
����������
�������

Citation: Nagy, A.M.; Czúni, L.

Classification and Fast Incremental

Learning of Steel Surface Defects

with Randomized Network. Appl. Sci.

2022, 12, 3967. https://doi.org/

10.3390/app12083967

Academic Editor: Dae-Ki Kang

Received: 11 March 2022

Accepted: 8 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Classification and Fast Few-Shot Learning of Steel Surface
Defects with Randomized Network

Amr M. Nagy 1,2,* and László Czúni 1

1 Faculty of Information Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary;
czuni@almos.vein.hu

2 Faculty of Computers and Artificial Intelligence, Benha University, Banha 13511, Egypt
* Correspondence: amr.nagy@virt.uni-pannon.hu; Tel.: +36-707-854-218

Abstract: Quality inspection is inevitable in the steel industry so there are already benchmark datasets
for the visual inspection of steel surface defects. In our work, we show, contrary to previous recent
articles, that a generic state-of-art deep neural network is capable of almost-perfect classification of
defects of two popular benchmark datasets. However, in real-life applications new types of errors can
always appear, thus incremental learning, based on very few example shots, is challenging. In our
article, we address the problems of the low number of available shots of new classes, the catastrophic
forgetting of known information when tuning for new artifacts, and the long training time required for
re-training or fine-tuning existing models. In the proposed new architecture we combine EfficientNet
deep neural networks with randomized classifiers to aim for an efficient solution for these demanding
problems. The classification outperforms all other known approaches, with an accuracy 100% or
almost 100%, on the two datasets with the off-the-shelf network. The proposed few-shot learning
approach shows considerably higher accuracy at a low number of shots than the different methods
under testing, while its speed is significantly (at least 10 times) higher than its competitors. According
to these results, the classification and few-shot learning of steel surface defects can be solved more
efficiently than was possible before.

Keywords: steel surface defects; visual inspection; deep learning; few-shot learning; EfficientNet;
randomized neural network

1. Introduction

There is a variety in the appearance of surface defects in industry, for example, hot-
rolled steels, solar panels strips, electronic commutators, steel rails, fabrics, printed circuit
boards, magnetic tiles, and more. Steel is the most important metal in terms of quantity and
variety of applications in the modern world. Surface defects in hot-rolled steel can be asso-
ciated with the steel production process, its casting, deformation conditions, crystallization
of the ingot, etc. They have a considerable impact on the metal’s technological qualities
during future processing as well as on its operational features. Due to the manufacturing
process and environmental conditions, steel surfaces can have a variety of defects. The
non-uniform surface brightness and the variety of shapes of defects make their detection
challenging. Additionally, new defects, which have never been seen before, may arise
throughout the manufacturing process. In the beginning, these new defects may have few
shots, so we have to go through fast incremental learning to incorporate them into the
classification model as soon as possible.

Steel surface defects show various random patterns, which are good targets for the test-
ing and comparison of concurrent classification methods. Figures 1 and 2 illustrate samples
of the two popular benchmark datasets: the Xsteel surface defect dataset (X-SSD) [1] and
the Northeastern University surface defect database (NEU) [2]. There are six categories in
NEU and seven in X-SSD, with two types of defects present in both. Since the two common
artifacts (inclusion and scratches) look somewhat different, we handle them independently.

Appl. Sci. 2022, 12, 3967. https://doi.org/10.3390/app12083967 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12083967
https://doi.org/10.3390/app12083967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6993-3541
https://orcid.org/0000-0001-7667-9513
https://doi.org/10.3390/app12083967
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12083967?type=check_update&version=1


Appl. Sci. 2022, 12, 3967 2 of 22

Figure 1. Examples for the six kinds of defect classes of the Northeastern University surface defect
database (NEU) [2]: (a) crazing (Cr), (b) inclusion (In), (c) patches (Pa), (d) pitted surface (Ps),
(e) rolled-in scale (Rs), (f) scratches (Sc).

Figure 2. Examples for the seven kinds of defect classes of the Xsteel surface defect dataset (X-
SSD) [1]: (a) inclusion (Si), (b) red iron sheet (Ri) , (c) iron sheet ash (Is), (d) scratches (Ss), (e) oxide
scale-of-plate system (Op), (f) finishing roll printing (Fr), (g) oxide scale-of-temperature system (Ot).

The image processing methods dealing with steel surface defects can be classified into
two main categories:

• Detection: The task is to decide whether the image patch has any errors, sometimes
the error should be localized (segmented) and also classified [3–7];

• Classification: In case of classification, the image patches should be labeled according
to the visible defect type. Training examples are available to learn the visual features
of known classes [8–10].

Surface defect detection can be considered as a typical problem in visual quality
inspection thus it is related to many areas of pattern recognition, machine learning, image



Appl. Sci. 2022, 12, 3967 3 of 22

processing, and computer vision. In most applications, beside the questions of detection
and classification, the following key problems are to be answered [11]:

• The real-time problem: The detection time should be fast enough to support the
undergoing (production) process without significant loss in accuracy;

• Small target problem: Often the absolute or the relative (to the image) size of the
defect is small. In our article we do not have to face this problem directly since we use
benchmark datasets, however, in a real-life application, the size can have an indirect
effect on the real-time problem;

• The small sample problem: The number of defect images, used either in manual
parameter tuning or in automatic learning mechanisms, is often very limited;

• Unbalanced sample problem: This problem mainly exists in the task of supervised
learning and relates to the previous one. Often the number of normal samples forms
the majority, while the amount of defected samples only accounts for a small part. The
few-shot learning problem means that we have a very unbalanced set;

• Domain shift [7]: When the dataset used in training and the dataset in practice are
captured under different conditions, it can result in poor detection performance.

In incremental learning, new data (i.e., new shots of previously seen or unseen classes)
arrive in phases over time and we have to extend our classification model to include these
new classes or new samples of classes. In general, in the literature different synonyms
are used for this problem, such as continual learning [12,13], lifelong learning [12,14], or
incremental learning [15–20]. The three major challenges in these scenarios are:

• Catastrophic forgetting: It was already investigated in the early 1990s [21] that a
neural network is going to have a lower performance of previously trained classes
when re-trained or tuned with new ones in focus. The problem is most serious if we
have no training data for the already trained classes, or the dataset for re-training is
unbalanced due to the missing samples from old classes. There are several approaches
to avoid this case by methods such as scaling the weights of trained classifiers [22],
using dual memories for storing old images and their statistics [23], or progressive
incremental learning [24] where sub-networks are added incrementally to previous
ones as the task is growing with new classes;

• Low number of representatives of new classes: In practical applications there is a data
collection period when lots of samples are collected about the possible artifacts and
used for model building. In contrast, when the system is in use for long periods, the
undergoing background manufacturing processes (changes in the environment, or
other influences) can result in new defect classes, which might appear in very few
samples initially. In general, solutions are categorized into three main sets: using prior
knowledge to augment the supervised experience (in our case data augmentation of
the available few shots); modifying the model, which uses prior knowledge of known
classes; and algorithmic solutions to alter the search for the best hypothesis in the
given hypothesis space [25]. In extreme cases, we talk about zero-shot learning: when
a new type of defect appears, it is a question whether we are able to classify it as a
new class or if it will fall into an existing category. We would like to avoid this latter
case and thus we have to create a new category and be able to tune the existing model
to consider it [10,26,27];

• Complexity of updating the classifiers: It is a practical problem during the application
of deep learning models that the re-training or fine-tuning of new or updated models
can be time consuming or computationally very complex. A fast adaptation to the ex-
tended set of classes and easy training procedures are needed for real-life applications.

Typically, the above three problems appear simultaneously. The advantage of our
proposed solution is that it addresses all of them with one architecture, instead of attacking
the problems independently with different methods. The main contributions in our article
are the following:



Appl. Sci. 2022, 12, 3967 4 of 22

• Instead of re-tailoring old models or defining new deep neural architectures, we show
that a well-proven and efficient deep neural network (DNN) (EfficientNet-B7 [28])
can give the best known accuracy for the classification of steel surface defects on two
major benchmark datasets;

• We propose a novel architecture designed for incremental learning with the following
features: it avoids the catastrophic forgetting of old classes, it has good performance
in case of very few shots, and it can be trained very fast for new classes. To achieve
this, we apply randomized networks concatenated to the feature extraction of a pre-
trained DNN. The computation of its weights can be done very efficiently by the
Moore–Penrose generalized inverse.

