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Abstract: Background and Objectives: The burst of high-throughput omics technologies has given
rise to a new era in systems biology, offering an unprecedented scenario for deriving meaningful
biological knowledge through the integration of different layers of information. Methods: We have
developed a new software tool, MOMIC, that guides the user through the application of different
analysis on a wide range of omic data, from the independent single-omics analysis to the combination
of heterogeneous data at different molecular levels. Results: The proposed pipeline is developed
as a collection of Jupyter notebooks, easily editable, reproducible and well documented. It can be
modified to accommodate new analysis workflows and data types. It is accessible via momic.us.es,
and as a docker project available at github that can be locally installed. Conclusions: MOMIC
offers a complete analysis environment for analysing and integrating multi-omics data in a single,
easy-to-use platform.

Keywords: multi-omics; integration; analysis; pipeline; reproducibility

1. Introduction

Recent technological advances have allowed the generation of vast amounts of data
from different omics layers, offering information from diverse aspects of cell biology rang-
ing from genetic variation to the quantification of the proteins encoded by these genes [1].
This fact has given rise to a new era in systems biology, generating the need of integrating
different data types. However, the methodological spectrum for the analysis of biologi-
cal data, and the theoretical framework required to interpret the obtained information is
lagging behind [2], and consequently, few standardized workflows for integrative data
analyses have been proposed.

Integrative methods can collectively mine multiple types of biological data and provide
richer insights. A variety of software applications and analytical frameworks [3,4] are
already available for handling diverse type of data. However, the lack of a central repository
which catalogs, links, rates and summarizes these tools is one of the factors limiting their
use by the research community. Furthermore, some of these resources present notable
inconveniences: difficult installation, moderate learning curve, limited customisation or
paid license. Increasing researcher awareness and accessibility to tools will improve their
use and uptake [5].

This article presents MOMIC, a comprehensive pipeline capable of analyzing and
summarising single-omics data by means of meta-analysis, as well as performing integra-
tive analysis of different molecular levels. Enrichment analysis and visualization methods
have also been implemented to aid data interpretation. The tool comprises a set of Jupyter
notebooks [6] designed for each molecular level, based on publications and best practices
available in the literature. An important aspect of MOMIC is its reproducibility; all steps
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are kept in the same notebook, including commands that are traditionally executed in a
terminal, so the user can always see past outputs and exact parameters. It is presented as a
web tool and as a Docker project to be installed locally.

The article is structured as follows: Section 2 presents the materials and methods used
in this work, detailing all the protocols applied. Section 3 explores existing alternatives
and compares them to MOMIC. In Section 4 the authors show diverse analysis outcomes
on synthetic and public datasets and how MOMIC has been successfully used in the data
analysis required for the ADAPTED IMI project [7]. Finally, Section 6 presents the final
conclusions and remarks related to this work.

2. Materials and Methods

MOMIC currently compiles protocols for whole genome SNP data (GWAS), mRNA
expression (both from arrays and RNAseq experiments) and protein data. Along with
enrichment analysis and methods for combining distinct data.

The data analysis workflows starts with the pre-processing and quality control of
the individual datasets. Each of the datasets are then independently analyzed following
different protocols designed for each type of data. To consolidate these independent results
for the same omic, a meta-analysis can be performed, generating single lists of SNPs or
genes. After this, one can take a step forward and combine diverse omic results, along
with functional genomics analysis, and try to elucidate the potential causative changes
that lead to disease. With this integrative approach the user can get a single ranked list of
candidate genes summarising the heterogeneous data at different molecular levels. Finally,
visualization and pathway analysis tools are available to further explore analysis results.
This whole procedure has been summarized in Figure 1.

Figure 1. MOMIC pipeline steps.
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2.1. Core Software

MOMIC is presented as a collection of Jupyter notebooks using JupyterLab and Jupyter-
Hub on top, written mainly in R language and containerized in docker [8]. JupyterLab is an
open-source web-based interactive development environment that allows users to create
and share documents, called notebooks, that contain live code, equations, visualizations
and narrative text. JupyterHub brings the power of notebooks to multiple users.

MOMIC is distributed as a docker-compose project that contains the instructions
needed to automatically create a fully working pipeline server with JupyterLab. These
instructions assemble commands that enable convenient extensions in JupyterLab, like
git for notebook version controlling and table of content, set up docker volumes for data
persistence, arrange the pipeline source code and all the necessary libraries and third-party
software. An alternative to a local installation is to use the pipeline hosted at momic.us.es.
Note this alternative is intended for light analysis or quick testing. Login details are
specified in the user manual and upon request.

