a resolution under 1 mm/pixel and temporal resolutions of 25
frames per cardiac cycle (Figure 7a). This noninvasive technique generally poses minimal
risk to patients unless they have non-compatible ferromagnetic implanted devices or other
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internalized materials, or they have complications related to the contrast agents needed for
some of the MRI modalities. Due to the confined space within an MRI scanner, the test can
generate anxiety and discomfort for patients with claustrophobia. Given the expense of the
equipment, maintenance, and required staffing, it does not have as wide an availability as
US, particularly in smaller medical facilities.

There are several options for MRI-based assessment of kinematics of both cardio-
vascular soft tissues and blood flow. Four prominent examples will be discussed below,
including: MRI tagging and displacement encoding with stimulated echoes (DENSE) for
tissue displacement, and phase contrast and 4D flow MRI for blood flow quantification.

5.2.1. Tissue Tagging

This technique, first introduced by Zerhouni et al., in 1988, was specifically designed
to quantitatively assess the transmural motion of the myocardium [176]. Image markers, or
tags, are created by locally perturbing the magnetization of the tissue, either by selective
radiofrequency saturation sequences or through modulation of the magnetization vector by
gradient fields. Tags are created on a thin section orthogonal to the image plane at diastole,
then followed by regular time-resolved imaging. Electrocardiographic gating is used to
consistently apply the tagging radiofrequency at diastole. Early works reported decrement
of tag resolution at systole as the magnetic saturation exponentially decays over time;
nevertheless, this problem is palliated with the use of larger magnetization energy [177].
Ibrahim et al. showed that tag lines were still clearly identifiable at the end of the cardiac
cycle on human hearts with a 7 T MRI scan [178]. Special radio-frequency sequences, such
as spatial modulation of magnetization (SPAMM) and delays alternating with nutation
for transient excitation (DANTE) [179,180], allowed the creation of 2D orthogonal tagging
grids that facilitate the kinematic analysis. Tag sizes can be only as small as the pixel-size
resolution (>1 mm) with typical tag spacing of about 5 mm (Figure 8b). The technique
allows for 25 to 30 images per cardiac cycle, requiring about 20 s of scan time per tagging
sequence [170,181]. Multiple studies on phantoms have shown this technique to be superior
to US speckle-tracking in terms of accuracy and repeatability. Due to the spatial resolution
limitations of this technique, it has only been successfully applied to study the kinematics
of relatively thick tissues such as the myocardium, skeletal muscle, lung tissue, and the
tongue [182].

5.2.2. Phase-Contrast

Phase-contrast (PC) MRI utilizes the intrinsic phase of the magnetic signal to retrieve
kinematic information. When a magnetic field gradient is applied to a body, the spins of
the protons develop a phase shift that is proportional to its relative velocity. When two
consecutive and opposing gradients are applied, stationary protons will show no phase
shift. However, moving protons will show different degrees of phase shifting as they
change their position with respect to the gradient [183]. This information can then be used
to encode the velocity and displacement of protons.

Since the kinematic information is encoded in the phase information, and thus is
independent of image markers, this technique allows measurement at scales below pixel-
size resolution [12,149]. However, the technique is sensitive to Eddy currents, concomitant
gradients (Maxwell terms), and nonlinearities in the gradient field. These effects increase
the signal-to-noise ratio (SNR) and produce offset errors that are both spatial- and time-
dependent. SNR has been shown to increase with the magnetization energy and has been
estimated to range between 20 for 1.5 T scanners to around 60 for 7 T scanners. Offset error
correction requires the implementation of rectification algorithms in the postprocessing
stage [184,185].

2D CINE PC-MRI and 4D Flow MRI

The application of consecutive opposite magnetic field gradients is known as a bipolar
gradient. After a bipolar gradient is applied, the net phase shift of static protons is zero, so
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only the mobile protons will show a phase shift. From the latter, faster protons will experi-
ence a greater difference in applied gradients as they physically move longer distances than
slower protons, which in turn produces greater phase shifts. The end result is that the phase
shift is proportional to the proton velocity. However, because phase angles are limited
(from 0 to 2 π), only a certain range of velocities can be directly quantified [183]. That is, for
a given gradient, there is a maximal velocity that can be measured before aliasing occurs,
called the encoding velocity (VENC). Encoding velocity is inversely proportional to the
magnitude of the gradient; thus, by manipulating the strength of the gradient, it is possible
to manipulate the range of velocities that can be encoded. Setting the encoding velocity is a
tradeoff between the risk of aliasing and the minimum measurable velocity by the discrete
scale [186].

Standard 2D Cine PC MRI, typically applied to estimate through-plane velocity, has
become part of clinical practice in the treatment of cardiovascular disease, specifically,
for the calculation of flow in large arteries and their main branches, cardiac output, and
quantitative assessment of regurgitation and retrograde flows. This technique is also used
for the qualitative assessment of flow patterns in large arteries and heart chambers. PC
MRI data is usually recorded in DICOM format images with 8-bit or 16-bit pixels, that is
256 or 65,536 possible discrete levels, respectively. Phase data is typically encoded within
4095 values for the whole 0 to 2 π range, with pixel sizes around 1.5 mm [187].

However, standard 2D PC MRI can only provide the dimensional component of veloc-
ity perpendicular (through-plane) or parallel (in-plane) to the imaging plane, and thus is
inadequate to estimate relevant hemodynamic metrics requiring three-dimensional flow
information, such as vorticity and wall shear stress [188,189]. The logical evolution of this
technique led to 4D flow MRI, which allows the volumetric and temporal resolution of
three orthogonal components of velocity. This is achieved by applying consecutive bipolar
gradients to three orthogonal directions on stacked planes. This requires the collection
and processing of a significantly greater amount of data (three spatial dimensions and
three velocity directions over several timesteps through the cardiac cycle), thus requiring
special approaches to keep reasonable scanning times. Some hardware improvements
include multi-receiver channels, phased-array coils, and parallel imaging technology. Other
developments are related to improving the efficiency of data sampling, and averaging
over several cardiac samples, namely radial undersampling, kt-GRAPPA, kt-BLAST, and
kt-SENSE [190]. Additionally, the convex gradient optimization technique offers improved
resolution and accuracy while maintaining the essential characteristics of velocity encod-
ing [191]. For thoracic and abdominal applications, 4D flow scanning times range from
5 to 15 min, with voxel sizes of around 2.5 mm and temporal resolutions of 25 datasets
per cardiac cycle (Figure 9). This technique has proven its value through many different
in vivo patient-specific studies of normal and pathological hemodynamics in the heart [192],
aorta [58,193], pulmonary artery, and complex single ventricle circulation [194–196]. Other
applications include the evaluation of drug treatment effects [197] and surgical intervention
outcomes [198–201].

Displacement Encoding with Stimulated Echoes (DENSE)

DENSE MRI is a modified version of PC MRI that improves phase contrast to measure
slow velocity displacements while maintaining moderate gradient magnitudes, thus allow-
ing the kinematic measurement of slow-moving tissue. This is achieved by manipulating
the spin phase with stimulated echoes [149].

DENSE MRI was introduced in 1999 by Aletras et al., for the study of myocardial
mechanics [149]. Since then, multiple developments have been proposed to optimize its
assessment of human myocardial kinematics [202–204], minimize the effects of artifacts
and breathing [205,206], and automate the unwrapping of DENSE MRI phase data [207].
Some potential clinical applications of DENSE MRI include the identification of biomarkers
of early cardiac dysfunction [208,209], assessment of the response to cardiac resynchroniza-
tion therapy [210,211], and identification of infarct transmurally for early postmyocardial
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infarction [212]. This technique has also been applied to assess the heterogeneous dis-
placement, stretch, and circumferential strain around the aortic wall at different locations
along its length [10,13,213,214]. Notably, a recent in vitro validation study of aortic DENSE
MRI on wire-embedded polymer aortic phantoms revealed a final mean regional error
in the quantification of the circumferential strain of <1% strain [215]. The potential for
measuring in vivo shear and radial strains of the aortic wall has also been explored, though
its repeatability is significantly less than the quantification of circumferential strain due to
the thinness of the vascular wall [216]. Beyond the heart and aorta, other applications of
DENSE MRI include the dynamics of the human brain and the cerebrovasculature [217].

The image resolution of typical cardiac DENSE MRI applications is around 2.5 mm/
pixel; however, recent advances with the use of spiral k-space sampling DENSE MRI
allow resolutions down to 1.3 mm/pixel to assess the kinematics of arterial walls [10,13].
Since the displacement is encoded in the MRI phase data and thus does not depend on
tag-line parameters or tracking of image features, displacement is resolved at a scale
below pixel size, with reported displacement uncertainties of approximately 0.09 mm [150].
Comparative studies on controlled in vitro experiments with gelatin phantoms, and in vivo
strain measurements on human myocardium showed that DENSE MRI provides better
accuracy and reproducibility than tissue tagging (Figure 8c) [181,183].

Figure 9. Processing pipeline of 4D flow MRI scans. (Left) Velocity-sensitive phase images are
generated by 3D velocity-encoding subtracted from reference images. (Middle) Velocity estimations
are corrected for errors due to noise, aliasing, and eddy currents. A 3D segment is created to define
the region of interest. (Right) Velocity data are postprocessed to produce hemodynamic factors and
useful plots and visualization.

5.2.3. Other Relevant MRI-Based Scanning Modalities

Magnetic resonance imaging can also provide relevant information for inverse model-
ing other than anatomic and kinematic information. In this section, we briefly review MRI
sequences that allow the resolution of tissue structure. The image-based resolution of tissue
structure and compositional heterogeneity can be used to tailor constitutive models to the
volumetric share and orientation of fibrous structures. With regards to patient-specific
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modeling of cardiovascular disease, these techniques could help identify the location,
extension, and severity of lesions, and thus more accurately divide the patient-specific
anatomic models into unique regions with particular sets of mechanical properties. By
supplying such patient-specific material heterogeneity as a prescribed input, the accuracy,
convergence time, and solution multiplicity of inverse models of cardiovascular disease
could be significantly improved.

Spin-to-lattice, and spin-to-spin relaxation times, also known as T1 and T2, respectively,
are common MRI parameters typically used for highlighting the difference between fat
and water. By definition, T1 is a shorter relaxation time than T2, so T1-weighted images
highlight fat structures with large proton density, whereas T2 weighted images highlight
both fat and water-rich structures. These sequences are commonly used in clinical practice
to resolve scar tissue, blood pools, and edemas. Rapid T1 and T2 mapping combines both
measurements to resolve an estimation of the extracellular volume fraction that has shown
to be a robust marker for several cardiomyopathies, with a strong correlation to histological
measurements [218].

Diffusion tensor MRI (DT MRI) is an imaging sequence that uses similar principles
to PC MRI. With this technique, special magnetic gradients are designed to cancel out
the signal from static water molecules while preserving the magnitude and orientation of
moving molecules. Within tissues, water molecules diffuse by Brownian thermal motion,
and in fibrous structures, this diffusion occurs preferentially in the fiber orientation. This
technique has been mostly applied for the imaging of the white matter and axon orientation
in the brain, and more recently to resolve myofiber orientation in the heart [53].

Other MRI-based techniques, such as gadolinium-enhanced MRI and perfusion tests,
have been developed to specifically image cardiovascular scars, thereby allowing the
quantification of lesion severity. Gadolinium is a contrast agent used to increase the SNR
of MRI. The cellular membranes of healthy cardiomyocytes are almost impermeable to
gadolinium contrast agents. As a result, following intravascular injection, gadolinium
perfuses throughout the myocardium via the branches of the coronary arteries while being
excluded from the intracellular space of viable cardiomyocytes due to the impermeability
of cell membranes. For this reason, gadolinium can be used to measure the extracellular
volume fraction of healthy myocardia from T1 mapping sequences. When myocardial
cell membranes are ruptured, as is seen in infarction, a larger portion of gadolinium is
accumulated. The contrast can now occupy the no-longer enclosed intracellular space,
allowing the assessment of the location and severity of cell-rupturing injuries [219].

The MRI perfusion stress test can assess the severity of coronary artery insufficiency.
The quality of blood perfusion into the cardiac wall is resolved through the use of contrast
agents at rest and under stress conditions. Increased cardiac stress state can be induced by
either exercise or the use of pharmacological stressors. Pharmacologically induced stress
is preferred over exercise-induced stress as it renders more reproducible results and is
easier to implement in clinical practice [220]. Typical pharmacological stressors include
vasodilators (adenosine or regadenoson) or chronotropic inotropic agents (dobutamine).
This technique exposes the patient to hazards associated with the use of contrast agents and
pharmacological stressors and is generally reserved for patients with confirmed coronary
artery disease [221].

5.3. Computerized Tomography (CT)

CT consists of a mobile X-ray source that rotates around a focal point to produce
scans from different angles. The result is a high-resolution stack of 2D images that can
be time-resolved. The use of intravascular contrast agents is common for studies of the
vascular system to improve the visibility of the blood vessels. CT scans can provide better
resolution than all the other techniques described above with pixel sizes of about 0.5 mm
(Figure 7b). There is no special feature to assess kinematics from CT scans, although its
superior temporal and spatial resolution has been used to measure the dynamic change
in cross-sectional area and shape of blood vessels during the cardiac cycle, from which
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homogenized values of circumferential strain for a given cross-section can be estimated.
From there, kinematics can be inferred from tracking a given anatomical feature or making
reasonable assumptions about rigid body rotation and torsion [11,222].

The use of ionizing radiation makes this technique potentially hazardous; thus risk-
benefit of a CT study should be seriously considered. This limits its use in serial follow-up,
particularly in pediatric patients, to avoid repetitive exposure to radiation [223]. However, it
avoids the risk of unknown or contraindicated implanted metallic object/devices associated
with MRI and is typically capable of much shorter scan times than MRI, making it ideal for
trauma or other acute emergencies.