Our paper is organized as follows. In the next section we overview related papers,
then, in Section 3, we introduce the proposed architecture and training method. In Section 4,
the used datasets are described while the experiments, evaluations, and discussions can be
found in Sections 5 and 6. Finally, we conclude our article in the last section.

2. Related Works

Surface defect detection methods can be classified into traditional feature-based ma-
chine vision algorithms and deep learning algorithms [11]. Since all of the latest papers
belong to the latter set, our review contains such approaches. We review related papers
in three groups: steel surface classification methods, zero-shot learning approaches, and
few-shot learning approaches (with some particularly tested on steel surface defects). For
the summary see Table A1.

2.1. Detection and Classification of Steel Surface Defects

In ref. [5], the authors introduced an improvement of the YOLOv4 architecture by
adding a feature pyramid network (FPN) module after sampling, on the so-called neck
part of the network. Enhancing the feature information this way, the experimental results
showed a better average detection accuracy (92.5%) than the original network. Tests were
carried out only on three defect types of the NEU dataset (crazing, patches, scratches) and
more improvements were expected by the authors if larger training sets could be involved.

In ref. [4], an improved faster R-CNN model was proposed by using deformable
convolutions instead of conventional convolutions to get complex features for the detection
of the various artifacts. Moreover, the RestNet backbone-based network was enhanced by
multi-level feature fusion. By these techniques, the detection rate could be enhanced by
appr. 0.13 MAP.

In ref. [6], a framework called CPN (classification priority network) was described
for the detection and classification of defects. In CPN, the image is first classified by a
multi-group CNN, training different groups of convolution kernels separately to extract
the feature map groups of different types of defects. Then, according to the classification
result, the feature map groups (named multiple group CNN, MG-CNN) that may contain
defects are separately input into another neural network, to regress the bounding boxes of
the corresponding defects. The detection rate reached 96% and the recognition rate 98.3%
on their own dataset. These seem to be good results; however, the zero-shot possibilities
were not mentioned.

In ref. [3] proposed an end-to-end defect detection network (DDN). First, ResNet
is used to generate feature maps of the input images. Then, these feature maps are fed
into the proposed multi-level feature fusion network (MFN). MFN generates one feature
vector from the lower-level and higher-level features. A region-proposal network is used to
generate regions of interest (ROIs) based on these hierarchical features. Finally, a detector,
which consists of a classifier and a bounding box regressor, is used to produce the final
detection results for each ROI. DDN results, when using ResNet50 as backbone, show that
it could achieve 99.67% accuracy for defect classification and 82.3 MAP for defect detection.
We note that the former value is equivalent to the plain ResNet50 according to ref. [29].



Appl. Sci. 2022, 12, 3967 5 of 22

In ref. [7] attacks the classification problem when there are changes in the features
of the patterns, for example, the appearance of steel surface defect changes during long
production intervals. Their framework is called DA-ACNN, since it combines domain
adaptation (DA) and the adaptive learning rate of the convolutional neural networks
(ACNN). To enable cross-domain and cross-task recognition, they included an additional
domain classifier and a constraint on label-probability distribution to account for the lack
of labels in a new domain. Additionally, to increase network performance, the normal
distribution and a quadratic function are utilized to optimize the loss.

In ref. [8], the authors proposed a steel surface defection classification technique fine-
tuned with the help of a feature visualization network. The proposed model consists of
two main components: the VGG19 network, trained, fine-tuned, and later used for the
classification of surface defects, and a decoding part (DeVGG19). The feature maps of
the decoding part are used to find the best settings of VGG19 using image and feature
map comparisons with the structured similarity index measure (SSIM), and while it is an
interesting approach, it is not obvious for the reader why the aspects of the decoded visual
appearance could have a positive feedback on the parameters of the network used purely
for classification. This interesting approach could reach 89.86% on the NEU dataset, which
is below the state of the art (see VSD in Section 5).

In ref. [9], different versions of ResNet were investigated to classify three kinds of
defects on metal surfaces (scratches, scrapes, abrasions, and normal samples). The best
results were achieved with ResNet152, with a classification accuracy of 97.1% on their
own collection of images (including images of NEU). This paper is a good illustration that
properly trained off-the-shelf networks can reach a good performance on steel surfaces.
Another example is a modified AlexNet for feature extraction, where the classification was
solved with a support vector machine [30]. Performance on all classes of NEU showed
99.70% accuracy. The highest known performance is published in ref. [10], where VGG16
was extended with several layers for classification (ExtVGG16) and could reach 100% on
the six classes of NEU.

2.2. Zero-Shot Learning

Zero-shot learning can be considered as a special case of few-shot learning, when there
are no samples at all from some of the classes. In general, it models learned parameters
for seen classes together with their class representations and rely on the representational
similarity among class labels. Semantic attributes can represent the characteristics, as
latent attributes, of samples. The success of zero-shot learning thus depends on the quality
of semantic attributes: whether they have sufficient discrimination and expressiveness.
However, semantic attribute annotations are very hard to get in industrial applications.
One example of the usage of such an approach for surface defects is in ref. [27], where the
so-called GloVe model [31] was used to extract word vectors as the auxiliary knowledge
source (since they used a different dataset, the results are not comparable to the others
involved in our article). If no such kind of semantic attribute annotations are available,
then still-clustering-type approaches can work. In ref. [26], the authors show a method
in which zero-shot learning may be used to detect steel surface defects with a Siamese
network. The network is to learn whether two input samples belong to the same class
or not. In experiments, three defect classes were trained from the NEU dataset, and the
Siamese-based clustering was run on the other three classes, which were never shown to the
network during training. The accuracy of this task, reaching 83.22%, could be surpassed in
ref. [10], where a Siamese network was also used. This latter approach uses a slightly more
complex structure and there are also differences in dropouts and regularization, which
may all play an important role to reach better accuracy (85.8%) at the same testing and
training conditions.

2.3. Few-Shot Learning

A learning model fed with sufficient and high-quality data is more likely to yield
more-or-less accurate results. However, sometimes it is difficult to collect enough defect



Appl. Sci. 2022, 12, 3967 6 of 22

samples to achieve a good training model based on traditional learning structures. This can
be the case in the production of steel strips, where steel surface defects are scarce and hard
to collect. To overcome this problem, special approaches appeared, which can efficiently
learn from a very small number of training data.

In ref. [32] shows a simple approach for few-shot learning of steel surface defects.
Three feature extraction networks (ResNet, DenseNet, and MobileNet) are compared and
two kinds of feature transformations are tested (mean subtraction and L2 normalization).
For one-shot learning, classification is accomplished by choosing the nearest neighbor,
whereas for the multi-shot setting, the average value of the known sample feature vectors
of each class is used as a class prototype to compute the nearest neighbor for the query. For
the one-shot case, MobileNet reached the highest accuracy with 87.3%, while for five shots,
92.33% was achieved by DenseNet121 on the NEU dataset.

In ref. [33], a more sophisticated semi-supervised learning model is described, which
learns from both labeled and unlabeled samples. They use graph convolutional net-
works (GCN) [34], naming their model multiple micrographs graph convolutional network
(MMGCN). GCNs construct graphs where the images are represented by nodes and their
relationships by edges. Feature information propagates between connected nodes, and the
distance of connected nodes is closer than the distance of the disconnected ones. MMGCN
performs graph convolution by constructing multiple micrographs instead of a large graph,
and labels unlabeled samples by propagating label information from labeled samples to un-
labeled samples in the micrographs to obtain multiple labels, while final labels are obtained
by weighting the labels. The experimental results demonstrate that the proposed MMGCN
can achieve a lower computation complexity and practicality, and a higher accuracy than
GCN. In fully supervised mode, MMGCN could reach 99.72% accuracy, while when the
ratio of known labels was only 25%, accuracy was 98.06%.