The collection of notebooks are provided as read-only, serving as templates. The user
can replicate the same analysis duplicating the template and modifying it according to his
needs. Notebooks can be downloaded as ipython notebooks, HTML, PDF or scripts. The
later exports the notebook in scripting language that can be reused at the user convenience.

2.2. Implemented Protocols

We describe below the protocols developed. These are executed on publicly available
datasets and synthetic data related to Alzheimer Disease and serves as an illustrative
example of how to use the pipeline to carry out customised analysis.

Figures S1–S4 from the Supplementary Material precisely describe the collection of
notebooks designed for each protocol, defining the individual tasks, the flow of information
and expected inputs and outputs. The user manual and the jupyter notebooks contain more
detailed explanations and documented source code.

Genome Wide Expression Studies (GWES) from microarrays. RNA microarrays can
simultaneously measure the expression level of thousands of genes within a particular
mRNA sample [9]. This can be used to compare the level of gene transcription in clinical or
biological conditions in order to find differences in expression levels between predefined
groups of samples. This pipeline starts from raw expression data and ends with a set of
differentially expressed genes, as shown in Figure 2. In order to capture these significant
genes, the standard protocol to follow comprises data pre-processing, differential expression
analysis (DE) and annotation steps. Pre-processing involves transforming raw data into a
matrix of normalized intensities, using the RMA [10], limma [11] or preprocessCore [12] R
packages depending on the data platform. Batch effect removal is also available through
the combat function of the sva package [13]. DE is performed with limma, an R package
based on linear models for microarray data, including optional correction for covariates,
followed by annotation to translate probes to genes, using Entrez and Human Genome
Nomenclature Committee (HGNC) identifiers. Additionally, heatmaps, PCA and volcano
plots can be easily generated to assist the interpretation of results.

Genome Wide Expression Studies (GWES) from RNASeq. RNA-Seq is a particular
technology-based sequencing technique which uses next-generation sequencing (NGS) to
reveal the presence and quantity of RNA in a biological sample at a given moment. This
pipeline starts from raw sequence reads, and ends with a set of differentially expressed
genes (see Figure 3). The steps to complete this analysis are: quality check of the raw reads
using fastqc [14], alignment of reads against the reference genome using STAR [15], quality
control of aligned reads (by inspection of QC plots) and reads quantification with STAR.
Differential expression can be then performed using DESeq2 [16], an R package based on
a model using the negative binomial distribution, followed by annotation with biomaRt
library [17]. As for microarrays, plots like MA, heatmap and PCA can be easily obtained.
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Figure 2. Microarray analysis workflow.

Figure 3. RNA-Seq analysis workflow.
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Genome Wide Association Studies (GWAS): GWAS is an observational study of a
genome-wide set of genetic variants in different individuals to examine if any variant is
associated with a trait. The GWAS protocol is available for genome builds GRCh37/hg19
and GRCh38/hg38, including the UCSC liftOver tools for updating genetic positions. This
pipeline starts from genomic data in PLINK format, and ends with Single Nucleotide
Polymorphisms (SNPs) annotated for surrounding genes and rs identifiers (dbSNP v150 for
the GRCh37 pipeline and dbSNP v151 for the GRCh38 pipeline), which are then aggregated
to the level of whole genes, testing the joint association of all markers in the gene with
the phenotype, as depicted in Figure 4. Procedure followed here is a composition from
Anderson et al. protocol [18] and AT Marees et al. [19]. Steps are: initial quality control
excluding bad quality individuals and SNPs, genotype imputation using the Michigan [20]
or TopMed [21] imputation servers, case control association study using PLINK [22] and
gene-wise statistics computed using MAGMA [23]. SNP level data can be visualised with
Manhattan and QQ plots [24].

Figure 4. GWAS analysis workflow.

Proteomics: Differential expression between samples can be also explored in MOMIC
at the protein level. This pipeline starts from an intensity matrix, generated by specific soft-
ware such as MaxQuant/Perseus, and ends with a set of differentially expressed proteins
(see Figure 5). The first step is data processing, which includes removing decoy matches
and matches to contaminant, extracting the LFQ intensities columns, filtering on miss-
ing values, log transformation, normalisation, unique peptide counting and visualisation.
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Differential expression is performed similarly to microarray DE analysis using DEqMS R
package [25], which is built on top of limma and accounts for variance dependence on the
number of quantified peptides. Heatmap and volcano plots are also generated to assist the
interpretation of results.