5.4. Summary

In Table 6, we summarize the highlights of medical imaging techniques that provide
kinematic data, and other useful information for inverse modeling.

Table 6. Summary of medical imaging-based kinematics.

Section Highlights

5.

Early assessments of in vivo stiffness of blood vessels relied on measurements of luminal area changes. However, the predictive
capabilities of these factors are inconsistent among different arterial locations and pathologies.
In vivo medical imaging has evolved to provide not only anatomical geometric information but also detailed kinematic
measurements. The accuracy and availability of these techniques are limited by image resolution, signal-to-noise ratio (SNR), the
occurrence of artifacts, and practical obstacles related to testing costs and health hazards.

5.1

Ultrasound (US) uses high-frequency (2 to 15 MHz) acoustic waves to create real-time in vivo images of tissues, organs, and blood
pools using piezoelectric transducers with lateral resolution of 1 mm/pixel.
US is relatively inexpensive, portable, and safe, so it has become a customary tool in many clinical applications. However, the
accuracy and reproducibility of US-derived measurements are limited in comparison to MRI-based measurements.
Blood flow velocity can be assessed with echo and vector doppler technology.
Tissue displacement can be measured using speckle tracking technology, which consists of image tracking the acoustic response of
tissue fibers to ultrasound signals.

5.2

Magnetic resonance imaging (MRI) offers superior quantitative utility compared to ultrasound as it can offer higher resolution and
accuracy of measurements of anatomical features.
MRI generally poses minimal hazard to patients unless they have implanted medical devices/objects or suffer from claustrophobia.
However, the technique requires specialized equipment and trained staff, which limits availability compared to US.
MRI-based techniques for assessment of tissue kinematics include tissue tagging and DENSE MRI.
Tissue tagging is based on image tracking of magnetically induced markers, while DENSE MRI encodes the tissue displacement on
the phase of the MR signal.
Tissue tagging and DENSE MRI have been used to assess the kinematics of the myocardium. However, the superior resolution and
accuracy of DENSE MRI allow the assessment of aortic kinematics.
Phase-contrast (PC) MRI is a technique that allows the time-resolved quantification of blood flow velocity in or through a 2D plane
by encoding the velocity in the phase of the MRI signal.
PC MRI has been generalized to 3D spaces at the expense of decreased spatial and temporal resolution. The resulting technique is
called 4D flow MRI.
PC MRI and 4D flow MRI have been applied to the study of healthy and pathological hemodynamics of the heart and large
arteries and are currently implemented in clinical practice for the assessment of aortic and pulmonary diseases.
MRI can provide other complementary information relevant for inverse modeling analyses of the cardiovascular system.
Diffusion-tensor MRI can resolve the orientation of tissue fibers based on the principle that the Brownian displacement of water
molecules occurs preferentially in the direction of fibers.
Gadolinium-enhanced (GE) MRI can be used to resolve the size and severity of cardiac lesions. Since healthy cell membranes are
impermeable to gadolinium, this contrast agent occupies a larger volume in injured tissue where cell membrane integrity is
compromised.
Perfusion stress tests use contrast agents and MRI imaging to assess the severity of coronary artery insufficiency. This is performed
by comparing the perfusion of contrast agents in the myocardium at rest and at a stress state (high heart rate).

5.3

Computerized tomography (CT) provides the best resolution among all the medical imaging techniques with pixel sizes around
0.5 mm.
The high-resolution CT images can be used to assess cardiovascular kinematics through image tracking of anatomical features.
However, this requires the introduction of assumptions of displacement modes.
CT scans are based on X-ray technology with inherent ionizing radiation hazards.

6. Applications to Cardiovascular Medicine

One of the most relevant outputs of modeling in cardiovascular mechanics is the
estimation of wall stress distributions, either in the vascular walls of major arteries or the
myocardium of the heart. Mechanical stresses and strains, and their spatial and temporal
evolutions, are measures of physiological significance because they may be potential
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indicators of myocardial and arterial function, may serve as risk stratification factors
for tissue failure and rupture, and provide specific measures of the mechanical stimuli
modulating biological adaptation. Applications of patient-specific models of cardiovascular
mechanics include supporting diagnosis and risk stratification, providing visualizations
and insights of deformation and loads on tissue structures, population-based analyses, and
supporting and/or challenging mechanistic hypotheses of normal and pathological growth
and remodeling.

For patient-specific forward problems in cardiovascular simulation, an anatomical
geometric model is typically retrieved from medical imaging and discretized into a compu-
tational mesh over a domain of interest. Pulse pressure of blood is typically used as a load
boundary condition acting on the luminal or endocardial surface, and any available image-
based kinematic information is either used to prescribe velocity boundary conditions (for
CFD analyses) or to validate the output of the simulations [224,225]. Forward simulations
require the assumption of many parameters that cannot be directly measured or were not
collected (e.g., myocardial and arterial wall composition and mechanical properties, blood
properties, or focalized blood pressure measurements [226]). Due to these limitations, it has
been argued that forward-simulation results should not be taken as absolute quantitative
results, but instead, interpreted qualitatively and comparatively in terms of patterns, distri-
butions, and trends of derived stresses and other relevant metrics [227,228]. This caution
should especially be emphasized in pathological cases, where the normal physiological
function is impaired and assumptions applicable to normal and healthy tissues do not
hold [229]. Conversely, patient-specific data can be input into inverse methods to solve for
the parameters that are unavailable or cannot be directly measured, potentially reducing
the number of required assumptions and improving the ability of the model to fit the
observed data. In the study of the cardiovascular system, inverse problems can provide
patient-specific estimations of tissue properties, composition, local pressure gradients and
stress distributions from image-derived wall deformation, and blood flow dynamics.

The development of patient-specific inverse analyses of cardiovascular mechanics
has advanced considerably recently thanks to continuous technological improvements in
imaging hardware and software, decreasing cost, increased imaging availability, improve-
ments in image-based kinematics acquisition, and postprocessing, simulation engineering,
and significant increases in computational power (Figure 1). Notably, the modern era
of computationally robust image-based cardiovascular inverse modeling began with the
study of animal models by the end of the 20th century. A pioneering work on in vivo
image-based inverse modeling of cardiovascular tissue was published in 1995 by Moulton
et al. This research on a canine animal model used a single slice MRI with radio-tagging
to retrieve the anatomy and displacement of the short axis plane of the heart [107]. A
non-linear error-gradient-based optimization algorithm minimized the least-square error
of FEM simulated and MRI-derived strains, by iterating over the constants of the Fung
material model considered without any muscular activation component. The boundary
conditions were the trans-ventricular pressure measured from catheterization and the re-
striction of two degrees of freedom of a single computational node. An improved approach
was proposed by Walker et al., who applied the inverse method to study the mechanics
and properties of infarcted sheep hearts [230] and the effect of surgical intervention [231].
Therein, the authors employed MRI-based 3D models of the left ventricle and MRI tissue
tagging to estimate the diastole-to-systole strain field. The latter was used as a target
for fitting the material parameters through an iterative inverse formulation. The active
contraction was simulated by a time-dependent homogeneous active stress model, and
catheter measurements of ventricular pressure were used as boundary conditions. These
studies found that fiber and cross-fiber stress are significantly larger at the infarct border
zone relative to non-infarct regions. Additionally, the inverse model was employed to
evaluate the benefits of diverse treatments and suggested that aneurysm plication decreases
the myofiber stretch without compromising stroke volume, which the authors highlighted
as one of the benefits delivered by such intervention.



Appl. Sci. 2022, 12, 3954 32 of 71

These early works present all the elements of more recent medical image-based inverse
analyses: an image-based kinematic target, an optimization algorithm, and a parametric
function to be optimized to estimate in vivo case-specific information that cannot be directly
assessed without an invasive procedure. These studies were limited by the available
computational power at the time. Walker et al. reported a total of 16 h for each iteration
of their forward cardiac model using a Silicon Graphics Octane II workstation with a
capacity of about 250 MHz, which was a cutting-edge multiprocessor workstation at the
time. Currently, the processing capacity of a desktop workstation is at least ten-fold greater
(i.e., 3 to 4 GHz). Furthermore, many parallelization and cloud-computing options are now
available to augment the speed of simulations. The technology is now mature enough for
the evaluation of patient-specific inverse analyses on complex biomechanical models of
clinical relevance.

Though there are many instances of image-based inverse analyses on animal mod-
els and explanted tissues [137], in this review we aim to highlight the potential clinical
applications of inverse methods. Thus, in this section, we present a detailed review of
in vivo patient-specific inverse problems applied to elements of the human cardiovascular
system along with a few pioneering and groundbreaking studies on animals. Figure 10
summarizes the anatomical references and location of focalized pathologies studied by the
inverse-modeling applications reviewed herein.

Figure 10. (a) Schematic representation of the human heart with anatomical references. (b) Location
of human pathologies studied with inverse models. Acronyms: CCA, common carotid artery;
IVC, inferior vena cava; LA, left atrium; LPA, left pulmonary artery; LV, left ventricle; MPA, main
pulmonary artery; SVC, superior vena cava; RA, right atrium; RPA, right pulmonary artery; RV,
right ventricle.

6.1. The Unloaded Reference Configuration in Cardiovascular Mechanics

Blood vessels, in particular those of the arterial tree, function under physiological
pressure load at all times and are axially pre-stretched; thus, none of the patient-specific
configurations resolved by in vivo imaging is truly a stress-free or zero-strain configura-
tion [232]. It is well established that image-based estimations of material properties and
stress distributions are sensitive to the selection of the reference configuration. Furthermore,
image-based in vivo estimations of material properties assuming the diastolic configuration
as a zero-strain stress-free reference lead to significant disagreements with experimental
measurements made on excised tissue [233]. That means an adequate selection of the refer-
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ence configuration is key for the accurate solution of inverse problems of cardiovascular
tissue mechanics.

The solution of an unloaded configuration from the deformed geometry, mechanical
loads, and material properties is a classical inverse problem with existing direct and
iterative solutions [234]. In patient-specific analyses, however, the material properties
are also unknown. Thus, the solution to this problem requires the specification of at
least two deformed and loaded states as input data [47]. In the case of myocardium, it
is often assumed that the transition from unloaded to diastolic configurations is purely
passive [235].

In this first subsection, we review previous contributions related to finding patient-
specific unloaded and stress-free configurations without the estimation of mechanical
properties. Since the methods described can be applied to any pressure vessel, we include
developments regardless of the specific tissue application. Research works that incorporate
the unloaded or stress-free configuration on the patient-specific estimation of tissue proper-
ties and loads are reviewed on the following sub-sections separated by the corresponding
tissue of interest.

The direct inverse FEM formulation by Govindjee and Mihalic (c.f. Section 4.1) for the
direct solution of the unloaded configuration was first applied to cardiovascular tissue by Lu
et al. [111]. The inverse elastostatic approach was used to find the unloaded configuration
of an abdominal aortic aneurysm (AAA), assumed to be loaded at a luminal pressure of
100 mmHg, and to behave as an isotropic hyperelastic material with population-averaged
material constants. The authors concluded that the selection of diastole as the zero-stress
reference leads to the overestimation of stress at systole. A similar approach was applied
by Peirlinck et al., who incorporated the inverse elastostatic formulation as a module for
the Abaqus FEM solver [100]. The method was applied to an iliac artery ideal model, an
image-based porcine biventricular model, a human AAA, and a patient-specific 4-chamber
heart model (Figure 11). The method was tested with hyperelastic and fiber-reinforced
anisotropic material models. Material constants and pressure loads were imposed based
on established reference values from the literature. The authors highlight the convenient
modular implementation, computational efficiency, and solution uniqueness as the main
advantages of their proposed method.

Several iterative methods have been specifically proposed to solve the zero-pressure
configuration for blood vessels. One of the first contributions was proposed by Raghavan
et al., who developed an optimization framework for an arbitrary parameter k such that the
coordinates of the unknown zero-pressure reference geometry (x0) can be approximated by
the difference of the in vivo deformed configuration (xi) minus k times the displacement
produced by the pressure load on that configuration (U), i.e., x0 = xi − kU. The main
conceptual limitation of this method is the assumption that the backward deformation field
is linearly related to the forward deformation field through the factor k. This method was
then applied to estimate the unloaded configuration of a patient-specific AAA [236].

The backward displacement method was introduced by Rajagopal et al., in 2007, for
breast biomechanics and by Bols et al., in 2013, for cardiovascular tissue [234,237]. This
method solves the unloaded configuration using the fixed-point interactions proposed by
Sellier et al. [100]. It consists in approaching the zero-pressure geometry by iteratively
updating the reference configuration, calculated by subtracting the nodal displacement
vector between the updated deformed configuration and the target in vivo configuration
until a required error tolerance is reached. Rivero et al. successfully applied a similar
pullback algorithm to 12 patient-patient specific models of AAA built from CT scans which
were assumed to be at uniform diastolic pressure on the image-based deformed geometry.
They tested isotropic and anisotropic material models, assuming material homogeneity
with reference material constants from the literature [238]. Rausch et al. proposed an
augmented Sellier’s method based on Aitken’s delta-squared process, by introducing an
augmentation parameter to accelerate the convergence rate and increase the chances of
convergence. The method was applied to find the unloaded geometries of a thrombus and



Appl. Sci. 2022, 12, 3954 34 of 71

heart valve leaflets from animal models with geometries and properties collected from
previous studies [239]. More recently, Das et al. proposed the shrink-and-fit algorithm, that
assumes the unloaded configuration is a shrink analogous to the loaded reference geometry.
On each iteration step, the coordinates of each node are mapped into a smaller geometry
affected by a circumferential and axial shrink factor, the new geometry is loaded by the
reference pressure until the least squared error of the nodal coordinates of the reference
and inflated model is minimized. The method was then applied to resolve the unloaded
configuration of an ideal and a patient-specific artery model assuming Mooney-Rivlin
hyperelastic behavior and employing the Nelder–Mead optimization algorithm [240].