Another approach for label propagation is in ref. [35], where defects on the surface
of lithium batteries are to be found. Training images were used to fine-tune a pre-trained
ResNet10 model, then a k-NN graph was built to evaluate the distance between samples,
including both the labeled and the unlabeled ones. To refine the scoring of samples, the label
propagation method of ref. [36] was used. Unfortunately, while classification accuracy on
their own dataset was good, the effect of label propagation was not analyzed in the article.

Few-shot learning can be interpreted as the problem of unbalanced training sets.
Ref. [37] proposes a meta-training approach to handle the unbalanced data caused by the
newly arriving error classes having only few shots. Each training epoch is composed of
so-called episodes and sub-sets of training data are called support sets. At the end of the
episodes, the classification performance of a query set, based on knowledge gained from
the respective support set, is evaluated to fine-tune the model parameters. The tuning
of DNN parameters is solved by a prototypical approach. Each class is represented by
a prototype feature vector and the weights of the feature extractor DNN will be tuned
to separate the sample features from other prototypes the most. The superiority of this
training approach is compared to other traditional classification models by evaluations on
a textile dataset.

3. Proposed Methods

What we have learnt in the previous section is that different ideas were implemented
to improve the performance of DNNs for the detection of defects. Such were: feature
pyramids [5], deformable convolutions [4], separated multiple classifiers for classes (MG-
CNN) [6], SVMs for the classification of DNN features [30]. Few-shot learning was attacked
by label propagation [33,35] and prototyping approaches [32,37]. Now we show that state-
of-the-art deep neural networks are capable of an almost-perfect classification of steel
surface defects on the two benchmark datasets. Then, we discuss the problem of few-shot
learning and introduce our proposed architecture.



Appl. Sci. 2022, 12, 3967 7 of 22

3.1. Classification of Defects with EfficientNet-B7

There is a large number of DNNs for object recognition or classification and to com-
pare their performance different benchmark datasets are created, such as ImageNet [38],
MNIST [39], CIFAR-10, and CIFAR-100 [40]. If one network has high performance on some
dataset it has high-probability for good performance on others, however, the different
characteristics of data from different domains does not guarantee this.

In 2019, Google Brain published open source EfficientNet [28] as a family of image clas-
sification models to achieve state-of-the-art accuracy, yet still being an order-of-magnitude
smaller and faster than previous models. The members of the family are the differently
scaled versions (from B0 to B7) of a base model. The largest variant (B7) achieved state-of-
the-art top-one accuracy on ImageNet in 2019, and it could reach the same performance as
the previous state-of-the-art model but being 8.4 times smaller and 6.1 times faster during
inference. In ref. [28], a compound scaling method was introduced to scale the depth
(number of layers), the width (number of kernels in a layer), and resolution (size of input
image) of an existing model and a baseline network with fine-tuned layers in a balanced
manner considering the computation limits. They followed the idea that a small model
can be easily fine-tuned on a small problem, and that a systematic scaling, changing only
the dimensions but not the main structure and operation of layers, should result in an
efficient network. Compound scaling proposes the right ratio between dimensions, while
the baseline network (EfficientNet-B0) was designed with the help of optimization [41],
considering both accuracy and computational cost on ImageNet.

The building blocks of the base EfficientNet model, obtained through a neural architec-
ture search, are the so-called mobile-inverted bottleneck [42] layers, originally developed
to be used as mobile-size networks (networks able to operate in mobile and embedded
devices). These blocks use well-proven existing techniques, such as residual connections
and depth-wise separable convolutions, and on the other hand also apply the special-
techniques-inverted residuals and a linear bottleneck. The interested readers can find
details about these in ref. [42].

Since its introduction, there is a very wide range of applications where EfficientNet
or its variants showed very good accuracy, e.g., mushroom recognition [43], skin disorder
recognition [44], iris recognition [45,46], forest fire detection [47], steganalysis [48], or plant
disease detection [49], just to mention a few recent articles. Our experiments, detailed in
Section 5, show that EfficientNet-B7 outperforms all previously published architectures for
both NEU and X-SSD datasets. Moreover, in the next subsection we use EfficientNet-B7 (pre-
trained on ImageNet) as the backbone of our proposed architecture for few-shot learning.

3.2. Few-Shot Learning of Defects

As automation is spreading widely in manufacturing processes, the need for automatic
anomaly detection is growing. However, if we trained our machine intelligence for a given
task, there is always a non-zero probability that unseen events might happen that the
system is not trained to handle yet. A part of this problem is few-shot learning, where new
kinds of errors appear to be classified as soon as possible, typically with very low number
of training samples. We have to carry out incremental learning, since previously trained
knowledge should not be forgotten. Moreover, the re-training of the whole architecture
could be resource-demanding: the large amount of time, memory, and processing power is
typically not available on site or in time.

In a new approach, we answer these challenges by the combination of two very
efficient neural network architectures. The solution, illustrated by Figure 3, is composed of
two parts:

1. The backbone is a deep neural network with an output feature vector of relatively large
dimension (1024). We have chosen EfficientNet-B7 for this task due to its design for op-
timal size, structure, and accuracy. The task of the backbone is to adapt from ImageNet
weights to steel surface defects with high accuracy with conventional training;



Appl. Sci. 2022, 12, 3967 8 of 22

2. The back-end structure, for the further processing of extracted features, is a two-layer
neural network where the first layer contains random weights. Since the backbone is
previously fine-tuned to a set of known classes of steel surface defects, the task of this
back end is to quickly learn the new classes based on the features of the backbone.

The reasoning of using this architecture is as follows:

• EfficientNet-B7 is very efficient for the classification of steel surface defects (see Section 5).
Near its output, it still has a lengthy (hopefully rich) feature vector used by our back end;

• The back end has a random layer responsible for the generalization of fine-tuned
feature values suitable for learning unseen classes;

• Since the back end has only one layer to be trained, it can be explicitly computed
with algebraic computations without a lengthy backpropagation method. These
computations give optimal solutions in the least-squares sense.

Figure 3. The proposed architecture (EffNet+RC) for few-shot learning. In phase 0, we train the
backbone through a large number of samples of base classes. In phase 1 (and further phases), we use
features extracted by the previously trained backbone. Here, only the weights W are computed with
the help of a few samples, while weights R are random and fixed.

3.2.1. Randomized Weights for Generalization and Fast Tuning

It is well known that randomizing weights in neural networks can result in improved
accuracy. In ref. [50], the input data of a single (hidden)-layer feed-forward neural network
(SLFN) were weighted with random weights. Then, in the output layer, a fully connected
network with bias was applied, where its weights could be calculated by solving a linear
set of equations by standard numerical methods. In ref. [51], the random vector functional
links network (RVFL) was proposed, where beside the input patterns, their randomized
version is also generated and fed to the output using the standard weighted connections.
Extreme learning machines (ELM) [52] have subtle variations to these randomized networks
(no direct connection between inputs and outputs like RVFL, other usage of bias than in
ref. [50]) but became more popular recently, in spite of reports that RVFL gives better
performance than ELM in some cases [53]. For more information, we propose to read
ref. [54], a review on neural networks with random weights.



Appl. Sci. 2022, 12, 3967 9 of 22

A formal description of the applied randomized back-end network follows. Consider
a set of N distinct training samples (xi, yi), i = 1, . . . , N. Then, a SLFN with L hidden
neurons has the following output equation:

t(xi) =
L

∑
j=1

wjφ(rjxi + bj), (1)

where φ is a sigmoid function, rj are the random- and fixed-input weight vectors, bj are the
biases, wi are the output weight vectors to be tuned, and t is the target vector (the outputs
for the different classes). R and W in Figure 3 correspond to the weights here. Now, let us
see how to compute W if R is set randomly. In practice, closed-form solutions are used to
find wi in a matrix form. Thus, we can shorten the equation:

T = HW, (2)

as the outputs of all hidden neurons are gathered into the matrix H:

H =

φ(r1x1 + b1) · · · φ(rLx1 + bL)
...

. . .
...

φ(r1xN + b1) · · · φ(rLxN + bL)

, (3)

given W =
(
wT

1 · · ·wT
L
)T, and T =

(
tT
1 · · · tT

N
)T.