Figure 5. Proteomics analysis workflow.

Meta-analysis: Meta-analysis is the statistical procedure for synthesising data across
studies addressing the same question at the same molecular level. Two different one-step
protocols are provided here, one for combining multiple GWAS results using the software
METAL [26] and another for transcriptomics and proteomics results utilising MetaDE R
library [27]. The former starts from SNP level GWAS results and ends with a single list of
SNPs and associated summary statistics. The later starts from the results of the DE analysis
of various studies, and ends with an unified list of differentially expressed genes or proteins
across studies with their correspondent average effect sizes and p-values.

Integrative analysis: Integrative analysis aims at consolidating heterogeneous data
at different omics levels to understand their interrelation and combined influence on the
disease processes. This one-step protocol starts from the results of the meta-analysis from
different studies, and ends with a unified ranked list of differentially expressed genes. It
is performed using the Robust Rank Aggregation method [28]. It detects genes that are
ranked consistently better than expected under the null hypothesis of uncorrelated inputs
and assigns a significance score for each gene.

Enrichment: Enrichment analysis can identify gene onthology (GO) terms and path-
ways which are statistically over or under-represented within the list of interest, by sys-
tematically mapping genes and proteins to their associated biological annotations. The
enrichment is performed using WebGestalt [29] in R and the visualization with GOplot [30]
and pheatmap from R CRAN.

2.3. Availability and Requirements

MOMIC is free to use and it is distributed under the MIT License. It is hosted at the
University of Seville data center at momic.us.es. Sources, documentation and guides for
users and administrators are available on GitHub:

MOMIC server: https://github.com/laumadmar/MOMIC_server.git (accessed on 10
January 2022)
Collection of notebooks: https://github.com/laumadmar/MOMIC_notebooks.git (ac-
cessed on 10 January 2022)

https://github.com/laumadmar/MOMIC_server.git
https://github.com/laumadmar/MOMIC_notebooks.git


Appl. Sci. 2022, 12, 3987 7 of 17

Documentation: https://laumadmar.github.io/MOMIC_server (accessed on 10 January 2022)

If hosting MOMIC locally, the minimum recommendation is 15 GB of RAM which may
need to be increased with large datasets, specially for some processes during an RNASeq
Analysis or GWAS. The most computationally intensive tasks are: the preparation of the
1 KG [31] data prior the population stratification on a GWAS analysis, which takes up to
8 GB of virtual memory and takes 26 min to complete, and a GWAS association analysis
taking up to 45 MB and 45 min. Disk space can vary depending on the size of the user
data, 260 GB is the actual size of the data volume for momic.us.es. Suplementary Table S1
summarises the data types used as inputs and their sizes.

MOMIC has been tested on Ubuntu 18.04, CentOS 8, Rocky Linux 8.5, Windows 10
and macOS High Sierra.

3. Motivation and Existing Alternatives

MOMIC emerged out of the necessity of exploring data at different molecular levels
as part of the ADAPTED project, reviewed in the Results section. The main requirements
regarding the bioinformatics analysis were to perform them in a comprehensive way, easy
to share and fully reproducible while keeping good evidence of the work done.

After examining existing tools none of them quite suited the above requirements and
therefore MOMIC was developed. Table 1 shows some of these tools and the main differ-
ences with MOMIC, being Galaxy and GenePattern the ones that serve similar functionality.
Despite Galaxy being a powerful and useful tool, it has some limitations compared to
MOMIC in terms of accessibility to the source code and ease of data manipulation and
customisation of modules. GenePattern is a great tool for users with no programming
experience but not that well suited for those who need full control over the source code
and straight forward customisation. It offers a good variety of analysis and modules but
lacks GWAS and integration of different omics.

https://laumadmar.github.io/MOMIC_server
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Table 1. Comparison of existing tools for omic analyses.