Figure 11. Results and accuracy of the direct inverse elastostatic problem implemented on a FEM
solver and applied to a porcine biventricular model. (a) Reference loaded configuration reconstructed
from MRI scans. (b) Relative stress error of the in vivo loaded configuration and solution of the for-
ward inflation problem from the estimated unloaded configuration (roundtrip solution). (c) Relative
displacement error the in vivo loaded configuration and solution of the forward inflation problem
from the estimated unloaded configuration (roundtrip solution). (d) Colormap representation of
the maximum principal stress distribution of the loaded configuration on top of the estimated un-
loaded configuration in gray shade. (e) Colormap representation of the maximum principal strain
distribution on top of the estimated unloaded configuration in gray shade. (Reprinted/adapted with
permission from Ref. [100]. 2018, Elsevier).

A different iterative approach is to solve the strain and stress distribution that bal-
ances the applied loads acting on the image-derived anatomic configurations without the
resolution of the unloaded geometry [232]. Some methods that fit this category are the
backward incremental algorithm and the modified updated Lagrangian formulation. In
the backward incremental algorithm, small increments of the pressure load are applied
to the reference geometry, the resulting stress state is mapped to the reference geometry
as the initial condition for the next pressure increment until static equilibrium is reached.
This method was applied by de Putter et al., using patient-specific AAA geometries and
pressure loads to determine the stress distribution at diastole while assuming isotropic
Neo-Hookean material behavior with population-averaged constants [241]. Similarly, the
modified updated Lagrangian formulation applies consecutive small loads increments on
the image-based reference configuration to build up an incremental multiplicative update
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of an independent deformation gradient. This method was used by Gee et al., to study
the diastolic stress distribution of three patient-specific AAA geometries derived from CT
scans with population-averaged pressure loads and material constants for an isotropic
Neo–Hookean constitutive equation. In this work, the outcomes of the modified updated
Lagrangian formulation are compared to direct solutions with inverse FEM, concluding
that both methods yield similar diastolic stress distributions although the latter seemed
more prone to solution multiplicity and buckling [242,243]. However, iterative methods
may require suboptimal convergence times, and on some occasions, convergence could fail
altogether [100].

It is important to highlight that even at an unloaded configuration, cardiovascular
tissue is not truly stress-free. This fact has been widely proven by opening angle exper-
iments at different arteries and layers of the heart wall. The residual stress responsible
for this recoil effect exists without any distending pressure, being the possible result of
non-uniform growth and remodeling over the patient’s entire lifespan. The latter implies
that residual stress cannot be resolved solely from load-deformation data. Indeed, the most
common technique for the estimation of residual strain relies on the quantification of the
opening angle after a stress-relieving cut. Some specialized studies have collected opening
angle data from multiple locations of the cardiovascular system through experimental tests
on human cadaveric tissue. These experiments have shown that the opening angle, and
thus the preexisting residual stress, depends on specific tissue location and individual
factors such as age and health conditions. Consequently, generic or averaged opening-
angle derived residual stress can hardly be used for patient-specific analyses, especially,
in pathological cases. The constrained mixture theory provides a consistent framework
for the estimation of residual stress through the modeling of growth and remodeling and
could be the key, along with the image-based resolution of tissue composition, for a truly
patient-specific estimation of a stress-free reference configuration [32,244].

6.2. The Heart

The relatively large thickness of cardiac tissue allowed the resolution of image-based
kinematics even at the early stages of this technology. For this reason, along with the key
role of the heart as the driving element of circulation, the heart was the first physiological
system subject to patient-specific inverse analyses. Sermesant et al. and Aguado-Sierra
et al. proposed comprehensive patient-specific models for cardiac function including the
resolution of the unloaded configuration, bioelectrical activity, passive and active tissue
properties, and hemodynamics [245,246]. These authors evaluated the possibility of solving
such inverse problems with data acquired with medical imaging and electrocardiography
and concluded that such comprehensive models easily became overparametrized, and
computationally expensive to be solved by the available resources at the time. In conse-
quence, most inverse models focus on only one or a few of their constituents instead of the
whole heart. In the following subsections, we classify the research approaches based on the
variables chosen to be solved by the inverse method.

6.2.1. Properties of the Healthy and Infarcted Ventricular Wall

The ventricular wall is a complex multilayered composite responsible for delivering
the driving force to pump blood throughout the cardiovascular system. The myocardium
is the functional layer of the ventricular wall, containing the myofibers responsible for the
active contraction of the muscle and the structural collagen fibers that contribute to its
bulk mechanical properties. An accurate understanding of myocardial mechanics is key
for the diagnosis and treatment of diverse cardiac pathologies, and potentially, predicts
and stratifies the risk of heart failure after infarct. Therefore, many studies have focused on
the estimation of mechanical properties of healthy myocardium, and more interestingly,
estimating the effects of ischemia, and quantifying the properties of infarcted cardiac tissue
to yield a truly patient-specific risk assessment of cardiac failure. Most developments relied
on FEM for the solution of a forward problem (summarized in Table 7).
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Table 7. Literature review of iterative inverse models for the analysis of human heart tissue mechanics.

Study Clinical Data Forward Problem Inverse Problem
Population 12 H Reference End of diastole Least squared error to

Klotz P-VPathology None Passive model Hom. Guccione
Target
function

Data Cine MRI Active model 1 eq. active stress
Nelder Mead.

Rumindo
et al., 2020 [247]

Anatomy LV with RBFO by
Rijcken et al. Boundary ICP, TF epicardium

Constrained base

Opt.
algorithm

Population 1H 5D Reference Early diastole Volume change error and
segment-wise strain errorPathology FMR-CAD Passive model Het. Guccione

Target
function

Data

Cine MRI, TT, Stress
perfusion MRI, GE
MRI, 4D US, Hand
cuff pressure

Active model 2 eq. active stress
Non-specified

Zhang
et al., 2020 [17]

Anatomy
BV in 17 AHA
regions with RBFO
by Bayer et al.

Boundary ICP, TF epicardium,
Constrained base

Opt.
algorithm

Population 1D Reference End of diastole Deformation gradient
error.

Pathology LBBB and CI Passive model Het.
Holzapfel-Ogden

Target
function

Data 4D US, USST, GE
MRI, ICP Active model None Sequential quadratic

programming with a
first-order Tikhonov
functional constraint

Balaban
et al., 2018 [141]

Anatomy
LV in 17 AHA
regions with RBFO
by Bayer et al.

Boundary ICP, Constrained
apex, EF at base.

Opt.
algorithm

Population 5H 19D Reference Diastasis Least-squared error to P-V
curve.Pathology HFrEF, HFpEF Passive model Hom. Guccione

Target
function

Data Cine MRI, ICP Active model None
Non-specified

Wang
et al., 2018 [248]

Anatomy LV with RBFO by
Nielsen et al. Boundary * IPC

* Constrained base

Opt.
algorithm

Population 6H 12D Reference Unloaded Coordinate error for
passive properties. P-V
curve and strain error for
active properties.

Pathology PAH Passive model Hom.
Holzapfel-Ogden

Target
function

Data Cine MRI, ICP Active model 1 eq. active strain Sequential quadratic
programming algorithm

Finsberg
et al., 2019 [249]

Anatomy BV with RBFO by
Bayer et al. Boundary ICP, EF at base,

EF pericardium

Opt.
algorithm

Population 5H Reference Early Diastole Least squared error to
Klotz P-V

Pathology None Passive model Hom.
Holzapfel-Ogden

Target
function

Data Cine MRI Active model None
Genetic Algorithm

Palit
et al., 2018 [108]

Anatomy BV with RBFO by
Bayer et al. Boundary * Assumed ICP

* Constrained base

Opt.
algorithm

Population 7H 7D Reference Unloaded Coordinate error for
passive properties. P-V
curve and strain error for
active properties.

Pathology LBBB Passive model Hom.
Holzapfel-Ogden

Target
function

Data 4D US, USST, ICP Active model 1 eq. active stress, 1
eq. active strain Sequential quadratic

programming algorithm
Finsberg
et al., 2018 [235]

Anatomy LV with RBFO by
Bayer et al. Boundary ICP, EF at base,

EF pericardium

Opt.
algorithm

Population 3H 3P Reference End of diastole P-V curve and nodal
displacement error

Pathology Dilated
cardiomyopathy Passive model Hom.

Holzapfel-Ogden

Target
function

Data Cine MRI, TT, PC
MRI Active model 1 eq. active stress Shamanskii–Newton

Raphson algorithm
Asner et al.,
2015, 2017
[250,251]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
Weak formulation
for volume and
displacement

Opt.
algorithm

Population 1H 7D Reference Lower ventricular
pressure Energy balance error and

displacement error
Pathology Arrythmia Passive model Hom. Guccione

Target
function

Data Cine MRI, ICP Active model None
Non-specified

Nasopoulou
et al., 2017 [252]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
ICP, displacement
at apex and base,
TF epicardium

Opt.
algorithm
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Table 7. Cont.

Study Clinical Data Forward Problem Inverse Problem
Population 27H 11D Reference End of diastole Volume error and strain

error.
Pathology Acute myocardial

infraction Passive model Het.
Holzapfel-Ogden

Target
function

Data Cine MRI, GE MRI,
Hand-cuff pressure Active model 2eq. active stress Gaussian processes and

automatic relevance
determination algorithm

Gao et al., 2017
[253]

Anatomy
LV in 17 AHA
regions with RBFO
by Potse et al.

Boundary ICP, TF epicardium
Opt.
algorithm

Population 5H Reference Early diastole Least-squared-error to
normalized Klotz P-V
curve

Pathology None Passive model Hom. Guccione
Target
function

Data Cine MRI, TT Active model Hom. 1eq. active
stress Derivative-free quadratic

approximation algorithm
Genet et al.,
2014 [110]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
Volume change, TF
epicardium,
Constrained base.

Opt.
algorithm

Population 8H 3D Reference End of diastole
Volume change error

Pathology HFrEF Passive model
Region
heterogeneous
Mooney-Rivlin

Target
function

Data Cine MRI, ICP,
Electrophysiology Active model 2 eq. active stress

Kalman filterMarchesseau
et al., 2013 [254]

Anatomy
BV divided in 17
regions with RBFO
by Bayer et al.

Boundary ICP, TF epicardium,
Constrained base

Opt.
algorithm

Population 1H 2D Reference Unloaded
Nodal coordinate error

Pathology HFrEF Passive model Hom. Guccione
Target
function

Data Cine MRI, TT, ICP Active model 1 eq. active stress
Parameter sweeping

Xi et al., 2013,
2011a, 2011b
[47,255,256]

Anatomy
LV with fiber
orientation from
canine histology

Boundary
ICP, TF epicardium,
Displacement at
apex and base.

Opt.
algorithm

Abbreviations and acronyms: Clinical data: AHA, American Heart Association; BV, biventricular; D, diseased; GE,
gadolinium enriched; H, healthy; ICP, intracardiac pressure; LV, left ventricle; MRI, magnetic resonance imaging;
TT, tissue tagging; RBFO, ruled-based fiber orientation; US, ultrasound; USST, ultrasound speckle tracking.
Pathologies: CI, cardiac infraction; FMR CAD: functional mitral regurgitation associated to coronary artery
disease; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction;
LBBB, left bundle branch block. Forward problem: EF, elastic foundation; eq., equation; Het., heterogeneous;
Hom., homogeneous; ICP, intracardiac pressure; TF, traction free.

Homogeneous Models

The assumption of material homogeneity is a common and convenient simplification
for forward and inverse models. It limits the number of parameters to be fit while still
reproducing the overall mechanics of the organ with reasonable accuracy. Even though
the myocardium is highly complex and spatially heterogeneous, homogeneous models
may be deemed to be adequate for the study of healthy hearts, or when the aim of the
analysis is not centered on the study of focalized lesions. In the study of tissues with steep
localized changes in structure and properties, as in infarcted myocardium, the material
homogeneous models cannot reproduce the localized strain and stiffness distributions on
the infarct itself and the infarct borderzone, providing only averaged estimations of local
deformation and material properties. However, these averaged properties can still be used
as a measure of lesion severity by comparative studies of healthy cases.

One of the first simplified inverse models of the left ventricle (LV) was introduced
by Hassabalah et al., to study the compressibility of the myocardium [257]. An ideal-
ized truncated ellipsoid matching MRI-derived averaged dimensions of a human LV was
used as a computational domain. Fiber orientations were assumed helical with the linear
transmural distribution established from DT-MRI data from Helm et al. [258]. The my-
ocardium was modeled as a homogeneous fiber-reinforced Ogden hyperelastic material.
The active tension of myofibers was assumed to be proportional to the pressure load, the
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latter being prescribed as a boundary condition at the endocardial surface. A uniform
elastic foundation was applied to the pericardium to simulate the interaction of the heart
with the surrounding organs, and all displacements were fixed on a lateral node. All
material parameters were fixed except for the bulk modulus, which was optimized to fit a
measured pressure-volume curve. The authors conceptually divided the cardiac cycle into
the following consecutive stages: atrial systole, isovolumetric contraction, rapid ejection,
isovolumetric relaxation, rapid filling, and reduced filling. This study suggested that the
volume of the myocardium changed slightly during the cardiac cycle. According to this,
myocardium behaves as an incompressible tissue only during rapid and reduced ejection
and isovolumetric relaxation stages, while showing some degree of compressibility in
the atrial systole, isovolumetric contraction, and filling stages. These observations are in
agreement with in vivo compressibility measurements in large mammals [134].