A unique solution for this system can be given by using the Moore–Penrose generalized
inverse (pseudoinverse) [55] of the matrix H, denoted as H†. From Equation (2):

W = H−1T. (4)

To find the “best fit” (least squares) solution to the system of linear equations the
pseudoinverse is computed [55]:

H† = (HTH)−1HT . (5)

Finally, we get the weights:
W := H†T. (6)

This explicit calculation of weights enables us to achieve an instantaneous fine-tuning
of the architecture for new incoming classes in incremental learning.

3.2.2. Randomizing EfficientNet Features

Unfortunately, a neural network with only one hidden layer cannot cope with deep
learning networks regarding accuracy. Besides, we would like to solve the problem of
few-shot learning, where we have not enough information to train our network to the
new classes. What we can do, is to transfer some information from the same domain,
generalize it, and use this information for the classification of the new classes. For this
transfer, we propose to use the randomized back-end network to generalize previously
learnt information (indirectly the feature extractors) stored in a deep backbone network.

Basically, this can be considered as a multi-phase incremental learning mechanism. In
phase 0, we fine-tune a large network (based on EfficientNet-B7) with lots of samples of the
base classes. This backbone network is constructed by leaving the classification block of
EfficientNet-B7, adding a global max-pooling layer, and two fully connected layers. The
first has 1024 neurons, the second is the fully connected output layer with the number of
classes to be trained. After training it with the available samples, this network, without
the output layer, is frozen and used in the next phase as the backbone. Phase 1 is an
incremental step, where we fine-tune only the back-end randomized network given the



Appl. Sci. 2022, 12, 3967 10 of 22

1024 feature vectors as input. Naturally, phase 1 can be repeated many times, as new shots
(or classes) appear.

More formally, suppose we have the set of classes C = {CB, C1, . . . ., CP}, where Ci

denotes the new classes (or equivalently class labels) appearing at step i, P is the maximum
number of steps in incremental learning, and B denotes the base classes with lots of
samples available (CB = C0, and preferably ||CB|| � ||Ci||, for i 6= B). Correspondingly,
DB, D1, . . . , DP represent the training datasets, where Di = (xi

s, yi
s) (s = 1, . . . , Ni), and xi

s is
the s-th example in training phase i, and yi

s is its corresponding class label.
In phase 0, we train the backbone model for classes CB. In later phases, we create a

support set Di = (xi
s, yi

s), such that yi
s ∈

⋃{Cl}, l ≤ i.
While Algorithm 1 gives the pseudo-code of this process, parameters are given in

Section 6. Please note that the incremental phase (or phases) can introduce new classes, not
only shots.

Algorithm 1: Incremental training with few shots with randomized EfficientNet
features.

Input: Training data in phases: D0, D1, D2, . . . , DP; EfficientNet-B7 network;
randomized SLFN classifier

Output: Trained backbone and back-end randomized classifier models
1 i = 0
2 Phase i: Train EfficientNet-B7 for base classes Ci by samples in Di

3 Cut top layer from EfficientNet-B7 to create backbone
4 while i ≤ P do
5 i = i + 1
6 Randomly sample Di and make the augmentation of samples
7 Use the pre-trained backbone to extract latent features for xi

s
8 Train the randomized SLFN as given in Equation (6)

The combination of EfficientNet-B7 backbone and the randomized classifier (RC) is
named EffNet+RC in our article.

4. The Benchmark Datasets

There are several steel surface defect datasets available for the benchmarking of
algorithms. First, we mention GC10-DET [56], which contains 3570 gray-scale photos of
steel surfaces, including 10 kinds of defects. Another new dataset, published in ref. [57],
consists of 21,853 RGB images showing areas with and without failures called pitting, while
in ref. [57], only two classes are specified—this dataset shows the progression of failures at
different time moments, which can be very useful for those who want to detect failures as
soon as possible.

To test EfficientNet-B7, we used the two benchmark datasets already illustrated in
Figures 1 and 2 and described in the following subsections. The reason for choosing them,
beside the relatively large number of classes and large variance in appearance of these
errors, is the wide availability of the concurrent methods used in the evaluations. Since
we found X-SSD more challenging (see the experimental section below), we analyze our
few-shot learning technique only on the X-SSD.

4.1. Northeastern University Surface Defect Database

NEU [2] consists of six different kinds of surface defects. Images, with resolutions
of 200 × 200 pixels and having only one channel, were collected from hot-rolled steel
strips. It contains 1800 images: each defect class has 300 samples. The classes, illustrated
by Figure 1, are: crazing, inclusion, patches, pitted surface, rolled-in scale, and scratches.
Unfortunately, ref. [2] does not contain information about how the defects are generated
during the production of the hot-rolled steel strips. The dataset was divided randomly into
80% for training and 20% for testing.



Appl. Sci. 2022, 12, 3967 11 of 22

Beside NEU, there is a dataset called NEU-DET [3] with the annotated bounding boxes
of defects. This is out of focus from our perspective now.

In the tests of EfficientNet-B7, images were resized to 128 × 128 pixels (without a loss
of accuracy, as will be shown later).

4.2. Xsteel Surface Defect Dataset (X-SSD)

The work [1] introduced a dataset for hot-rolled steel surface defects with 1360 images.
Each image has a resolution of 128 × 128 pixels and has three color channels. This dataset,
as illustrated in Figure 2, consists of seven different defect classes: 397 red iron sheet
(Ri), 122 iron sheet ash (Is), 238 inclusions (Si), 134 surface scratches (Ss), 203 finishing-
roll printing (Fr), 63 oxide scale-of-plate system (Op), and 203 oxide scale-of-temperature
system (Ot). Paper [1] gives some information how the different defects are generated
during the production of the hot-rolled steel strips:

• Red iron sheet: high silicon content in steel and high heating temperature of slab;
• Iron sheet ash: accumulated contamination (e.g., dust, oil) falls onto the surface;
• Inclusions: inclusion of slags in the steel;
• Surface scratches: hot-rolling area with projections—dead or passive rolls can cause

friction on the surface;
• Finishing-roll printing: the slippage between the work roll and the support roll can

result in dot and short-strip damages on the surface of the work roll;
• Oxide scale-of-plate system: if the roller table is damaged it can also damage the

surface of the rolled piece where the iron oxide particles can accumulate and they can
be rolled into the steel in the subsequent rolling process;

• Oxide scale-of-temperature system: it can be caused by many things, such as improper
temperature settings, high carbon content, and unwanted intense oxidation.

5. Experimental Results of Classification and Its Discussion

In case of both datasets, we used the same hyper-parameters: The training was running
for a maximum of 200 epochs and we used early stopping to avoid over-fitting. For the loss
function we have chosen categorical cross-entropy, the learning rate was set to 0.0001 in all cases.

To enrich the dataset we applied traditional augmentation by applying the following
online image transformations:

• Random rotations between 0◦ and 30◦;
• Vertical flipping;
• Horizontal flipping;
• Zooming randomly between 0 and 20% in size.

The description of our hardware and software configuration is given in Table 1.

Table 1. Running and testing environment.

OS CPU GPU Keras Python

Ubuntu 18.04
Intel(R) Xeon(R)
Gold 5115 CPU

@ 2.40 GHz

NVIDIA Quadro
P6000 GPU with

24 GB RAM
2.3.0 3.6.9

5.1. Classification Results on the NEU Dataset

To evaluate the performance of classification, we compare EfficientNet-B7 with several
state-of-the-art algorithms. Training and testing sets were defined as given in Section 4.
Previously, the best known accuracy on the NEU dataset was achieved by a variant of
VGG16 [10], now denoted as ExtVGG16 (since it has several extra fully connected classi-
fication layers). Table 2 shows the comparison of all known alternatives. All results are
very close to perfection: EfficientNet-B7 resulted in 100% accuracy, as well as ExtVGG16.
Although, the number of parameters of ExtVGG16 is 53 Million compared to the 66 Million
of EfficientNet-B7.



Appl. Sci. 2022, 12, 3967 12 of 22

Table 2. Comparison of the classification accuracy of different models on the NEU dataset. If not
specified then information is based on [29]. Training/testing ratio is 80/20 in general. Best values are
highlighted in bold.