Name Platform Friendliness Functionality Comparison with MOMIC Availability

Offers a platform for Similar to MOMIC in functionality https://www.genepattern.org/
GenePattern Web Easy reproducible bioinformatics but the code is closed source, (accessed 1 April 2022)

making it impossible to full customise
the pipelines, however changing the input
parameters does allow for minor changes. It
focuses mainly on transcriptomics and lacks
GWAS analysis and integration of omics.
GenePattern notebook also extends
JupyterHub and it is available via web
and as a local server

Enables researchers without informatics Serves the same aim but unlike MOMIC, https://usegalaxy.org/
Galaxy Web Medium expertise to perform computational it does not offer real time code (accessed 1 April 2022)

analyses through the web and visualisation, easy data manipulation
or customisation. Developing new
tools in Galaxy is not straight
forward and requires XML skills

Offers a wide range of novel This R package can be installed http://mixomics.org/
mixOmics R Difficult multivariate methods for the exploration in MOMIC to extend the proposed (accessed 1 April 2022)

and integration of biological datasets transcriptomics pipelines. It does not
with a particular focus on offer protocols for GWAS analysis
on variable selection

https://www.genepattern.org/
https://usegalaxy.org/
http://mixomics.org/
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Table 1. Cont.

Name Platform Friendliness Functionality Comparison with MOMIC Availability

Offers integrative visualization Requires specific input format http://www.paintomics.org/
Paintomics 3 Web Easy of multiple omic datasets and data wrangling. This just (accessed 1 April 2022)

onto KEGG pathways provides visualisation, as
oppose to MOMIC which also provides
a platform for data analysis.
Results obtained from MOMIC
could be used to feed this tool
if desired. It does not offer
protocols for GWAS analysis

Offers interactive NGS analysis Good alternative for NGS analysis https://www.basepairtech.com/
Basepair Web Easy pipelines for users with analysis but there is a fee (accessed 1 April 2022)

no programming experience to pay per sample.
The source code is not exposed
so the customisation is limited

http://www.paintomics.org/
https://www.basepairtech.com/
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4. Results

This section shows the different outputs that can be obtained by MOMIC analysis
pipelines. Different sources of data have been used to illustrate its functionality, including
synthetic data, therefore the lists of significant genes obtained from this type of data are
not evaluated here. The subsection below, Use cases: Application on real projects, briefly
describe two successful published studies carried out using MOMIC and a gene priorization
project, serving as a good validation of this tool.

GWES from Microarrays. This protocol makes use of Gene Expression Omnibus
(GEO) [32] datasets GSE48350, which contains brain expression data from normal controls
and AD cases, and GSE11882/GSE15222 datasets, also a brain transcriptomic study on
normal controls and AD cases. Figure 6a illustrates the results provided by MOMIC in
tabular format for the differential expression analysis, including information such as log2
fold changes (logFC), lower and upper confidence intervals (CI.L, CI.U), p-value, FDR
adjusted p-value and Entrez Gene IDs (Supplementary Data Tables S1 and S2). Graphical
outputs include Volcano (Figure 6b) and Heatmap (Figure 6c) plots, enabling quick visual
identification of the most biologically relevant genes. To illustrate the meta-analysis pro-
tocol, the results from these two analyses are combined in MOMIC (Supplementary Data
Table S1 and S2).

Figure 6. Results obtained from Microarray DE analysis. (a) candidate genes in tabular format. (b,c)
Volcano and Heatmap plots highlighting top DE genes.
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GWES from RNAseq. Synthetic data from astrocytes with fake genotype and pheno-
type have been created to depict the RNAseq pipeline. The various outputs obtained from
this pipeline comprises summary statistics about number and quality of reads (Figure 7a,b),
tabular data with log2 fold changes, p values and adjusted p values, and Volcano and
Heatmap plots for the visualisation of the differential expression results.

Figure 7. NGS quality plots generated by MultiQC integrated in MOMIC. (a) Sequence Quality
Histograms, (b) number of reads.

GWAS. Given the restrictions applying to raw genotypic data, which is needed to
illustrate the GWAS protocol, we used whole genome genotypes from the 1000 Genomes
(1 KG) project [31], adding a simulated dichotomic case status for running the association
analysis. The 1KG project ran between 2008 and 2015, creating the largest public catalogue
of human variation and genotype data. Figure 8 lists the top 6 annotated SNPs obtained,
along with chromosome and allele information, and statistics like p-value, standard error
(ES) and Estimated odds ratio (OR). Figure 8b shows an example of PCA plot generated
by MOMIC, showing PC means and suggestive thresholds for the Caucasian population
represented by red and blue dotted lines. Manhattan and QQ plots graphically summarizes
the results from individual association studies (Figure 8c,d).