A more sophisticated inverse analysis was presented by Xi et al., in two consecutive
papers published in 2011, introducing patient-specific geometries [255,256]. MRI-based
models of the LV at end-diastole were assumed as the zero-strain reference and discretized
with Hermit-cubic finite elements. MRI tissue tagging was used to assess the diastole-
to-systole displacement distribution and then interpolated into the nodes of the FEM
mesh. The Fung–Guccione constitutive equation was selected to model the uniform passive
properties of the myocardium. Myofiber orientations were assigned with a rule-based
algorithm from Bayer et al. [55] based on canine serial histology from Usyk et al. [259].
Boundary conditions consisted of catheter measured ventricular pressure increments, zero
traction at the epicardium, and apical and base displacement from tissue tagging. The least
squared nodal displacement error was minimized using a reduced-order Kalman filter. The
method was applied to one healthy heart and two patients with diastolic heart failure with
impaired ejection fraction. The authors found a large difference in material parameters
between healthy and heart failure patients, although the authors recognized the results
were likely not unique for the given dataset. In addition, they found that passive behavior
alone could not fully describe the deformation state at early diastole. They addressed
this issue by introducing a time-dependent homogeneous active tension model and the
backward displacement method to estimate the unloaded configuration [47]. Two different
minimization problems are solved iteratively: first, the estimation of passive properties by
consecutive simulation of deflation from early diastole to unloaded configuration followed
by inflation to end-diastole; second the estimation of active properties by inflation from
late diastole to systole (Figure 12b).

The target minimization function for both iterative loops was defined as the error
in nodal coordinates between simulations and interpolated tissue-tagging measurements
for their corresponding end of process configuration. According to their results, the
residual activation state from early to end-diastole was larger for patients with heart failure,
which may indicate that diastolic relaxation is impaired after cardiac failure due to the
compensation mechanism to maintain cardiac function.

Genet et al. applied methods to define patient-specific anatomic models and define
active and passive behavior similar to Xi et al. [47], although with no available patient-
specific pressure data and the assumption of end-diastole as the stress-free reference [110].
Boundary conditions constrained all displacement on the basal plane of the ventricle
and the dynamic boundary condition was a prescribed volume change, instead of the
pressure increment. In the absence of pressure data, Genet et al. assumed a well-established
normalized LV pressure-volume curve of Klotz et al. [109] as the optimization target. MRI
tissue tagging measurements were used to validate the converged results, which showed
good agreement with image-derived circumferential and axial strain. Regarding fiber
stress distribution, the authors found that the end of diastole myofiber stress peaked
near the subendocardial wall. They also highlighted that the transmural variation of the
end-of-systole myofiber stress was nonmonotonic and was maximal at the mid-wall of
the ventricle.
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Figure 12. Inverse analysis of left ventricular mechanics. (Reprinted/adapted with permission
from Ref. [235]. 2018, Elsevier). (a) Preprocessing pipeline, from left to right: medical image-based
segmentation and kinematics, anatomic model generation, discretization, partition into 17 AHA
standard regions. (b) Optimization loops, between unloaded and diastolic configuration for passive
properties and between diastole and systole for active contraction parameters. (c) Resulting unloaded
configuration and strain distributions for a healthy volunteer and an LBBB patient, using active
stress and active strain approaches. (d) Comparison of activation parameters over time for a healthy
individual and an LBBB patient showing the effect of impaired bioelectrical function. Acronyms: mvo,
mitral valve opening; mvc, mitral valve closure; avo, aortic valve opening; avc, aortic valve closure.

Solution multiplicity has been one of the main concerns about inverse methods, which
motivated Nasopoulou et al. to explore how the definition of the optimization target
functions can be designed to improve material property identifiability and solution unique-
ness [252]. Sets of cine MRI and catheter pressure measurements were gathered from 7
cardiac resynchronization therapy (CRT) patients and one healthy volunteer. The config-
uration corresponding to the lower ventricular pressure was assumed to be stress-free.
Patient-specific LV models were built at the reference configuration and a warping al-
gorithm was used to estimate the displacement of the ventricular wall from cine MRI.
The myocardium was assumed homogeneous and purely passive with a Fung–Guccione
constitutive equation. Myofibers orientation was assumed to follow a linear transmural
distribution following the findings of Streeter et al., on canine left ventricles [260]. Uniform
pressure on the endocardium and image-derived displacements on the basal plane were
imposed as boundary conditions. Two target functions were defined, one based on the dis-
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placement error, and the other defined as a normalized error of the pressure-energy input
and stored strain energy. Two optimization processes were implemented consecutively
to minimize the two error functions, which constrained the number of possible solutions.
The authors concluded that a single purely geometric target function is unable to constrain
the parameter space, while the application of the energy-based target function isolates one
of the material parameters, that in conjunction with a geometry-based target provides a
unique estimation of parameter sets.

Most of the inverse modeling approaches dealing with the heart, either constrain or
prescribe measurement-derived magnitudes of displacements on the basal plane and/or the
apex. Asner et al. highlighted the necessity of imposing more physiologically meaningful
boundary conditions for the adequate assessment of cardiac mechanics. These authors
proposed a method to impose consistent boundary conditions for ventricular mechanics
based on non-invasive tests alone [250,251]. The proposed method was applied to synthetic
datasets for validation generated in silico with idealized geometries and known material
properties, motion, and loads. Then, the method was applied to patient-specific datasets
from three healthy volunteers and three moderately dilated cardiomyopathy patients. Cine
MRI, tissue tagging, and PC MRI were collected and used as imaging data either to set
up the forward problem or as target data for minimization. End of diastole configuration
was used to build anatomic models of the LV which were assumed to be at the zero-
strain reference. Tissue tagging-derived displacements were interpolated to the FEM
mesh to obtain a smooth displacement field and PC MRI was used to estimate the stroke
volume. The myocardium wall was assumed to follow a reduced-order Holzapfel-Ogden
constitutive equation with a time-dependent homogeneous active stress model. Myofiber
orientations were assumed to follow a linear transmural distribution based on the work
of Streeter et al., on canine ventricles [260]. Ventricular pressure–volume relation was
assumed to follow the normalized Klotz LV pressure-volume curve, and the PC MRI-
derived diastole-to-systole flow ratio was correlated to the pressure pulse amplitude. The
authors proposed a data-based method for imposing boundary conditions through the
use of Lagrange multipliers and the minimization of energy potentials. The endocardial
boundary condition was defined in terms of volume change, while the basal plane and the
epicardial node boundary conditions were defined in terms of a virtual force proportional
to their correspondent displacements. A Shamanskii–Newton Raphson procedure was
used to resolve the material properties and boundary condition multipliers. Parameter
fitting was solved in two steps: first, the passive material parameters were solved by
minimizing a displacement-based error function from tissue tagging data between early-
and end-of-diastole; second, the active components were fitted by minimizing an error
function defined as a weighted average of nodal displacement error and pressure-volume
curve error. The authors highlight the potential bias introduced by hard displacement
restrictions as boundary conditions, which prevents the reproduction of naturally occurring
torsional modes of deformation. They also highlight that the direct imposition of noise
MRI-derived displacement as a boundary condition can introduce computational issues
associated with continuity and solution smoothness, concluding that the proposed weak
formulation of boundary conditions is advantageous.

Palit et al. performed an inverse analysis of biventricular models with a microstruc-
tural material model [108]. Steady-state free precession (SSFP) cine MRI was used to build
anatomical models, and to calculate the diastole-to-systole volume change of both ventricles
from five healthy adult volunteers. A purely passive Holzapfel–Ogden material model was
imposed with fiber orientation following the Laplace–Dirichlet rule-based algorithm by
Bayer et al. [55]. Early diastole was assumed as the stress-free reference configuration. A
normalized Klotz pressure–volume curve was set as the optimization target for a genetic
algorithm. The authors introduced empiric constraints on the constitutive equation for the
maximum absolute and relative values of shear-related terms to reduce the sampling space.
In addition, they carried out a sensitivity analysis of the results on the assumed parameters.
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They concluded that variations within the normal ranges of interventricular pressure and
fiber orientation did not produce significant changes in material parameters estimations.

Wang et al. explored potential differences in LV stiffness among heart failure pa-
tients with preserved and reduced ejection fractions [248]. Cine MRI and catheter pressure
measurements were collected from 8, 11, and 5 individuals with reduced, preserved, and
normal ejection fractions, respectively. Anatomical models of the LV were customized
for all cine MRI images with an interactive guide-point modeling tool and volumes were
matched to pressure measurements. The diastasis state (immediately after rapid filling) was
assumed as the reference stress-free configuration. The Fung–Guccione model was used to
describe myocardium mechanical behavior neglecting the active component. Myocardium
fiber orientation was defined following the rule-based algorithm proposed by Nielsen et al.,
based on the fibrous structure of canine hearts [261]. Boundary conditions consisted of
uniform pressure at the endocardium and constraints to the displacement of the basal plane.
Image-based endocardial and pericardial surfaces were projected into finite element model
predictions for each time step and the mean-squared error was minimized by fitting the
passive material properties. Results showed no significant differences in ventricular stiff-
ness between groups, although patients with reduced ejection fraction presented elevated
diastolic stress levels.

Rumindo et al. explored the variability of in vivo estimations of passive and active
properties of the LV in healthy individuals through inverse methods [247]. This retro-
spective study gathered cardiac MRI datasets from 21 volunteers with normal cardiac
function. End systolic and diastolic volumes were calculated from MRI segmentation, and
end-systolic configurations were assumed the stress-free reference and used for geometric
modeling and meshing. The Fung–Guccione material equation and a time-dependent
homogeneous active stress model were used to describe mechanical behavior. Myofiber
orientation was assigned following the equations proposed by Rijcken et al., to optimize
cardiac ejection [57]. Models were uniformly pressurized in the endocardium while con-
straining all displacements on the basal plane and assuming the epicardium to be traction-
free. The Nelder–Mead algorithm was used to fit the material parameters by minimizing
the least-squared error of the pressure–volume relation to the normalized Klotz curve.
Population-based statistics were calculated showing that results were consistent within this
population of similar characteristics. The authors highlighted the variety of reported Fung–
Guccione material parameters from among different studies and discussed the relevance of
the selection of a reference configuration for the estimation of passive properties.

Heterogeneous Models

Modeling of material heterogeneity can provide better fits to kinematic data, resolve
property changes, and identify the location and severity of myocardial lesions. However,
this comes with an increased modeling effort and computational expense. By assuming
material heterogeneity on inverse methods, the number of parameters to be fitted increases,
posing a burden on the optimization algorithm and complicating the solution of the
forward problem. A common approach is to approximate spatial variations of myocardium
properties and microstructure with region-wise heterogeneities. The simulation domain
of the myocardium is divided into segments, each one with its own set of homogeneous
material properties. The American Heart Association (AHA) proposed the division of the
left ventricle into 17 standardized LV segments which have been adopted extensively in
the study of myocardium mechanics (Figure 12a) [262].

One of the earliest inverse analyses of biventricular models with region-wise material
heterogeneity was proposed by Marchesseau et al. [254]. The study gathered cine MRI
datasets from 8 healthy volunteers and 3 heart failure patients with impaired ejection
fractions. Cine MRI was used to estimate the volume change of both ventricles, to identify
the location of the epicardial surface on several time-steps over the cardiac cycle, and
to estimate displacements with a diffeomorphic free form deformation algorithm. End-
diastole was used as the reference configuration and to build a deformable FEM mesh.
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Electromechanical behavior was modeled with a Bestel–Clément–Sorine model, which
consists of a Mooney–Rivlin hyperelastic material matrix reinforced with fibers with passive
elastic and time-dependent active components. Fiber orientation was assumed to follow
the Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. The active component was
assumed to have a viscous dissipation component and was modeled by a two-differential
equation system solving for the time-dependent active stress and sarcomere stiffness as a
function of an activation state variable. Parameter fitting is carried out by applying Kalman
filters in two steps: first, a general fit is achieved with the overall pressure-volume curve,
followed by a parameter refinement for each sector using sector-specific displacements
and change of LV section volume. The model was able to locate the infarcted regions by
assigning them lower contractility, while healthy patients converged to more homogeneous
property distributions and normal active function.

In 2017, Gao et al. performed an inverse analysis on 27 healthy subjects and 11 patients
with acute myocardial infarction [253]. Gadolinium-enhanced and cine MRI were applied
to identify the location of infarcted regions and to calculate the volume change of the LV.
Anatomic models were built at end-diastole, which was assumed as the zero-strain refer-
ence. The LV systolic blood pressure was approximated by the sphygmomanometer systolic
measurements. The anatomic models were divided into the 17 standard AHA regions,
and circumferential strains were calculated for each region through a b-spline deformable
registration algorithm. Non-infarcted tissue was modeled as a Holzapfel–Ogden material
with a sophisticated differential-algebraic model for active stress. Myofiber orientation was
defined by the minimum-distance rule-based algorithm Potse et al. [56]. Infarcted tissue
was assumed 50-fold stiffer than regular tissue with no active contraction. A Bayesian
approach with Gaussian processes and automatic relevance determination algorithm was
used to fit material properties and active contraction parameters by minimizing a weighted
function of the volume error and region-wise circumferential strain error. Results showed
that active tension was larger in infarcted hearts, which agrees with the early observations
of Xi et al. and Marchensseau et al., for which the authors hypothesized the existence of a
compensation mechanism for infarcted hearts to preserve stroke volume.