Model MMGCN 1 [33] SBF-Net ResNet50
+MFN

Res-
Net50

MVM
-VGG

Res-
Net34

Decaf VSD 2 [8] ResNet43
+MFN

AECLBP OVERFEAT Classic
ResNet50

BYEC ExtVGG16 [10] EfficientNet-B7

Accuracy 99.72% 99.72% 99.67% 99.67% 99.5% 99.33% 99.27% 89.17% 99.17% 98.93% 98.7% 98.67% 96.3% 100% 100%

1 A quantity of 40% of images used for testing, 60% for training. 2 A total of 50 images per class used for testing,
remaining images for training.

5.2. Classification Results on the X-SSD Dataset

In the case of X-SSD, we followed the same steps as described in refs. [1,10] regarding
the division for training and testing: 70% (952) images were used for training and the
remaining 30% (408) for testing. The augmentation was identical to the above described, as
well as other parameters of the training process.

The best previous results were also produced by ExtVGG16 [10] (a little below 100%),
and could be now beaten slightly with EfficientNet-B7. Table 3 shows, beside accuracy, the
computed macro-precision, macro-recall, and macro-F1 values for 14 different methods,
including EfficientNet-B7. Macro-values refer to the averaging of class averages. We also
included the confusion matrix and a misclassified example for EfficientNet-B7 in Figure 4.

Table 3. Comparison of EfficientNet-B7 with other models on X-SSD (all data are based on ref. [1]
except for ExtVGG16 [10] and EfficientNet-B7). Best values are highlighted in bold.

Model EspNet-v2 GhostNet ShuffleNet SqueezeNet Xception VGG16 ResNet50 ResNet101 ResNet152 RepVGG
B1g2

RepVGG
B3g4

RepVGG
B3g4+SA

ExtVGG16 EfficientNet-B7

Accuracy 89.95% 88.72% 87.50% 91.42% 90.44% 92.65% 93.87% 87.01% 92.16% 88.97% 91.67% 95.10% 99.00% 99.26%

Macro-recall 84.19% 87.87% 85.84% 83.21% 87.39% 90.46% 89.41% 88.30% 89.41% 82.04% 85.28% 93.92% 98.00% 98.71%

Macro-precision 88.28% 86.93% 84.83% 90.36% 89.41% 91.70% 93.45% 88.18% 91.41% 90.79% 88.46% 95.16% 99.00% 99.14%

Macro-F1 score 84.28% 87.07% 84.68% 84.15% 88.25% 90.92% 90.02% 87.05% 89.92% 81.58% 84.94% 93.25% 98.57% 99.00%

Figure 4. (Left) Confusion matrix of EfficientNet-B7 classification of the seven error types of the
X-SSD dataset. (Right) An example image of the Si class and an Is defect wrongly classified as Si.

We can conclude that the NEU dataset seems to be too easy since many methods
reached over 99% accuracy and both ExtVGG16 and EfficientNet-B7 could result in perfect
classification. There is a larger gap between the accuracy of the different methods on X-SSD,
where EfficientNet-7 showed the best accuracy.



Appl. Sci. 2022, 12, 3967 13 of 22

6. Testing Few-Shot Learning with EffNet+RC

In the experiments we are implementing two phases of class increments. In phase zero,
we train four classes of artifacts (finishing-roll printing, oxide scale-of-temperature system,
red iron sheet, inclusion), then, in phase one, we are testing both the four base and the three
new classes (iron sheet ash, scratches, oxide scale-of-plate system). In further phases we
do not increase the number of classes, only the number of shots (K). When configuring
the datasets for training and testing the few-shot incremental models, we had to make a
different setup than for the previous classifications. Since in one-shot learning there is no
sample for the validation of the learning process, so we cannot apply an early stopping
mechanism, we run each process for 100 epochs, and alternatively, for 200 epochs. Table 4
summarizes how X-SSD was cut into parts for training and testing purposes for the 4 base
and the 3 incremental classes.

Table 4. The distribution of original X-SSD images in the training and testing datasets for few-shot
learning. K is the number of shots in the experiments. The real number of images fed to the network
during training is larger due to augmentation.

Model

All Images of X-SSD: 1360

Training: 1092 Testing: 268

Base Classes: 835 New Classes: 257 Bases Classes: 206 New Classes: 62

EffNet backbone All None None None
EffNet+RC K shots K shots All All
EffNet+FtC K shots K shots All All
Ft EffNet K shots K shots All All
Ft EffNet Unbal All K shots All All

When training any variant of EfficientNet we applied the same random augmentation
of images in each epoch as it was described before. Since EffNet+RC does not have
epochs we applied augmentation to have 700 extra training images to build up matrix H in
Equation (3).

To evaluate the accuracy of the proposed architecture (EffNet+RC), we compared
it with different alternatives. Since EfficientNet-B7 showed the highest accuracy for the
classification of the seven classes, it was natural to use it as a reference. The following
variations are compared:

• EffNet+RC: Fixed EfficienNet-B7 backbone (in phase zero, see Figure 3), plus random-
ized classifier. To train this network we can use the explicit formula of Equation (6);

• EffNet+FtC: This network only differs from EffNet+RC in that instead of random
weights, backpropagation fine-tuned weights are used in the classifier, and the back-
bone is still frozen see Figure 5. The purpose of this network is to learn the effect
of randomization (when compared to EffNet+RC). We ran the training for 100 and
200 epochs;

• Ft EffNet: Fine-tuned EfficienNet-B7 by few shots (being augmented). To keep the
fine-tuning dataset balanced the ratio of base classes is the same as of the new ones;

• Ft EffNet Unbal: Fine-tuned EfficientNet-B7 with unbalanced data. The same as
above, but possibly all samples from the base classes were used in fine-tuning. This
means unbalanced training, since new classes were sampled only by the few shots.



Appl. Sci. 2022, 12, 3967 14 of 22

Figure 5. The illustration of the Effnet+RC and the EffNet+FtC networks. While the structures are
similar, there is a big difference as the former should not be trained with backpropagation.

The accuracy, measured on all (base and new), and also separately on base and new
classes, are shown in Figures 6–8, correspondingly. To investigate the effect of increasing
the number of shots, K was set to 1, 3, 5, 10, 15, and 20. All experiments were repeated five
times, randomly choosing the training shots, and averaging the results. All test images
were used in the accuracy measurements (as indicated in Table 4).

Figure 6. The accuracy of the different classification models for all classes (base and new). Ft EffNet:
fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7 backbone plus randomized classifier;
EffNet+FtC: fixed EfficienNet-B7 backbone plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned
EfficienNet-B7 with unbalanced dataset.



Appl. Sci. 2022, 12, 3967 15 of 22

Figure 7. The accuracy of the different classification models for base classes. Ft EffNet: fine-tuned
EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7 backbone plus randomized classifier; EffNet+FtC:
fixed EfficienNet-B7 backbone plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned EfficienNet-B7
with unbalanced dataset.

Figure 8. The accuracy of the different classification models for new classes. Ft EffNet: fine-tuned
EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7 backbone plus randomized classifier; EffNet+FtC:
fixed EfficienNet-B7 backbone plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned EfficienNet-B7
with unbalanced dataset.

When talking about few-shot incremental learning, in some scenarios, only few sam-
ples from the new and base classes are available for re-training. In our tests, except for Ft
EffNet Unbal, the same number of shots were used from all classes for re-training. One
would first expect that Ft EffNet could have the highest accuracy, since the whole network
is re-trained, but this is not the case. While it can quickly adapt to the new classes, it gives
the worst performance for the old ones (see corresponding curves in Figures 7 and 8). This
is similar to catastrophic forgetting, and the drop from almost 100% to 87.5–93% is signifi-
cant and the worst among all. Contrarily, if we involve more samples from the base classes
to the re-training (and thus generate an unbalanced training dataset), the performance on
old classes remains almost 100% but gives quite bad results for one to three shots of the
new classes. It is illustrated by the green curve (Ft EffNet Unbal) in Figure 8.