Proteomics. Proteomics data from postmortem brain tissue collected through The
National Institute on Aging’s Baltimore Longitudinal Study of Aging (BLSA) [33] were
obtained from Synapse (10.7303/syn3606086). Differential expression is explored similarly
to GWES Microarray on both graphical and tabular fashion (Supplementary Data Table S3)
as depicted in Figure 6a–c.

Integrative Analysis. Integrative analysis using the RRA approach was applied to
the output gene lists obtained from the above analysis. RRA output includes exact and
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adjusted p-values (data not shown). As mentioned earlier, this analysis is not expected
to have biological significance. Another application of this integrative analysis is gene
priorization, which is mentioned below.

Figure 8. Tabular and graphical outputs from GWAS. (a) top annotated SNPs. (b) Multidimensional
Scaling plot for population stratification. (c,d) Manhattan and QQ plots.

Enrichment Analysis. Given a list of candidates genes generated by MAGMA, DE
meta-analysis or integrative analysis, it can be explored for identifying relevant gene
functions. Figure 9 shows a graphical representation of the enrichment analysis carried out
on integrative results.

Use Cases: Application on Real Projects

This tool has been successfully used in the data analysis required for the Innovative
Medicines Initiative (IMI) funded ADAPTED project [7], an international consortium aimed
at a better understanding of APOE-specific effects, a well-known risk factor for developing
AD. Within this project, data of multiple OMICS technologies, including GWAS data from
more than 50,000 subjects, mRNA and protein expression data from both plasma and brain,
as well as single-nuclei brain transcriptomics, has been analyzed and integrated.

Plasma biomarkers for AD discussed on the article Integrated Genomic, Transcriptomic
and Proteomic Analysis for Identifying Markers of Alzheimer’s Disease [34], have been
explored entirely in MOMIC using GWAS summary statistics, transcriptomic and proteomic
data from brain and blood.

In favour of providing another example of how MOMIC can be applied to current
medical and biological research,we have performed priorization of association signals arising
from GWAS. We collected published gene level summary statistics [35], including 115 genes
significantly associated with AD, and three meta-analysis results at the plasma, cortex and
hippocampus levels generated with MOMIC for the two projects mentioned above. We
then applied the RRA algorithm for combining the four datasets, and compared generated
ranks with those provided by OpenTargets [36], a popular tool for gene priorization based on
precomputed scores by disease (Supplementary Data Table S4 and Figure S1).
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Figure 9. Functional analysis of results: over-representation pathway analysis. (a) case vs. control (b)
Go Terms.
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5. Discussion

MOMIC is designed to be an intuitive and easy-to-use tool to perform a good variety
of omic analysis, enabling the visualization and integration of data at different molecular
levels in a single framework. It is presented as a collection of Jupyter notebooks, and it
is also conveniently packaged as a Docker application so that the user can have within
minutes a complete bioinformatics suit with predefined pipelines without the burdens
of creating the infrastructure and installing the packages and tools broadly used in omic
analysis. It has been thoroughly tested, well documented and with clear guidelines and
citations that explain each type of analysis. MOMIC provides fully open source code that
allows the end user to make any modification to adequate the analyses to his needs.

The usage of MOMIC has been demonstrated by analysing AD data from synthetic
and publicly available data, as well as two published articles related to this disease that
used MOMIC to make some interesting discoveries. We presented a third validation project
consisting on signal priorization, where we see the gene RELB ranked first by MOMIC,
a gene involved in immunity and inflammation producing amyloidosis in KO mutant
mice, ranked 6 according to GWAS results. Similarly, the first ranked gene according to
de Rojas results, PVRL2 (NECTIN2), a glycoprotein linked to T-cell differentiation, ranked
fourth after MOMIC integrative analysis. None of them were included among AD genes
in OpenTargets, and therefore, excluded from the rank generated by this tool. In fact,
OpenTargets only included 54 of the 115 significant genes reported by de Rojas et al.

This shows that MOMIC can be easily used to incorporate summary statistics to
previously generated meta-analysis results and ranked gene lists, through the METAL,
metaDE and RRA algorithms for GWAS, expression (transcriptomics and proteomics) and
miscellaneous data respectively. The ranking algorithm doesn’t either require that the same
entities are measured in all the experiments to be combined in contrast with tools based
on clustering such as mixOmics. Finally, its advantage for gene priorization over other
popular resources is that it does not rely on previous knowledge, but on observed altered
expression in target tissues in an standardized manner.