In 2018, Finsberg et al. compared the LV contraction between healthy adult volunteers
and patients with blocked or delayed electrical activation impulses, a condition called
left bundle branch block (LBBB) [235]. The study was carried out on a population of
7 individuals per group. Four-dimensional (4D) echocardiography was used to build
patient-specific anatomic models and FEM meshes. Ventricular volume was measured at
10 different instances within the cardiac cycle. Ultrasound speckle tracking was used to
estimate the piece-wise strain field, consisting of circumferential, radial, and longitudinal
strain at each of the 17 standard regions. Direct pressure measurements were obtained
through catheterization for the LBBB patients. The myocardium was assumed to follow a
uniform Holzapfel–Ogden material model, while two models for active contraction (active
strain and active stress) were tested. Myofiber orientation was assigned following the
Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. Rigid-body translation and
rotation were constrained by an elastic foundation boundary condition on the basal plane
imposed as a collection of linear springs with uniform elastic constants. Two iterative
inverse models were solved consecutively in each case: first, the passive isotropic material
properties and unloaded configuration were estimated with a backward displacement
algorithm using the geometric and pressure information at early and late diastole. Second,
the active and anisotropic material properties were obtained by minimizing an error
function defined as a weighted average of ventricular volume and strain error (Figure 12b).
Minimizations were carried out with a sequential quadratic programming algorithm, and
maximum value constraints were imposed on active model parameters. Results suggested
that the myocardium wall was more compliant for the healthy group (Figure 12c) and
that active contraction was significantly lower for the LBBB, which is consistent with an
impaired propagation of the activation pulse (Figure 12d). Both the active stress and active
strain models showed equivalent results. A similar methodology was later applied to
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12 patients with pulmonary hypertension and 6 healthy human controls, using cine MRI
and hyperelastic warping to estimate regional strains [249]. This study found that larger
right ventricular contractility affected the right-to-left ventricle volume ratio, the latter
being a clinical risk factor for pulmonary hypertension. The authors suggest that this
mechanistic relation between ventricular contractility and interventricular volume ratio
could provide further insights into pulmonary artery hypertension risk stratification.

Zhang et al. studied the local effect of ischemia with the segment-wise heterogeneity
approach [17]. Five patients with functional mitral regurgitation associated with coro-
nary artery disease and treated with percutaneous revascularization were retrospectively
recruited. The population was complemented by one healthy volunteer. The treatment
protocol included cardiac MRI and transthoracic echocardiography before and 3 months
after revascularization. Gadolinium-enhanced MRI allowed the identification of infarcted
scar tissue and an MRI stress perfusion test was used to assess the location and severity of
ischemia. With this image-derived information, a normalized scale for infract and ischemia
severity was assigned to each region. MRI-derived patient-specific 3D biventricular models
at early diastole were used to define the geometrical model and assigned to be the zero-
stress reference. MRI tissue tagging was used to estimate average strains in all 17 standard
regions. Left and right ventricular pressure were estimated from sphygmomanometry
and concomitant transthoracic echocardiography, respectively. The Fung–Guccione mate-
rial model was used to describe passive behavior and a time-dependent heterogeneous-
by-region active stress model was implemented. Myofiber orientation was prescribed
following the Laplace–Dirichlet rule-based algorithm by Bayer et al. [55]. Measured left
ventricular pressure was applied to the endocardium of the stress-free early diastolic model
while constraining axial displacements on the basal plane. Boundary loads consisted of
right ventricular pressure at the septum and a traction-free condition at the epicardium.
Passive and active material parameters were defined in terms of a scale of the infarction
and ischemia severity. This ischemia effect factor modulated different responses with
regions identified with zero severity behaving like healthy tissue and becoming stiffer and
less actively contractile with larger lesion severity. Material parameters and the ischemia
effect factor were fitted for each one of the 17 regions by minimizing a weighted func-
tion of the mean square error of diastole-to-systole volume change and the region-wise
average strain. Results agree with previous studies on predicting the stiffening of regions
corresponding to infarcted tissue and border zone. Additionally, the model allowed the
estimation of the ischemia effect on tissue stiffening and the recovery of compliance after
revascularization treatment.

One of the main limitations of the above studies is the assumption of either spatial
material homogeneity or segment-wise heterogeneity, however, material properties are
likely to vary continuously throughout the myocardium. To address this, Balaban et al.
proposed an iterative inverse method to resolve the heterogeneous distribution of mechani-
cal properties on an LV model from a 64-year-old heart with systolic heart failure, LBBB,
coronary artery disease, and chronic infarction in the inferior section of the LV [141]. 4D
echocardiography was used to obtain the anatomic model and FEM mesh at early atrial
systole. Speckle tracking was used to estimate systolic strain averaged over the 17 standard
regions, and pressure was measured by catheterization. Gadolinium-enhanced MRI was
used to identify the location of infarcted fibrotic tissue. The Holzapfel-Ogden material
model was implemented allowing spatial variations of the scalar material parameters
with a piece-wise linear representation with fiber orientation following the rule-based
algorithm proposed by Bayer et al. [55]. Active tension was neglected, and end-diastole
configuration was assumed stress-free. Rigid body motion was constrained by impeding
axial displacement at the basal plane and apex, and by an in-plane elastic foundation at
the base plane imposed as a collection of linear springs with uniform elastic constant. A
sequential quadratic programming algorithm was applied to estimate the almost 3000
spatially distributed material parameters. To favor convergence to smooth distributions,
optimization was constrained by a first-order Tikhonov functional. Results show that
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estimated strains were lower, and the material stiffer, in regions corresponding to infarcted
tissue and its immediate surroundings identified by gadolinium-enhanced MRI.

6.3. Valves and Leaflets

Each one of the chambers of the heart is equipped with a discharge valve to ensure
unidirectional blood flow, acting mostly passively to changes in transvalvular pressures.
The atrioventricular valves are the mitral and tricuspid, for the left and right sides of the
heart respectively. These valves typically define the basal plane and separate the atria from
the ventricles (Figure 10a). They are structurally supported by the papillary muscles and
chordae tendineae to hold the valves closed during systole and avoid ventricle-to-atria
backward flow. The pulmonary and aortic valves regulate blood flow from the ventricles to
their homonym arteries and are not supported by any subvalvular apparatus. The main
element of heart valves are fibrous structures called leaflets or cusps, that flap to allow or
impede blood flow. In normal conditions, only the mitral valve has two leaflets while the
other valves have three [263].

Heart valve disease is mostly related to regurgitation, stenosis, and atresia. The former
consists of backflow due to deficient closing, stenosis is the hardening and thickening of
the leaflets, preventing the valve to open properly and result in increased load in the heart,
while the latter is a congenital disease where the heart valve is partially or completely
absent. Heart valve malfunction can lead to several complications such as heart failure,
blood clotting, stroke, and death. Heart valve disease is most common on the left side, as
the aortic and mitral valves are loaded with larger pressures, and in consequence, they have
received more attention from the medical and scientific community. However, attention to
right heart valves has significantly grown in the last two decades along with the awareness
of pulmonary artery diseases [264].

There is a considerable body of research on the forward modeling of heart valve
function accounting for structural and FSI mechanics, usually validated against in vitro
experiments [265]. However, leaflets are typically thin structures (<1.5 mm) showing com-
plex displacement patterns, which renders them extremely challenging to resolve through
in vivo imaging techniques. Owing to this, most inverse analyses of valve mechanics
are based on in vitro experiments on excised or synthetic valves, where the leaflet dis-
placement is resolved with the use of physical markers [266–273], or with high-resolution
cameras [147,274].

In vivo inverse modeling of ovine heart valves function has been achieved by the
use of fluoroscopic markers implanted on the surface of mitral valve leaflets [275,276], a
technique that cannot be pursued in human studies. More recently, Lee et al. applied
ultrasound technology to assess the anatomy and displacement of the mitral valve of ovine
animal models to explore the use of inverse modeling, and in vivo mechanical properties
and stress distribution were successfully estimated [271,277].

Aggarwal et al. estimated the residual strain on human aortic valves by combining
in vivo imaging with measurements on explanted tissues [278]. The authors collected
in vivo transesophageal 3D echocardiographic images of the aortic valve from five open-
heart transplant patients at three configurations: fully open, just-coapted, and fully loaded.
Each aortic valve leaflet was excised during surgery and then imaged in a flattened configu-
ration ex vivo. Strains were calculated between the ex vivo stress-free configuration and the
three in vivo configurations from echocardiography segmentation by the application of a
spline parametrization algorithm. Results suggest that leaflets are significantly pre-strained
with respect to the excised reference even at the just-coapted configuration where the
transvalvular pressure load is negligible. Results also showed that leaflet deformation is
larger in the radial direction if compared to the circumferential direction, the latter being
structurally stiffer due to the alignment of collagen fibers.

The work of Aly et al. stands out as one of the few in vivo works on human heart
valves for the generation of transient anatomical models [279]. In this work, 4D ultrasound
was collected from 28 patients, half with normal mitral valve anatomy and function, the
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other half with ischemic mitral valve regurgitation. An automatic inverse algorithm uses
the manual identification of five key landmarks on the leaflet anatomy as input. Then,
Kalman filter optimization is used to build anatomical models at different instants of the
cardiac cycle. According to the authors, this algorithm could be used as the base for more
comprehensive inverse modeling to assess leaflet material properties.

6.4. Arterial Wall

Changes in mechanical properties of arterial walls have been associated with the
onset of multiple cardiovascular pathologies (e.g., atherosclerosis, dissection, stenosis)
and remains an important predictor of cardiovascular morbidity and mortality in clinical
practice. This motivated the development of early techniques for the non-invasive assess-
ment of arterial stiffness through the evaluation of luminal area change and pulse wave
velocity. These techniques, although useful, can only provide a gross estimation of material
properties as they introduce many assumptions and simplifications related to homogeneity,
perivascular support, and linearized behavior.

The image-based resolution of vascular tissue kinematics is technically challenging;
the main reason being the relative thinness of vascular walls. For example, the ascending
aorta has a typical thickness of about 2.5 mm, which decreases to about 1.5 mm at the
abdominal aorta, and the pulmonary artery is only about 0.2 mm thick. These length
scales are comparable to the highest resolutions available on imaging techniques, for
which luminal area changes (either with or without contrast agents) remained the main
input for early inverse analyses of arteries. However, recent developments in ultrasound
speckle tracking and DENSE MRI techniques make available arterial wall displacement
measurements on a meaningful number of pixels. Most approaches rely on FEM for the
solution of the forward problem (summarized in Table 8).

Table 8. Literature review of iterative inverse models for the analysis of human arterial wall mechanics.

Study Clinical Data Forward Problem Inverse Problem
Population 27H Reference Diastole Least-squared

displacement error
Pathology None Passive model Hom. Fung

orthotropic
Target function

Data Cine and DENSE
MRI Active model None

Constrained Powell

Bracamonte
et al., 2022,
2021, 2020
[14,150,280] Anatomy IAA, DTA, DAA Boundary LP, Het. EF at

adventitia
Opt. algorithm

Population 2D Reference Diastole
P-V curve error

Pathology PAH and CHD Passive model Constrained 4-fiber
family

Target function

Data IVP, Cine MRI, PC
MRI Active model None

L-BFGS
Pourmodheji
et al., 2021 [5]

Anatomy Pulmonary Artery Boundary LP, TF adventitia
Opt. algorithm

Population 30D Reference Diastole
Systolic shape.

Pathology aATA, w BAV and
TAV Passive model Het. Linear elastic

Target function

Data CT scans Active model None
Direct solution

Giuseppe et al.,
2021 [281]
Farzaneh et al.,
2019 [112] Anatomy Thoracic aorta Boundary LP and shape

change
Opt. algorithm

Population 30H 65D, 40D Reference Unloaded
Displacement error

Pathology AAA Passive model Hom.
Neo-Hookean

Target function

Data 4D US, ST, CT scan,
Hand cuff pressure Active model None

Nelder-Mead

Disseldorp
et al., 2019, 2016
[282,283]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 4D Reference Unloaded
Displacement error

Pathology Atherosclerosis Passive model Het. Neo-Hookean
Target function

Data IVUS Active model None
Kalman filter

Maso Talou
et al., 2018 [284]

Anatomy Carotid artery
bifurcation Boundary LP, EF at adventitia

Opt. algorithm
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Table 8. Cont.

Study Clinical Data Forward Problem Inverse Problem
Population 4D Reference Diastole Systolic shape error
Pathology aATA Passive model Hom.

Holzapfel-Ogden
Target function

Data CT scans Active model None multi-resolution
direct search
method

Liu et al., 2018
[113]

Anatomy Ascending Aorta Boundary LP, AP
Opt. algorithm

Population 5H 1D Reference Axially unloaded Displacement error
Pathology PAO Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None Nelder-Mead with

stochastic
Montecarlo
sampling

Wittek et al.,
2016 [125]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 8D Reference Unloaded Area change error
Pathology Atherosclerosis Passive model Mooney-Rivlin

Target function

Data Cine MRI, MC MRI,
Hand cuff pressure Active model None

L-BFGS-B

Wang et al.,
2017 [285]
Liu et al.,
2012 [286] Anatomy Carotid artery

bifurcation Boundary LP, TF adventitia
Opt. algorithm

Population 4D Reference Unloaded Least-squared
strain errorPathology aATA Passive model Hom.

Holzapfel-Ogden
Target function

Data CT scan, DENSE
MRI Active model None Non-specified

Krishnan et al.,
2015 [225]

Anatomy Ascending Aorta Boundary LP, TF adventitia
Opt. algorithm

Population 6H 2D Reference Axially unloaded Displacement error
Pathology AAA Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None

Nelder-Mead
Karatolios et al.,
2013 [164]

Anatomy Abdominal aorta. Boundary LP, AP
Opt. algorithm

Population 5H Reference Axially unloaded Displacement error
Pathology None Passive model Hom.

Holzapfel-Ogden
Target function

Data 4D US, ST, Hand
cuff pressure Active model None

Nelder-Mead
Wittek et al.,
2013 [115]

Anatomy IAA Boundary LP, AP
Opt. algorithm

Population 2H Reference Diastole Systolic shape error
Pathology None Passive model Hom. Linear

isotropic
Target function

Data Cine MRI, AT
pressure Active model None Levenberg–

Marquardt

Franquet et al.,
2013 [114]

Anatomy CCA Boundary LP, EF at adventitia
Opt. algorithm

Population 2H Reference Cut-open stress-free Pressure waveform
errorPathology None Passive model Hom.