Now, compare the proposed EffNet+RC with EffNet+FtC. These two networks are
similar, except for the fact that the latter does not have a randomized fully connected layer,



Appl. Sci. 2022, 12, 3967 16 of 22

but all of its weights are trained by backpropagation (see Figure 5 for illustration). As
can be read out from Table 5 and Figure 6, EffNet+RC outperformed not only EffNet+FtC
(100) and EffNet+FtC (200) but all other models at K = 1, 3, 10. At a higher number of
shots, it still remained in the mid-range. Our proposed randomized model behaved quite
well for the old classes; meanwhile, it could nicely follow the best curve of the fine-tuned
EfficientNet-B7 (Ft EffNet) for the new ones.

Table 5. The accuracy and rank of the different classification models evaluated on all classes (base
and new). Our values are highlighted in bold.

Method
1 Shot 3 Shots 5 Shots 10 Shots 15 Shots 20 Shots

Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank

EffNet+RC 82.75% 1 88.50% 1 90.39% 2 92.14% 1 92.62% 3 93.31% 3
EffNet+FtC (100) 78.13% 4 80.29% 5 81.56% 5 83.50% 5 84.92% 5 85.89% 5
EffNet+FtC (200) 76.94% 5 83.95% 4 85.97% 4 89.25% 4 90.82% 4 92.31% 4

Ft EffNet 79.40% 2 85.51% 3 85.24% 3 89.62% 3 93.35% 2 94.62% 2
Ft EffNet Unbal 78.58% 3 87.83% 2 91.56% 1 91.63% 2 95.81% 1 97.01% 1

Beside the accuracy values Table 5, we included the weighted F1 score and rank of
the different classification models evaluated on all classes (base and new) in Table 6. The
position of the proposed approach remained the same as was in Table 5.

Table 6. The weighted F1 score and rank of the different classification models evaluated on all classes
(base and new). Our values are highlighted in bold.

Method
1 Shot 3 Shots 5 Shots 10 Shots 15 Shots 20 Shots

F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank

EffNet+RC 82.4% 1 87.00% 1 89.20% 2 92.20 % 1 92.20% 3 92.6 % 3
EffNet+FtC (100) 76.8 % 4 77.4 % 5 78.6 % 5 82.4 % 5 84.6 % 5 85.6 % 5
EffNet+FtC (200) 78.75 % 2 86.00 % 3 85.5 % 3 90.5 % 3 91.5 % 4 92.5 % 4

Ft EffNet 78.20 % 3 85.8 % 4 83.4 % 4 89.8 % 4 92.6 % 2 94.80 % 2
Ft EffNet Unbal 70.8 % 5 86.2 % 2 90.8 % 1 90.8% 2 95.8 % 1 96.8 % 1

Time Complexity

While the average inference time for an image of size 128× 128 is around 0.06 s, the
time complexity of re-configuring, re-training, or fine-tuning the classification methods
can still cause problems in industrial applications. Stopping the production while waiting
for adaptation to avoid new defects, or continuing the production with an increased ratio
of false products, can both result in high costs. Due to these reasons, the extremely fast
re-tuning of our model has a significant advantage over others. Table 7 and Figure 9 both
contain the training times of the different models. EffNet+RC has constantly very low
time requirements, independently from the number of shots, at least one order faster than
EffNet+FtC (100), the next fastest. The reason why Ft EffNet Unbal seems to be so slow is
due to the large number of training images in each epoch (835 + k(shots)× 3(new classes)),
while in case of Ft EffNet, the training set contained far less images (since it was balanced).

Table 7. Time spent for training at different number of k-shots.

Method 1 Shot 3 Shots 5 Shots 10 Shots 15 Shots 20 Shots

EffNet+RC 2.80 s 3.01 s 3.03 s 3.04 s 3.30 s 3.50 s
EffNet+FtC (100) 29.24 s 29.49 s 45.67 s 53.9 s 67.41 s 78.09 s
EffNet+FtC (200) 39.53 s 39.83 s 69.70 s 88.29 s 114.18 s 136.35 s
Ft EffNet 151.80 s 159.80 s 193.43 s 243.85 s 293.50 347.23 s
Ft EffNet Unbal 1408.10 s 1429.50 s 1443.30 s 1473.20 s 1489.10 s 1496.60 s



Appl. Sci. 2022, 12, 3967 17 of 22

Figure 9. Elapsed training time of the different models under investigation.

7. Summary and Future Work

We can summarize the main contributions of our article in the following points:

1. We showed that state-of-the-art DNNs (namely EfficientNet-B7) can solve the classifi-
cation of steel surface defects of the two often-used datasets almost perfectly, and that
they were superior to other made-to-measure techniques;

2. We applied randomized networks, concatenated to the feature extraction of a pre-
trained DNN, to give a solution for the few-shot problem. Since the computation of
its weights can be done very efficiently by the Moore–Penrose generalized inverse,
the solution has the following advantages:

• Regarding very few shots (one to three), our model outperformed other variants
when classifying both old and newly appearing classes of steel surface defects;

• Regarding the base classes, catastrophic forgetting could be avoided;
• The fine-tuning for new classes or shots is significantly faster than the fine-tuning

of any conventional DNNs.

Our statements are validated with thousands of experiments on steel surface defects
of the NEU and X-SSD datasets. In future, we plan to further improve the model by
sub-network extensions, similar to ref. [24], and to investigate the model using other kinds
of data.

Author Contributions: A.M.N. and L.C. contributed equally in this research. All authors have read
and agreed to the published version of the manuscript.

Funding: This work has been partly implemented by the TKP2020-NKA-10 project with the support
provided by the Ministry for Innovation and Technology of Hungary from the National Research,
Development and Innovation Fund, financed under the 2020 Thematic Excellence Programme funding
scheme. We acknowledge the financial support of the Hungarian Scientific Research Fund grant
OTKA K 135729. Amr Mohamed Nagy Abdo is funded by a scholarship under the joint Stipendium
Hungaricum Programme between the Arab Republic of Egypt and Hungary.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the NVIDIA corporation for supporting our research with
GPUs obtained by the NVIDIA GPU Grant Program.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 3967 18 of 22

Abbreviations
The following abbreviations are used in this manuscript:

RC Randomized Classifier
X-SSD Xsteel Surface Defect dataset
NEU Northeastern University Surface Defect Database
DNN Deep Neural Network
CNN Convolutional Neural Network
YOLOv4 You Look Only Once Network Version 4
FPN Feature Pyramid Network
R-CNN Region-Based Convolutional Neural Network
RestNet Residual Neural Network
MAP Mean Average Precision
CPN Classification Priority Network
MG-CNN Multiple Group Convolutional Neural Network
DDN Defect Detection Network
MFN Multi-level Feature Fusion Network
ROI Region of Interest
DA Domain Adaptation
ACNN Adaptive Learning Rate of the Convolutional Neural Networks
VGG19 Visual Geometry Group from Oxford 19
DeVGG19 Decode VGG19
SSIM Structural Similarity Index Measure
GCN Graph Convolution Networks
MMGCN Multiple Micrographs Graph Convolutional Network
k-NN k-Nearest Neighbor Graph
SENet Squeeze-and-Excitation Networks
RN Relation Network
CD-FSL Cross-Domain Few-Shot Learning
BSR Batch Spectrum Regularization
MNIST Modified National Institute of Standards and Technology Database
CIFAR Canadian Institute for Advanced Research
SLFN Single Layer Feed-Forward Neural Network
RVFL Random Vector Functional Links Network
ELM Extreme Learning Machines
EffNet+RC EfficientNet-B7 Backbone and the Randomized Classifier (RC)
VGG16 Visual Geometry Group from Oxford
ExtVGG16 Extended VGG16
EffNet EfficientNet
EffNet+FtC Frozen EfficientNet Backbone with Backpropagation Fine-Tuned Weights
Ft EffNet Fine-tuned EfficienNet-B7
Ft EffNet Unbal Fine-tuned EfficientNet-B7 with Unbalanced Data

Appendix A

Table A1. Steel surface detection methods discussed in Section 2.