6. Conclusions and Future Work

This work represents an effort for putting together protocols and best practises avail-
able in the literature into a practical, extensible and platform-independent single framework.
By providing theoretical background and hands-on experience, we aim at making the omics
science more accessible and effortless to researchers with and without formal training in
the field.

The kind of integrative approach that MOMIC implements helps in assessing the
flow of information from one omics level to the other and thus helps in bringing the gap
between genotype to phenotype, improving prognostics and predictive accuracy of disease
phenotypes eventually aiding in better treatment and prevention.

Future Work

MOMIC scalability depends on computing power and the ability to perform new
bioinformatics analysis. The former requires the replication of MOMIC in a local server,
as the version hosted at momic.us.es is not capable of storing data for multiple users
and the actual RAM limits some analyses on large datasets, specially for performing a
GWAS analysis. The later can be achieved simply by adding new Jupyter notebooks with
appropriate source code and libraries. The user manual explains in great detail how to
accomplish both.

A piece of work that could be done to boost MOMIC is to implement it using an
orchestrator engine and a cloud service provider to get a robust cloud computing pipeline
in a distributed, secure, scalable and reproducible environment. Jupyter notebooks can
be exported as R scripts to assist the translation between MOMIC source code and the
language used by the workflow engine.



Appl. Sci. 2022, 12, 3987 15 of 17

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
app12083987/s1, https://github.com/laumadmar/MOMIC_server.git (accessed 1 April 2022); https:
//github.com/laumadmar/MOMIC_notebooks.git (accessed 1 April 2022); https://laumadmar.
github.io/MOMIC_server (accessed 1 April 2022) [37,38].

Author Contributions: Conceptualization, L.M.-M., A.G.-P. and M.E.S.; methodology, L.M.-M., A.G.-
P. and M.E.S.; software, L.M.-M.; validation, L.M.-M., C.R.-E. and B.P.; formal analysis, L.M.-M. and
M.E.S.; investigation, L.M.-M., C.R.-E. and B.P.; resources, L.M.-M.; data curation, L.M.-M.; writing—
original draft preparation, L.M.-M., M.E.S. and C.R.-E.; writing—review and editing, L.M.-M., M.E.S.,
C.R.-E., J.C.R and B.P.; visualization, L.M.-M.; supervision, A.G.-P. and M.E.S.; project administration,
C.R.-E. and B.P.; funding acquisition, C.R.-E., A.G.-P. and M.E.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work has been supported by the ADAPTED consortium, which has received funding
from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115975.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and
innovation program and the European Federation of Pharmaceutical Industries and Associations.
https://www.imi.europa.eu/projects-results/project-factsheets/adapted (accessed on 10 January
2022). The authors also want to thank the financial support given by the Spanish Ministry of Economy
and Competitivity TIN2017-88209-C2-2-R, the Junta de Andalucía Project P18-RT-2778, the University
of Sevilla project US-1263341 and the FEDER funds IPT-2011-0952-900000. We thank the International
Genomics of Alzheimer’s Project (IGAP) for providing summary results data for these analyses. The
investigators within IGAP contributed to the design and implementation of IGAP and/or provided
data but did not participate in analysis or writing of this report. IGAP was made possible by the
generous participation of the control subjects, the patients, and their families. The i–Select chips was
funded by the French National Foundation on Alzheimer’s disease and related disorders. EADI was
supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant,
Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD
was supported by the Medical Research Council (Grant No. 503480), Alzheimer’s Research UK
(Grant No. 503176), the Wellcome Trust (Grant No. 082604/2/07/Z) and German Federal Ministry
of Education and Research (BMBF): Competence Network Dementia (CND) grant No. 01GI0102,
01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the
NIA AG081220 and AGES contract N01-AG-12100, the NHLBI grant R01 HL105756, the Icelandic
Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported
by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer’s
Association grant ADGC-10-196728.

Data Availability Statement: Data is available under some circumstances upon request to
lmadrid@caebi.es. The Baltimore Longitudinal Study on Aging (BLSA) study data were gener-
ated from postmortem brain tissue collected through the The National Institute on Aging’s Baltimore
Longitudinal Study of Aging and provided by Levey from Emory University. This study was
downloaded from Synapse (10.7303/syn3606086).

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
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