Holzapfel-Ogden
Target function

Data 2D US, AT pressure Active model 1 eq. active stress Levenberg–
Marquardt

Masson et al.,
2010 [287]

Anatomy CCA (idealized) Boundary
Area change,
Non-linear EF at
adventitia.

Opt. algorithm

Population 3H Reference Diastole Area change error
Pathology None Passive model Hom. Linear

isotropic
Target function

Data Cine MRI, AT
pressure Active model None Non-specified

Taviani et al.,
2008 [288]

Anatomy CCA Boundary LP, TF adventitia
Opt. algorithm

Abbreviations and acronyms: Clinical data: AT, applanation tonometry; CCA, common carotid artery; CT,
computerized tomography; D, diseased; DAA, distal aortic arch; DTA, descending thoracic artery; H, healthy;
IVUS, intravascular ultrasound; MC MRI, Multi-contrast magnetic resonance imaging; PAO, peripheral arterial
occlusion; US, ultrasound; USST, ultrasound speckle tracking. Pathologies: AAA, abdominal aortic aneurysm;
aATA, ascending aorta thoracic aneurysm; BAV, bicuspid aortic valve; CHD, congenital heart defect; TAV, tricuspid
aortic valve. Forward problem: AP, adventitial pressure; EF, elastic foundation; eq., equation; Het., heterogeneous;
Hom., homogeneous; LP, luminal pressure; TF, traction-free.

One of the earliest works on inverse arterial mechanics was introduced by Taviani et al.,
in 2008 [288]. Cine MRI was used to assess the cross-sectional geometry and distension
of the common carotid artery of three healthy volunteers, while applanation tonometry
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was utilized to gather pressure wave data. The wall was assumed to behave as a nearly
incompressible linear-elastic isotropic material with the diastolic configuration as the
unloaded stress-free reference. The luminal surface was loaded with the measured pressure
increment, while the adventitial surface was assumed traction-free. An optimization
algorithm iterated over the elastic modulus while minimizing the normalized distance
between the simulated and measured lumen. The method was successfully validated with a
silicon rubber phantom and provided consistent results among all healthy adult volunteers.
This inverse model of the common carotid artery was improved by Franquet et al., who
incorporated the effect of perivascular support by attaching the adventitial surface to a
homogeneous compressible-elastic boundary with fixed properties and a third embedded
body representing the superior vena cava [114]. A Levenberg–Marquardt optimization
algorithm was used to minimize a shape-based error function that accounted for pixel-wise
signal intensity to define the location of the lumen. Additionally, the authors studied the
effect of variability on the luminal area and wall thickness estimations used to define the
reference configuration. The method was again validated against a silicon rubber phantom
and applied to two adult healthy volunteers showing good agreement with estimations of
elastic moduli reported in classical literature.

To incorporate the effect of residual and pre-stresses on the loaded diastolic configura-
tion, and to fit a more complex material model, Masson et al., proposed a semi-analytical
approach [289]. Clinical data from two adult volunteers 33 and 64 years of age consisted of
2D ultrasound on the common carotid artery, which was used for the resolution of luminal
area change and the thickness of the intima-media layers. Additionally, planar tonometry
was used to estimate the pressure wave. The carotid artery was assumed to be a pre-stressed
bi-layered idealized straight cylinder. The passive material properties were assumed to
follow an incompressible four-fiber family elastic constitutive equation, and active tension
was assumed to act on the circumferential direction according to a single-equation active
stress model. Perivascular support was modeled as a uniform adventitial pressure that
exponentially increases with area increments. The forward problem was formulated as the
solution of the luminal pressure corresponding to area changes assuming purely radial
displacements. A Levenberg–Marquardt optimization algorithm was used to minimize the
least-squared error of the predicted and measured pressure waveform. The optimization
algorithm fitted 14 parameters including pre-stress parameters (opening angle and axial
pre-stretch), material parameters for the two material layers, and active tension constants.
The method successfully reproduced the pressure waveform while adjusting the material
parameters. The authors reported that prestretch and active stress constants were similar
among both patients, but passive material parameters reflected stiffer material for the
older subject.

One of the first uses of image-based kinematics to estimate the anisotropic mechanical
properties of a realistic large artery model was introduced by Wittek et al., in 2013 [115].
4D ultrasound records with speckle tracking of the abdominal aorta were retrospectively
collected from five healthy adult volunteers in segments proximal to the truncus coeliacus.
Diastolic and systolic pressures were measured at the brachial artery with a sphygmo-
manometer. Diastolic 3D models of about 50 mm in length were segmented from ultrasound
images assuming a fixed wall thickness of 1.6 mm. This configuration was assumed to be
axially pre-strained by a quantity estimated by an empirical correlation. The arterial wall
was assumed to behave as a modified Holzapfel–Ogden material. Perivascular support
was modeled as a uniform adventitial pressure of 20 mmHg. A Nelder–Mead optimization
algorithm was applied to iterate over the parameters of the material model to minimize the
error of Biot’s strain tensor between the benchmark measurement-derived model and the
simulation. Each iteration consisted of the solution of three sequential problems: first, the
inverse solution of the unloaded configuration for the given diastolic pressure and axial
prestrain through a backward displacement algorithm; second, the stretch from diastolic to
systolic configuration by the imposition of measurement-derived displacements to produce
the benchmark model; and finally, the inflation from diastolic to systolic geometry through
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incrementing luminal pressure for the simulation. The resulting material parameters were
used to produce stress–strain plots, which showed reasonable agreement with experimental
biaxial test data from excised tissue. This method was further refined in 2016 by improving
the error function and optimization algorithm. The error function was based solely on
image-based estimations of strain instead of the benchmark model output. The determinis-
tic Nelder–Mead algorithm was complemented with a stochastic Monte Carlo algorithm
for the iterative generation of parameters to avoid convergence to local minima [125]. The
improved method was applied to three clinical ultrasound datasets from a healthy adult
volunteer, a patient with peripheral arterial occlusion, and an AAA patient. Results pre-
dicted stiffer material behavior of the arterial wall for diseased individuals when compared
to results on healthy volunteers.

Pourmodheji et al. collected cine and PC MRI images, and intracardiac catheterization
pressures from a pediatric patient with pulmonary hypertension and a cardiac transplant
control subject. A 3D model of the main pulmonary artery with its proximal left and right
branches was created at the diastolic configuration. The material model was assumed as a
homogeneous constrained mixture of elastin fibers, four families of collagen fibers, and an
incompressible continuum of smooth muscle cells. The constrained mixture theory was
applied to prescribe pre-stretches to each constituent to balance the diastolic pressure load.
An L-BFGS optimization algorithm was applied to iterate over the material parameters to
minimize the cumulative error to the measured pressure–area curve at the main pulmonary
artery. The model suggests that pulmonary hypertension-induced remodeling led to the
stiffening of elastin fibers and wall thickening.

All of the above models assume that arteries are uniformly loaded at the luminal and
adventitial surfaces. In the lumen, arterial tissue is subjected to blood pressure; however,
loads and reactions on the adventitial surface are typically complex. Without appropriate
adventitial boundary conditions, the deformation of a pressurized blood vessel at systole
results in a homogeneously deformed configuration following the principle of minimal
strain energy [14,115]. However, different image-based in vivo analyses have shown that
large vessels may undergo heterogeneous deformations from diastole to systole, an effect
that is not reproduced on standard in vitro pressurization setups or in silico experiments
without appropriate adventitial boundary conditions [13,115,290].

These observations supported the hypothesis that the interaction of healthy blood
vessels with diverse perivascular structures may induce the in vivo deformational het-
erogeneity [14,166]. To address this, Bracamonte et al. proposed a heterogeneous elastic
foundation approach, consisting of the attachment of static linear springs of heterogeneous
stiffness to the adventitial surface of arterial models. The distribution of stiffness of the
elastic boundary was discretized to piece-wise constant regions and fitted through an
iterative inverse algorithm to reproduce the heterogeneous deformation of the vessel [14].
For this study, retrospective cine and 2D DENSE MRI data were collected at the infrarenal
abdominal aorta from nine healthy adult volunteers of diverse ages. DENSE MRI data
were processed to obtain the spatial distribution of the diastole-to-systole displacement
and then interpolated onto a FEM mesh built from the segmented diastolic configuration.
The material was assumed to follow the Fung material model at a plane-strain state with
the diastolic configuration as the unloaded stress-free reference. The Powell optimization
algorithm was employed to iterate over the material parameters and elastic boundary stiff-
ness distribution to minimize the least-squared error of the nodal displacement. Estimated
material parameters reproduced the stiffening effect of aging. The elastic boundary stiffness
distribution was independent of discretization and consistent among patients. Notably, it
showed good agreement with the location of known anatomical features of the perivascular
space, such that the vicinity to the vertebrae corresponded to the stiffest boundary, whereas
the region adjacent to the peritoneal cavity resulted in the most compliant boundary.

The authors found that this approach properly captured the mechanics of the in-
frarenal aorta but failed to reproduce displacement measurements of the descending
thoracic aorta, where the aortic wall shows both distention due to pressurization and bulk
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motion (Figure 13a,b). This bulk motion was hypothesized to be driven by the interactions
with the adjacent beating heart. These interactions were modeled by incorporating a mov-
ing elastic foundation boundary approach [280]. This was implemented by attaching linear
springs of homogeneous effective stiffness to the adventitial surface of the 2D aortic model,
which was then allowed to displace radially (either inwards or outwards) to best reproduce
the target bulk motion and heterogeneous wall deformation upon luminal pressurization
(Figure 13c). The method was applied to a collection of retrospective cine and 2D DENSE
MRI data at the infrarenal abdominal aorta, descending thoracic aorta, and descending
aortic arch from 27 healthy adult volunteers of diverse, ranging from 19 to 65 years of
age. A similar optimization algorithm was applied, although in this new model, the fitted
elastic boundary parameters were the material model constants and spring displacement
distribution, which translated directly to adventitial load distribution (Figure 13c). A
parametric study was performed to study the effect of the moving elastic boundary pa-
rameters on the resulting estimations of distributed adventitial loads, which revealed that
averaged adventitial load and adventitial load distributions were seemingly independent
of elastic boundary parameters within the range that yielded physiologically meaningful
results [280]. The proposed method converged to elastic regions that were located around
relevant anatomical features (Figure 13d), and peak loads were found at locations where the
heart pushes the aorta against the vertebrae (Figure 13e). Results suggest that adventitial
load increases with age (Figure 13f), and that the thoracic aorta carries a larger adventitial
surface load than the abdominal aorta, most likely due to the interactions with the beating
heart (Figure 13g) [150].

Figure 13. Inverse analysis of perivascular interactions at the descending thoracic aorta (DTA), based
on results from Bracamonte et al., 2021 [150]. (a) Surroundings of the DTA. (b) DENSE MRI-derived
displacement quiver representation and mapping into deformed (systolic) configuration. (c) Moving
elastic foundation implementation and equivalent adventitial load distribution. (d) Patient-specific
elastic boundary, and (e) adventitial load distribution. (f) Adventitial load increments with age.
(g) Average adventitial load at different aortic locations (* p-value < 0.05; ** p-value < 0.01). Symbols:
φ elastic boundary region angular delimiter, d moving elastic boundary displacement, pa adventitial
force per unit area, pl luminal pressure increment, LA left atrium, LV left ventricle, V vertebra, L lung,
IAA Infrarenal abdominal aorta, DTA descending thoracic aorta, DAA distal aortic arch. Red line (0◦)
is the angular reference selected as the closest location of the vertebra to the aortic wall.
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6.4.1. Aneurysms

Aneurysms are enlarged blood vessels caused by the remodeling of its wall. When
local wall stress exceeds wall strength, rupture occurs, which carries significant morbidity
and mortality. Brain and aortic aneurysms are the common manifestations of this disease.
Aortic aneurysms have an incidence of 5 to 10 cases per 100,000 and are responsible
for approximately 15,000 deaths per year just in the United States [291,292]. Maximum
aneurysm diameter and expansion rate are currently the main criteria for diagnostics and
risk assessment [293]. Notably, though rupture risk increases with a maximum diameter
on average for the entire population, diameter alone struggles to predict rupture for any
given individual. Thus, further research is ongoing to develop more reliable metrics for
predicting rupture based on biomechanics [13].

For example, Karatolios et al. applied the inverse modeling approach of Wittek
et al., (2013) to study the strain distribution in two abdominal aortic aneurysms (AAA) of
two adults and the abdominal aorta of six healthy controls [164]. Results suggested that
peak strains in AAAs are time-delayed (in late systole) with respect to their occurrence
in healthy aortas. This work was followed by an extensive retrospective study published
by van Disseldorp et al., in 2016, which gathered information from 40 AAAs patients
that underwent CT scans and 4D Ultrasound with speckle tracking [282]. Patient-specific
3D models of the abdominal aneurysm were generated from the CT scans with a fixed
wall thickness of 2 mm for all cases. The arterial wall was assumed to behave as a neo-
Hookean material. The shear modulus was estimated iteratively to minimize the diastole-
to-systole nodal displacement between forward FEM simulations and speckle-tracking
derived measurements (Figure 14a). The error function was designed ad hoc so that
regions with more precise and reliable measurements carried more weight when calculating
error. For each iteration, the pressurization from diastole-to-systole was preceded by the
estimation of the diastolic stress applying the backward increment algorithm. Systolic
pressure was assumed to be 140 mmHg for all cases and the reference geometry built from
CT scans was assumed to be at a mean arterial pressure of 105 mmHg. Interestingly, results
from the study suggested that aneurysms with larger diameters tend to be stiffer. An
extension of this work was published in 2019 by van Disseldorp et al., with a comparative
study of material properties from 30 healthy volunteers and 65 AAA patients using 4D
Ultrasound datasets [283]. Healthy cases were grouped by age, whereas AAA patients were
grouped by aneurysm diameter. Segmentation and parameter estimation followed the same
methodology as previously; however, patient-specific diastolic and systolic pressures were
measured from a sphygmomanometer and used as boundary conditions for the backward
increment method and forward simulations. The analysis showed a significant difference
in stiffness between age-matched healthy volunteers and AAA patients even at the early
stages of the disease (Figure 14b). The study suggests that most of the stiffening occurred
at the onset of the disease with slight further increases as the aneurysm grows (Figure 14c).
Additionally, a significant correlation between peak stress and aneurysm size was found,
which is consistent with the general correlation of aneurysm size with wall rupture.