Task Title Description Dataset Accuracy MAP

Detection and
classification

methods

Detection of metal surface
defects based on YOLOv4

algorithm [5].

Improvement of YOLOv4
architecture by adding a feature
pyramid network (FPN) module
after sampling, on the so-called

neck part of the network.

NEU 92.5% -



Appl. Sci. 2022, 12, 3967 19 of 22

Table A1. Cont.

Task Title Description Dataset Accuracy MAP

A new steel defect detection
algorithm based on deep

learning [4].

Improved Faster R-CNN model
by using deformable

convolutions and multi-level
feature fusion.

NEU-DET - 75.2

Defect detection of hot-rolled
steels with a new object

detection framework called
classification priority

network [6].

Classification priority network:
two-stage classification.

Author
dataset 96.00% -

An end-to-end steel surface
defect detection approach via
fusing multiple hierarchical

features [3].

The processing goes through the
steps: 1. feature map generation
by ResNet; 2. multi-level feature

fusion network; 3. region
proposal network; 4. classifier
and a bounding box regressor.

NEU-DET 99.67% 82.3

Visual inspection of steel
surface defects based on
domain adaptation and
adaptive convolutional

neural network [7].

It combines domain adaptation
and the adaptive learning rate of

the convolutional neural
networks to handle the changes

during the production.
Furthermore, applies an

additional domain classifier and
a constraint on label probability

distribution to enable
cross-domain and cross-task

recognition, and to account for
the lack of labels in a new

domain.

NEU 99.00% -

A steel surface defect
recognition algorithm based
on improved deep learning

network model using feature
visualization and quality

evaluation [8].

A steel surface defect
classification technique

fine-tuned with the help of a
feature visualization network

was proposed.

NEU 89.86% -

Recognition of scratches and
abrasions on metal surfaces
using a 534 classifier based
on a convolutional neural

network [9].

Different versions of ResNet
were investigated to classify

three kinds of defects on
metal surfaces.

NEU 97.10% -

Classification of surface
defects on steel strip images

using convolution neural
network and support vector

machine [30].

A modified AlexNet for feature
extraction, where the

classification was solved with a
support vector machine.

NEU 99.70% -

Zero-shot learning and
classification of steel surface

defects [10].

VGG16 was extended with
several layers for classification

(ExtVGG16).
NEU 100.00% -



Appl. Sci. 2022, 12, 3967 20 of 22

Table A1. Cont.

Task Title Description Dataset Accuracy MAP

Zero-shot
Learning

Zero-sample surface defect
detection and classification
based on semantic feedback

neural network [27].

Word vectors, extracted from an
auxiliary knowledge source, are

used to solve the zero-shot
learning problem.

Cylinder-
liner defect

dataset
(CLSDD)

89.28% -

One-shot recognition of
manufacturing defects in

steel surfaces [26].

A Siamese neural network is
used to decide whether two
input samples belong to the

same class or not.

NEU 83.22% -

Zero-shot learning and
classification of steel surface

defects [10].

Similar to ref. [26] but with a
more efficient structure. NEU 85.8% -

Few-shot
Learning

Steel Surface defect
classification based on small

sample learning [32].

Comparing ResNet, DenseNet,
and MobileNet for feature

extraction and mean subtraction
and L2 normalization for feature

transformation. For one-shot
learning a nearest neighbor
approach, whereas for the

multi-shot setting the average
value of known sample feature

vectors are used.

NEU 92.33% -

A new graph-based
semi-supervised method for

surface defect
classification [33].

A semi-supervised learning
model called multiple

micrographs graph
convolutional network was

proposed, which learns from
both labeled and unlabeled

samples.

NEU 99.72% -

Few-shot learning approach
for 3D defect detection in

lithium battery [35].

Training images were used to
fine-tune a pre-trained ResNet10

model, then a k-NN graph is
built to evaluate the distance

between samples, including both
the labeled and the unlabeled
ones. To refine the scoring of
samples a label propagation

method was used.

Lithium
batteries 97.17% -

Fabric defect classification
using prototypical network

of few-shot learning
algorithm [37].

A meta-training prototype-based
approach to handle the

unbalanced data caused by the
newly arriving error classes

having only few shots. Training
is cut into episodes, after each

episode the model is fine-tuned.

Textile 99.72% -

References
1. Feng, X.; Gao, X.; Luo, L. X-SDD: A new benchmark for hot rolled steel strip surface defects setection. Symmetry 2021, 13, 706.

[CrossRef]
2. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl.

Surf. Sci. 2013, 285, 858–864. [CrossRef]

http://doi.org/10.3390/sym13040706
http://dx.doi.org/10.1016/j.apsusc.2013.09.002


Appl. Sci. 2022, 12, 3967 21 of 22

3. He, Y.; Song, K.; Meng, Q.; Yan, Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features.
IEEE Trans. Instrum. Meas. 2019, 69, 1493–1504. [CrossRef]

4. Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A new steel defect detection algorithm based on deep learning. Comput. Intell.
Neurosci. 2021, 2021, 13. [CrossRef]

5. Zhao, H.; Yang, Z.; Li, J. Detection of metal surface defects based on YOLOv4 algorithm. J. Phys. Conf. Ser. IOP Publ. 2021, 1907,
012043. [CrossRef]

6. He, D.; Xu, K.; Zhou, P. Defect detection of hot rolled steels with a new object detection framework called classification priority
network. Comput. Ind. Eng. 2019, 128, 290–297. [CrossRef]

7. Zhang, S.; Zhang, Q.; Gu, J.; Su, L.; Li, K.; Pecht, M. Visual inspection of steel surface defects based on domain adaptation and
adaptive convolutional neural network. Mech. Syst. Signal Process. 2021, 153, 107541. [CrossRef]

8. Guan, S.; Lei, M.; Lu, H. A steel surface defect recognition algorithm based on improved deep learning network model using
feature visualization and quality evaluation. IEEE Access 2020, 8, 49885–49895. [CrossRef]

9. Konovalenko, I.; Maruschak, P.; Brevus, V.; Prentkovskis, O. Recognition of scratches and abrasions on metal surfaces using a
classifier based on a convolutional neural network. Metals 2021, 11, 549. [CrossRef]

10. Nagy, A.M.; Czúni, L. Zero-shot learning and classification of steel surface defects. In Proceedings of the Fourteenth International
Conference on Machine Vision (ICMV 2021). International Society for Optics and Photonics, Rome, Italy, 8–14 November 2021; Volume
12084, pp. 386–394.

11. Chen, Y.; Ding, Y.; Zhao, F.; Zhang, E.; Wu, Z.; Shao, L. Surface defect detection methods for industrial products: A review. Appl.
Sci. 2021, 11, 7657. [CrossRef]

12. Seff, A.; Beatson, A.; Suo, D.; Liu, H. Continual learning in generative adversarial nets. arXiv 2017, arXiv:1705.08395.
13. Shin, H.; Lee, J.K.; Kim, J.; Kim, J. Continual learning with deep generative replay. arXiv 2017, arXiv:1705.08690.
14. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural

Netw. 2019, 113, 54–71. [CrossRef] [PubMed]
15. Belouadah, E.; Popescu, A. DeeSIL: Deep-shallow incremental learning. In European Conference on Computer Vision; Springer:

Cham, Switzerland, 2018; pp. 151–157.
16. Castro, F.M.; Marín-Jiménez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-end incremental learning. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 233–248.
17. He, C.; Wang, R.; Shan, S.; Chen, X. Exemplar-Supported Generative Reproduction for Class Incremental Learning. In Proceedings

of the 2018 British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; p. 98.
18. Rebuffi, S.A.; Kolesnikov, A.; Sperl, G.; Lampert, C.H. iCarL: Incremental classifier and representation learning. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2001–2010.
19. Luo, Y.; Yin, L.; Bai, W.; Mao, K. An appraisal of incremental learning methods. Entropy 2020, 22, 1190. [CrossRef] [PubMed]
20. Boukli Hacene, G.; Gripon, V.; Farrugia, N.; Arzel, M.; Jezequel, M. Transfer incremental learning using data augmentation. Appl.

Sci. 2018, 8, 2512. [CrossRef]
21. Ratcliff, R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions. Psychol. Rev.