Krishnan et al., performed inverse model analyses on ascending thoracic aorta
aneurysms (aTAA) [286]. These authors collected CT angiography and DENSE MRI se-
quences from four patients. Three-dimensional models of aortic aneurysms were built
from the CT scans at systolic configuration. The Ogden isotropic hyperelastic constitutive
equation was selected as the material model. They applied an iterative updating algorithm
to find the set of material parameters that minimized the least-square error of simulated
strains against DENSE MRI-derived estimations. The iterative algorithm consisted of three
steps: first, a deflation step to 0 mm Hg (assume to be the zero-stress reference), followed
by the inflation to the assumed 120 mm Hg at systole, and finally, the deflation to diastolic
pressure of 80 mm Hg. This study revealed that the estimated peak principal stress is
circumferential and about 25% greater than the average stress in aTAAs and located in the
inner and outer curvature of the arch towards the pulmonary artery.
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Figure 14. Inverse analysis of abdominal aneurysm mechanics (Reprinted/adapted with permission
from Ref. [283]. 2018, Oxford University Press). (a) Patient-specific data processing algorithm and
typical outputs. (b) Aortic stiffness versus maximum aortic diameter for healthy volunteers (gray
squares) and AAA patients (black circles). (c) Population-based statistics of aortic stiffness in a box
and whisker plot with dots representing outliers. Results suggest that most wall stiffening occurs at
early stages of the disease when the aneurysm diameter is still relatively small.

Liu et al. explored new methods to reduce the computational cost of inverse analyses
while studying the mechanical properties of aTAAs. First, they investigated a method based
on the computation of wall stress by solving a simplified statically determinate problem
to obtain an “almost true” stress field [104]. They collected retrospective CT angiography
from 4 patients with aTAA who went through surgical repair with tissue excision used for
ex vivo biaxial testing. The geometry was built at the systolic configuration and assumed to
be loaded at 120 mmHg. The material was modeled with a Holzapfel-Ogden constitutive
equation. The backward displacement algorithm was used on each iteration to calculate the
unloaded configuration assumed to be stress-free. An iterative inverse method was applied
to obtain an estimation of material parameters using a constrained gradient-free trust-region
optimization algorithm. Each iteration consisted of two steps: first, computing an almost
true stress field from the in vivo geometries and loading conditions by using the Laplace
law for statically determinate stiff thin-wall vessels; and second, calculating the stress
distribution with the updated material parameters. The target function for the optimization
algorithm was defined as the least-squared error of the simulated to almost true stress.
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Constraints consisted of upper and lower limits for material parameters extracted from
the literature. Estimated material properties showed good agreement with results from
patient-specific mechanical tests from excised tissue while decreasing the computational
cost relative to regular iterative inverse approaches. Subsequently, Liu et al. used the same
database and material model to explore the effectiveness of the multi-resolution direct
search method as the optimization algorithm [113]. This algorithm works by decomposing
the search for the optimal material parameters with a multi-scale representation of the
parameter hyperspace. The target function to be minimized was defined in terms of the
distance between surface nodes and the location of the segmented surface at systole. The
converged material properties successfully reproduced the strain energy curves from biaxial
testing while considerably reducing the computational cost of the inverse approach.

All these studies assumed material homogeneity of the aortic wall, which is a major
limitation for the study of aneurysms. In vitro mechanical tests and histology analyses
have been performed on aneurysms from human cadavers revealing both structural and
mechanical heterogeneity [294,295]. Farzaneh et al. studied material heterogeneity on three
aTAA patients from which CT scans were collected [112]. Medical images were used to
build 3D models of the aneurysms at diastole and systole, and these models were used to
estimate the local strain state. Each element on the wall surface was assumed to be part
of an ellipsoid sharing the center to the cross-section of the vessel and was assumed to
behave as a linearly elastic material. The stiffness was directly calculated element-wise
from local balance equations. Their results suggested that diseased tissue was stiffer in
the bulging part of the aneurysm and generally stiffer than the adjacent non-aneurystic
tissue. Giuseppe et al. further applied this methodology to a cohort of 30 aTAA patients,
12 with bicuspid aortic valves, and the remaining with normal tricuspid valves [281]. Wall
stiffness distribution was heterogeneous for each individual, however, regional differences
appeared to be marginal within the cohort due to interindividual variability. Notably, this
study found no significant differences in stiffness nor its distribution between the bicuspid
and tricuspid valve groups, suggesting that no distinction should be made in the surgical
management of aneurysms between these groups.

6.4.2. Atherosclerotic Plaques

Atherosclerosis is a chronic inflammatory disease that manifests as the hardening
and occlusion of arteries due to the build-up of plaque on the lumen of the arterial wall.
Atherosclerotic plaque is a mixture of fatty substances, cholesterol, calcium, and cellular
waste, usually enclosed in a fibrous cap. Atherosclerotic lesions are generated at specific
regions of the arterial tree, mostly in the vicinity of branch points, the outer wall of bifurca-
tions, and the inner wall of curves [157]. Among many possible associated complications,
plaque can break and detach, generating thrombosis, acute myocardial infarction, and
stroke. Thus, the in vivo evaluation of the mechanical properties of atherosclerotic plaques
and their mechanical environment could support the assessment of risk associated with
plaque rupture. One of the earliest inverse analyses of atherosclerotic plaques was proposed
by Liu et al., in 2012 [286]. This study was performed on 12 patients with carotid artery
atherosclerosis. For each patient, a set of cine MRI, 3D multi-contrast MRI, and sphyg-
momanometry were collected. Two-dimensional models of the diseased sections were
built from MRI images at diastole, including lipid pools resolved by multi-contrast MRI.
The arterial wall and plaque were assumed uniform and to behave as a Mooney–Rivlin
hyperelastic material, while the lipid pools were assumed to be isotropic linear elastic. An
L-BFGS-B optimization method was applied to fit the material properties of the wall plaque
until the error between the simulated and measured diastole-to-systole area change was
minimized. Each iteration included the estimation of the unloaded configuration by the
shrink-and-fit algorithm, and a forward FEM problem for the inflation from the unloaded
configuration to the systolic configuration applying uniform luminal pressurization. The
authors found the estimations of material stiffness show reasonable agreement with re-
ported data from experimental studies. An analysis of stress distribution indicated that, for
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all cases, peak stress was located at the thin cap covering the lipid core. This study was
further refined by Wang et al., in 2017 [285], with similar imaging and functional data ac-
quired for 8 patients with carotid atherosclerosis with follow-up tests after 18 months. The
material models, optimization algorithm, target function, and iteration steps were the same
as previously; however, a total of eight slices were analyzed from each carotid artery and
modeled as a 3D thin layer so that axial prestretch could be included in the estimation of
the unloaded configuration. Results revealed high patient-to-patient variability on plaque
stiffness, which was significantly larger in the hypertensive cases. The authors also found
that estimations of material properties of the plaque can significantly change over time,
with stiffness increments being the most common scenario. Huang et al. further explored
these results with FSI simulations based on patient-specific estimations of atherosclerotic
tissues with patient-specific measurements of pressure gradients by applanation tonom-
etry and confirmed that flow and pressure-induced stresses peak at the fibrous cap that
covers the lipid core, which could offer support to explain the main mechanisms of plaque
rupture [296].

The main limitation of previous studies is that the current resolution of non-invasive
imaging techniques is insufficient to resolve the displacement of atheroma plaques in small
vessels such as the carotid artery. To overcome this, Maso Talou et al. utilized intravascular
ultrasound technology [284]. This work analyzed data from 4 atherosclerotic lesions which
were modeled as 3D thin cross-sectional slices. Each model was single-layered and divided
into six circumferential sections, each portion being assumed materially homogeneous
and following the Neo–Hookean hyperelastic material model. Perivascular tethering was
modeled as a homogeneous elastic media of fixed stiffness. Kalman filters were used to
estimate material parameters for each section while minimizing the diastolic-to-systolic
displacements. Each iteration included the estimation of diastolic stress distribution by
a backward increment method assuming a pressure load of 80 mmHg and population
average-based axial stretch. From this preloaded state, a forward inflation problem to
systolic pressure was then solved. Parallelization techniques were employed to reduce
computer processing times achieving convergence between 12 h and three days. Sensitivity
of the results to numerical and model parameters was carried out, finding that perivascular
elastic properties have a significant effect on material parameter predictions. The estimated
material parameters agreed with the magnitudes reported from available experimental data.

6.5. Hemodynamics

In general, computational modeling of hemodynamics is more resource-consuming
than tissue mechanics, as simulations need to account for transient effects and deal with
the difficulties introduced by the non-linearities of convection and momentum dissipation.
This makes the application of inverse modeling to hemodynamics a challenging task.

The use of simplified 0D (lumped) and 1D models can significantly reduce the compu-
tational cost. These simplified models have been used on a patient-specific basis and imple-
mented onto inverse modeling approaches to provide useful systemic information about
flow distribution, vascular resistance, and the systemic effect of drug treatments [297,298].
However, these approaches cannot exploit the detailed features offered by modern image-
based kinematics as they only deal with 2D integrated or averaged metrics. Furthermore,
despite all assumptions and simplifications, inverse approaches to lumped and 1D models
are still prone to solution multiplicity [119]. With our focus on inverse modeling based on
image-based kinematics, these approaches employing 1D simplified models fall outside
the scope of this review.

To deal with the computational expense of the forward problem on inverse hemody-
namics, Lassila et al. proposed a method for parametrizing the Navier–Stokes equations
and patient-specific geometries to reduce the basis of the partial differential equations. The
parameterized model is iteratively solved until the algorithm is close to the final solution.
At this point, the inverse method then switches to the solution of the full-forward prob-
lem using FVM. This method was tested using deterministic and Bayesian optimization
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algorithms showing promising results on the solution of test cases involving rigid-wall
and FSI simulations [103]. Herein, we review some of the existing research on inverse
hemodynamics separating approaches that assume rigid-wall flow boundaries from those
using FSI approaches.

6.5.1. Rigid Wall Models

Romarowski et al. applied an iterative inverse method for the hemodynamic study of
three descending thoracic aortic aneurysms. CT scans were used to build the 3D models
that included the ascending and descending aorta [118]. PC MRI sequences were collected
at the ascending aorta (above the aortic bulb), the suprarenal abdominal aorta, and all
three branches of the aortic arch. Diastolic and systolic pressures were collected from
sphygmomanometry. The authors observed that balances with the inlet and outlet flow
rates measured with PC MRI did not comply with the conservation of mass principle. The
forward problem was defined by applying the PC MRI-derived velocity distribution in
the ascending aorta as an inlet boundary condition. At all four outlets, a surrogate three
element Windkessel model of unknown parameters was imposed as a boundary condition,
while blood was assumed to be an incompressible Newtonian fluid. The forward problem
was solved by a FEM solver. An optimization algorithm was applied to minimize the least-
squared error of the measured blood flow at the outlets to simulation estimates, by fitting
the surrogate model parameters. The authors highlight that this weak approach allows
distributing the error related to measurement noise while enforcing mass conservation.
Similarly, Gaidzik et al. used PC MRI data from a healthy volunteer to find the pressure
gradient distribution in the circle of Willis, an important cerebral arterial system [299].
In this work, Kalman filters are iterated over pressure boundary conditions to adjust the
simulated flows to PC MRI measurements with an FVM solver for the forward problem.
Noise-to-signal ratios were used to incorporate the measurement uncertainty into the data
analysis. The authors highlight that the outputs of the inverse methods yield smaller
uncertainties than CFD or 4D flow MRI data analysis alone.

Rispoli et al. proposed a modification to the implementation of FVM for fluid dynamics
problems, to introduce the minimization of simulated nodal velocity components to 4D
flow data measurements in the linearized SIMPLER algorithm [300]. The method required
the smoothing and interpolation of coarse 4D flow MRI data to the FVM mesh. 4D flow
MRI-derived velocities were directly used as inlet and outlet boundary conditions. The
minimization problem and FVM solution were solved simultaneously using a version of
the iterative Runge–Kutta algorithm. This method allowed the simultaneous solution of
the simulation and inverse problems, thus reducing the computational expense. As a proof
of concept, the method was applied to anatomy and 4D flow MRI scans of a healthy human
carotid artery. The method was incorporated into a custom-made solver that required
special discretization into a structured mesh in the Cartesian space. Töger et al. further
developed this approach by incorporating the nodal velocity error minimization approach
into a discontinuous Galerkin FEM formulation, allowing the solution of unstructured
meshes [122]. The method was validated to in vitro measurements with laser particle
imaging velocimetry in a pulsating flow loop with an abrupt change of cross-sectional
area to induce complex flow patterns. Then, the method was applied to a healthy-human
proximal cerebral artery. CT angiography was used to build the 3D anatomic model, 4D
flow data were collected at a resolution of 0.7 mm voxel size with a 7 T scan, and PC MRI
scans were collected at inlet and outlet planes with a resolution of 0.5 mm/px. Moreover,
4D flow data were spatially and temporally smoothed and interpolated into the FEM
mesh, while PC MRI data were integrated to enforce inlet and outlet transient plug flow
as boundary conditions. The method showed errors below 1% on velocity distribution
for in vitro validation tests, and the proof of concept on in vivo datasets demonstrated the
potential of the proposed methodology for future human studies.



Appl. Sci. 2022, 12, 3954 55 of 71

6.5.2. Fluid-Structure Interaction (FSI) Models

Fluid–structure interaction simulation is itself a complex, resource-consuming process,
and its incorporation with inverse models is challenging. Some of the early work by
Moireau, Chapelle, D’Elia, Perego, among others, set the bases for inverse modeling of FSI
by calibrating models to in vitro experiments and synthetic datasets [301–303].

In 2014, Bertoglio et al. proposed the use of Kalman Filters to estimate the material
properties of several regions of the aorta from inverse FSI [304]. Available clinical data
included SSFP MRI, intravascular pressure measurements at the ascending, thoracic, and
abdominal aorta, and PC MRI measurements at four planes along the aorta. The aorta was
divided into four sections each one assumed to follow the Mooney–Rivlin material model.
The arbitrary Lagrangian–Eulerian algorithm was implemented to couple fluid and wall
mechanics. Kalman filter optimization was used to minimize an error function based on all
available clinical measurements weighted by the associated uncertainty while fitting the
regional material parameters. Results reproduced the expected stiffness distribution, with
stiffer distal descending aorta.

Zambrano et al. proposed an iterative inverse method for the study of the pulmonary
artery [305]. Intravascular pressure measurements, PC MRI at the main branches of the
pulmonary artery, and cine MRI were collected from a pulmonary hypertensive adult
patient and a healthy volunteer with no reported cardiovascular disease. A 3D model from
the main pulmonary artery (MPA) down to the 4th branch generation was built from MRI
images at the end-diastole configuration, which was considered stress-free. MRI-derived
diameter changes were calculated at the main pulmonary artery and coupled to pressure
measurements.

The arterial wall was assumed homogeneous and isotropic linear elastic through-
out the entire domain. The fluid–structure interactions were modeled with the coupled
momentum method. Boundary conditions consisted of PC MRI-derived inlet flow and
three-parameter Windkessel models in the outlets. The elastic modulus of the wall and
Windkessel boundary parameters were calibrated by iterating in two nested loops. In
the inner loop, the Windkessel parameters were adjusted until the error to the measured
pressure waveform is minimized, while the outer loop adjusted the elastic modulus until
the error to the measured pressure-area curve is minimized (Figure 15a). On each iteration,
the forward problem was solved until solution periodicity was confirmed. The proposed
model was able to reproduce the expected increase in arterial stiffness and vascular flow
resistance in the hypertensive patient. In a follow-up study, the methodology was applied
to a cohort of six individuals with pulmonary artery hypertension and five healthy volun-
teers [306]. A statistical analysis of the results revealed that the hypertensive group showed
significantly larger wall stiffness, regurgitant flow, and distal vascular resistance, with
significantly smaller time-averaged wall shear stress (Figure 15b). Interestingly, a linear cor-
relation between the estimated wall elastic modulus and the magnitude of retrograde flow
volume was found, which further supports the hypothesized relation between irregular
flow patterns and the pathological remodeling of vascular tissue.

6.6. Summary

In Table 9 we summarize the highlights of inverse analyses for cardiovascular mechan-
ics applications and notable results.
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Figure 15. Iterative inverse method and results for the study of pulmonary artery hypertension.
(a) Double optimization loop for the inverse resolution of distal vasculature Winkesel model parame-
ters and wall elastic modulus from phase contrast MRI data. (Reprinted/adapted with permission
from Ref. [305]. 2018, Elsevier) (b) Biomechanical parameters of pulmonary artery from healthy
individuals and pulmonary artery hypertension patients. Models are organized from left to right
according to the wall elastic modulus (stiffness) scale, colormaps show the time-averaged wall shear
stress (TAWSS) distribution (Reprinted/adapted with permission from Ref. [306]. 2021, Zambrano
et al.; open access).
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Table 9. Summary of medical imaging-based kinematics.

Section Highlights

6.

The development of patient-specific inverse analyses of cardiovascular mechanics has advanced considerably recently thanks to
continuous technological improvements in imaging hardware and software, decreasing cost, increased imaging availability,
improvements in image-based kinematics acquisition and postprocessing, simulation engineering, and significant increases in
computational power.

6.1

Blood vessels, in particular those of the arterial tree, function under physiological pressure load at all times and are axially
pre-stretched; thus, none of the patient-specific configurations resolved by in vivo imaging is truly a stress-free or zero-strain
configuration.
The unloaded configuration of cardiovascular tissue is not truly stress-free. The residual stress is hypothesized to be the product of
heterogeneous growth and remodeling of tissue.
For patient-specific analyses, the material properties and zero-stress configuration are unknown. Thus, the solution to this problem
requires the specification of at least two deformed and loaded states as input data.
Direct methods for the solution of inverse elastostatic problems to determine the unloaded configuration of the heart and arteries
have been incorporated into FEM solvers for hyperelastic and fiber-family material models.
Several iterative methods for the solution of the unloaded configurations have been proposed. All these methods have in common
that a single point or a collection of points on the surface are fixed, while forward inflation problems from unloaded configuration
iterations to the known loaded configurations are solved until a convergence criterion is satisfied. Unloaded configuration iterations
are estimated either by shrinking the known loaded configuration or by taking “backward” inflation steps.
An alternative iterative approach is to solve the strain and stress distribution that balances the applied loads acting on the
image-derived anatomic configurations without the resolution of the unloaded geometry.

6.2

The inverse modeling of the heart as a whole is currently unfeasible due to the complexity of the system and computational
limitations.
An accurate understanding of myocardial mechanics is key for the diagnosis and treatment of diverse cardiac pathologies, and
potentially, to predict and stratify the risk of heart failure after infarct.
The assumption of material homogeneity is a common and convenient simplification for forward and inverse models. Homogeneous
models may be deemed to be adequate for the study of healthy hearts, or when the aim of the analysis is not centered on the study of
focalized lesions.
Homogeneous models can quantify the stiffening effect of infarct lesions and predict the natural compensation of the active
component of the heart to maintain cardiac function after infarction.
Modeling of material heterogeneity of the heart can provide better fits to kinematic data, can resolve property changes, and identify
the location and severity of myocardial lesions. This comes with an increment of model complexity and computational expense.
A common approach is to approximate spatial variations of myocardial properties and microstructure with region-wise
heterogeneities. AHA standard division of the left ventricle is often used to define region-wise heterogeneity.
Heterogenous models of the myocardium can identify the material properties of the infarcted zone, the border zone, and the
unaffected tissue.
Heterogeneous models can accurately predict how impaired activation of the myocardium affects the cardiac function in patients
with left bundle branch block (LBBB).
Inverse analyses with heterogeneous models have been used to predict the effect of ischemia on cardiac function, and its recovery
after revascularization treatment.

6.3
Heart valves and leaflets are thin structures with complex motion that are difficult to resolve through in vivo imaging techniques.
Owing to this, most studies on these structures are carried out in vitro.
Recent developments in US imaging of heart valves are the first steps toward the in vivo inverse modeling of these structures.

6.4

Changes in mechanical properties of arterial walls have been associated with the onset of multiple cardiovascular pathologies and
remain an important predictor of cardiovascular morbidity and mortality in clinical practice.
The image-based resolution of vascular tissue kinematics is technically challenging due to the relative thinness of vascular walls.
Inverse analyses of healthy arteries have been used to assess the stiffening effect of aging and to explore the effect of perivascular
interaction on aortic mechanics.
Aneurysms are a potentially fatal condition that consist of the enlargement of blood vessels caused by the remodeling of its wall.
Aneurysmal rupture risk increases with maximum diameter on average for the entire population, although diameter alone struggles
to predict rupture for any given individual.
Inverse modeling has been used to obtain heterogeneous maps of mechanical stress and strain in thoracic and abdominal aneurysms
and to assess the effect of disease progression on tissue stiffening.
Atherosclerosis is a chronic inflammatory disease that manifests as the hardening and occlusion of arteries due to the build-up of
plaque on the lumen of the arterial wall.
The in vivo evaluation of the mechanical properties of atherosclerotic plaques and their mechanical environment through inverse
modeling could support the assessment of risk associated with plaque rupture.

6.5

Computational modeling of hemodynamics is more resource consuming than tissue mechanics.
Statistical analyses have shown that outputs of the inverse methods yield smaller uncertainties than CFD or 4D flow MRI data
analysis alone.
Inverse modeling of the fluid–structure interaction of the blood flow in the pulmonary arteries has been used to identify relevant
markers of pulmonary artery hypertension. Among these markers are wall stiffness, wall shear stress and oscillation, pulse wave
velocity, and regurgitant flow.
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7. Closing Remarks

Inverse modeling is an analysis tool that can provide detailed information about
domain properties and loading conditions using kinematic measurements as inputs. When
applied to collected data from controlled in vitro experiments it can provide dynamic
information with high levels of accuracy and reliability. In biomedical research, inverse
modeling has been coupled with microscope-based imaging techniques to yield relevant
information on the response of cardiovascular and engineered tissue to mechanical stimuli
at the cellular level. These contributions hold relevant scientific value in the fields of
mechanobiology and tissue engineering, however, the extrapolation of these results to
patient-specific cases is limited.

There is great interest in the development of reliable patient-specific non-invasive
medical tools to assess the onset and progression of cardiovascular disease. This has led to
significant advances in non-invasive medical imaging, including improvements in resolu-
tion, scan time, operational costs, availability, and the ability to quantify detailed regional
kinematic information. Inverse biomechanical analyses can exploit this available clinical
data to provide patient-specific estimations of dynamic parameters that otherwise require
invasive (and potentially risky) procedures, such as vascular catheterization, or cannot
be measured at all. Inverse modeling fits dynamical unknowns to kinematic data, which
would be simply assumed with fixed values on classical forward modeling approaches.
However, inverse modeling cannot entirely substitute measurements of absolute pressure
(required to define the loading boundary conditions); instead, this technique can be used to
estimate other relevant biomarkers defined in terms of pressure or load differences, such as
vascular flow resistance. As highlighted in this review of the clinical applications of these
methodologies, inverse analyses can estimate stiffness for healthy and diseased cardiac and
vascular tissues, identify and delineate pathological lesions, resolve tissue composition, and
quantify mechanical loads and stresses during in vivo function. Inverse modeling can also
provide physiological rationales for empirically derived risk factors, such as aneurysmal
diameter and ventricular volume, as well as yield new sets of physiologically meaning-
ful risk markers. In addition, inverse modeling can deliver insights into how biological
tissues respond and adapt to pathology and/or therapies through comparative studies,
such as regional changes in active contraction within infarcted hearts or tissue growth and
remodeling in aneurysmal arteries.

Despite all these advantages, the incorporation of patient-specific inverse-modeling in
clinical practice still faces several challenges, including the presence of multiple solutions,
uncertainty regarding patient-specific stress-free reference configurations, computational
costs, and the lack of required clinical and imaging data. The multiplicity of solutions
is a common challenge to any inverse problem, and the solution set can be reduced by
constraining the optimization parameters within ranges of expected values, incorporating
regularization functionals, sampling stochastic parameters, designing special optimization
target functions, and, for the specific case of Bayesian approaches, providing probability
distributions of parameters from previous experiences.

A step towards resolving patient-specific stress-free references for tissue mechanics
is the inverse solution of unloaded configurations through direct and iterative methods.
However, it is generally accepted that unloaded blood vessels are not truly stress-free
due to the existence of residual stress/strains which are influenced by the heterogeneous
growth and continuous remodeling of the tissue, including the prestretch of key extracel-
lular matrix components such as collagen. This issue could potentially be addressed by
the implementation of a constrained mixture theory and the in vivo resolution of tissue
microstructure via medical imaging.

The computational cost of iterative inverse methods is often addressed by simplifica-
tions of the forward problem, the use of surrogate models for early optimization stages,
utilization of more efficient iterative optimization methods, and the use of parallel comput-
ing. Furthermore, the ongoing increase of computational power may allow the solution of
complex problems that escapes the reach of current technology.
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Similarly, it is reasonable to expect that medical imaging technology will continue to
evolve, making them more readily available in healthcare practice. The development of
data-driven techniques for the support of clinical decision making and treatment planning
could also motivate the implementation of image-based kinematics in routine health care.

Inverse modeling is just one of many patient-specific techniques that have been
proposed as a useful support for clinical practice. Machine learning has been increas-
ingly explored in the last two decades for incorporation into the new field of precision
medicine [307]. This technique consists of training decision-making algorithms with anno-
tated large datasets, which when combined with the application of statistical principles,
can return valuable evidence-based information from raw clinical data [308]. The main
advantage of machine learning techniques is that once the algorithm has been trained,
results can be obtained in short times with low associated computational cost. However,
the outcomes are highly dependent on the quality of the annotated dataset used for training,
as they are not the result of a physiology-based simulation but on statistical probabilities
calculated from collected evidence. Thus, this approach can potentially fail if unique or
unexpected conditions are presented.

An additional advantage of simulation-based techniques is their predictive capabilities.
Founded on physical and physiological principles, patient-specific inverse problems can
be coupled to mechanobiology-inspired growth and remodeling models to potentially
predict the progression of diseases and/or the effect of treatments [106]. In conclusion,
image-based inverse modeling is a promising quantitative tool to generate and analyze
clinically relevant physiological data through a non-invasive approach with the ultimate
goal of providing improved patient-specific diagnostic and prognostic assessments of
diverse cardiovascular diseases in order to improve outcomes, reduce costs, and increase
the quality of life.
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