1990, 97, 285. [CrossRef]
22. Belouadah, E.; Popescu, A. Scail: Classifier weights scaling for class incremental learning. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision,Snowmass, CO, USA, 1–5 March 2020; pp. 1266–1275.
23. Belouadah, E.; Popescu, A. Il2m: Class incremental learning with dual memory. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 583–592.
24. Siddiqui, Z.A.; Park, U. Progressive convolutional neural network for incremental learning. Electronics 2021, 10, 1879. [CrossRef]
25. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.

2020, 53, 1–34. [CrossRef]
26. Deshpande, A.M.; Minai, A.A.; Kumar, M. One-shot recognition of manufacturing defects in steel surfaces. Procedia Manuf. 2020,

48, 1064–1071. [CrossRef]
27. Guo, Y.; Fan, Y.; Xiang, Z.; Wang, H.; Meng, W.; Xu, M. Zero-sample surface defect detection and classification based on semantic

feedback neural network. arXiv 2021, arXiv:2106.07959.
28. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 3 June 2019; pp. 6105–6114.
29. Schlagenhauf, T.; Yildirim, F.; Brückner, B.; Fleischer, J. Siamese basis function networks for defect classification. arXiv 2020,

arXiv:2012.01338.
30. Boudiaf, A.; Benlahmidi, S.; Harrar, K.; Zaghdoudi, R. Classification of surface defects on steel strip images using convolution

neural network and support vector machine. J. Fail. Anal. Prev. 2022, V22 1–11. [CrossRef]
31. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
32. Wu, S.; Zhao, S.; Zhang, Q.; Chen, L.; Wu, C. Steel Surface defect classification based on small sample learning. Appl. Sci. 2021,

11, 11459. [CrossRef]
33. Wang, Y.; Gao, L.; Gao, Y.; Li, X. A new graph-based semi-supervised method for surface defect classification. Robot. Comput.-

Integr. Manuf. 2021, 68, 102083. [CrossRef]

http://dx.doi.org/10.1109/TIM.2019.2915404
http://dx.doi.org/10.1155/2021/5592878
http://dx.doi.org/10.1088/1742-6596/1907/1/012043
http://dx.doi.org/10.1016/j.cie.2018.12.043
http://dx.doi.org/10.1016/j.ymssp.2020.107541
http://dx.doi.org/10.1109/ACCESS.2020.2979755
http://dx.doi.org/10.3390/met11040549
http://dx.doi.org/10.3390/app11167657
http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
http://dx.doi.org/10.3390/e22111190
http://www.ncbi.nlm.nih.gov/pubmed/33286958
http://dx.doi.org/10.3390/app8122512
http://dx.doi.org/10.1037/0033-295X.97.2.285
http://dx.doi.org/10.3390/electronics10161879
http://dx.doi.org/10.1145/3386252
http://dx.doi.org/10.1016/j.promfg.2020.05.146
http://dx.doi.org/10.1007/s11668-022-01344-6
http://dx.doi.org/10.3390/app112311459
http://dx.doi.org/10.1016/j.rcim.2020.102083


Appl. Sci. 2022, 12, 3967 22 of 22

34. Yang, L.; Zhan, X.; Chen, D.; Yan, J.; Loy, C.C.; Lin, D. Learning to cluster faces on an affinity graph. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2298–2306.

35. Wu, K.; Tan, J.; Li, J.; Liu, C. Few-shot learning approach for 3D defect detection in lithium battery. J. Phys. Conf. Ser. IOP Publ.
2021, 1884, 012024. [CrossRef]

36. Zhou, D.; Bousquet, O.; Lal, T.; Weston, J.; Schölkopf, B. Learning with local and global consistency. Adv. Neural Inform. Process.
Syst. 2003, 16.

37. Zhan, Z.; Zhou, J.; Xu, B. Fabric defect classification using prototypical network of few-shot learning algorithm. Comput. Ind.
2022, 138, 103628. [CrossRef]

38. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 2015, 115, 211–252. [CrossRef]

39. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

40. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Department of Computer Science, University of
Toronto: Toronto, ON, Canada, 2009.

41. Kyriakides, G.; Margaritis, K. An introduction to neural architecture search for convolutional networks. arXiv 2020,
arXiv:2005.11074.

42. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
4510–4520.

43. Kiss, N.; Czùni, L. Mushroom image classification with CNNs: A case-study of different learning strategies. In Proceedings of
the 12th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 13–15 September 2021;
pp. 165–170.

44. Hridoy, R.H.; Akter, F.; Rakshit, A. Computer vision based skin disorder recognition using EfficientNet: A transfer learning
approach. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July
2021; pp. 482–487.

45. Ab Wahab, M.N.; Nazir, A.; Ren, A.T.Z.; Noor, M.H.M.; Akbar, M.F.; Mohamed, A.S.A. Efficientnet-lite and hybrid CNN-KNN
implementation for facial expression recognition on raspberry pi. IEEE Access 2021, 9, 134065–134080. [CrossRef]

46. Garg, H.; Sharma, B.; Shekhar, S.; Agarwal, R. Spoofing detection system for e-health digital twin using EfficientNet convolution
neural network. Multimed. Tools Appl. 2022, 1–16. [CrossRef]

47. Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A forest fire detection system based on ensemble learning. Forests 2021, 12, 217. [CrossRef]
48. Yousfi, Y.; Butora, J.; Fridrich, J.; Fuji Tsang, C. Improving efficientnet for JPEG steganalysis. In Proceedings of the 2021 ACM

Workshop on Information Hiding and Multimedia Security, virtual event Belgium, 22–25 June 2021; pp. 149–157.
49. Gao, F.; Sa, J.; Wang, Z.; Zhao, Z. Cassava disease detection method based on EfficientNet. In Proceedings of the 7th International

Conference on Systems and Informatics (ICSAI), Chongqing, China, 13–15 November 2021; pp. 1–6.
50. Schmidt, W.F.; Kraaijveld, M.A.; Duin, R.P. Feed forward neural networks with random weights. In Proceedings of the

International Conference on Pattern Recognition, The Hague, The Netherlands, 30 August–3 September 1992; p. 1.
51. Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net.

Neurocomputing 1994, 6, 163–180. [CrossRef]
52. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
53. Suganthan, P.N.; Katuwal, R. On the origins of randomization-based feedforward neural networks. Appl. Soft Comput. 2021,

105, 107239. [CrossRef]
54. Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287.

[CrossRef]
55. Moore, E.H. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394–395.
56. Lv, X.; Duan, F.; Jiang, J.j.; Fu, X.; Gan, L. Deep metallic surface defect detection: The new benchmark and detection network.

Sensors 2020, 20, 1562. [CrossRef]
57. Schlagenhauf, T.; Landwehr, M.; Fleischer, J. Industrial Machine Tool Element Surface Defect Dataset; Karlsruher Institut für

Technologie: Karlsruhe, Germany, 2021.

http://dx.doi.org/10.1088/1742-6596/1884/1/012024
http://dx.doi.org/10.1016/j.compind.2022.103628
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ACCESS.2021.3113337
http://dx.doi.org/10.1007/s11042-021-11578-5
http://dx.doi.org/10.3390/f12020217
http://dx.doi.org/10.1016/0925-2312(94)90053-1
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.asoc.2021.107239
http://dx.doi.org/10.1016/j.neucom.2017.08.040
http://dx.doi.org/10.3390/s20061562

	Introduction
	Related Works
	Detection and Classification of Steel Surface Defects
	Zero-Shot Learning
	Few-Shot Learning

	Proposed Methods
	Classification of Defects with EfficientNet-B7
	Few-Shot Learning of Defects
	Randomized Weights for Generalization and Fast Tuning
	Randomizing EfficientNet Features


	The Benchmark Datasets
	Northeastern University Surface Defect Database
	Xsteel Surface Defect Dataset (X-SSD)

	Experimental Results of Classification and Its Discussion
	Classification Results on the NEU Dataset
	Classification Results on the X-SSD Dataset

	Testing Few-Shot Learning with EffNet+RC
	Summary and Future Work
	Appendix A
	References

